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12

Periodic Motion

12-1 Introduction

One of the more important problems in mechanics is the study of periodic
motions, that is, motions which repeat themselves in regular intervals of time,
called the period. An example of periodic motion which we hrNe already
encountered is uniform circular motion, in which the velocity and accelera­
tion of the body at a given angular position were always the same. If a
particle was found at a given position at a time t, we could be sure that it
would return to that position at time t + T later, where T was the period
of the rotational motion. A body in uniform circular motion moves under
the influence of a varying force, the centripetal force, which, though con­
stant in magnitude, varies in direction. In general, an object moving in
periodic motion must move under the influence of a varying force which is
directed to some equilibrium position or to some neutral position. In
uniform circular motion this position is the center of the circle.

There are many other types of periodic motion. Among these are the
oscillations of a weight attached to a vertical spring, the motion of a simple
pendulum, and the oscillations of the balance wheel of a watch. A glass
marble bouncing up and down on a hard steel anvil represents such a
motion; see Figure 12-1(a). If the collision between the marble and the
anvil is perfectly elastic, the marble rises after each collision to the height
ho from which it was dropped. The motion is perfectly repetitive, as shown
in Figure 12-1(b), where the height h of the marble has been ploUed as a
function of time. We see that the graph is really a succession of parabolas
displaced along the time axis by the period T. In actual practice it is not
possible to achieve a perfectly elastic collision between the marble and the
anvil. The marble loses a fraction of its energy on each collision, and
the motion is not perfectly periodic, as shown by the dotted lines in Fig­
ure 12-1(b). The interval between successive impacts becomes shorter and
shorter, and the motion is known as an aperiodic motion, that is, nearly
but not quite periodic.
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226 PERIODIC MOTION §12-1

Other examples of oseillating motion inelude the movement of a piston
in a gasoline engine, the vibrations of a string of a musical instrument, of
the wingtips of an airplane in flight, and of a building or a suspension bridge
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Fig. 12-1 (a) Ball bouncing off an anvil. (b) Periodic motion (solid line) of a per­
fectly elastic marble bouncing on a rigid anvil, and the aperiodic motion (dotted line)
of a glass marble on a steel anvil.
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Fig. 12-2 Harmonic motion. (a) Graph of a series of damped oscillations.
(b) Graph of simple harmonic motion.

in a high wind, and the bobbing of a ship or of a bell buoy. Many of these
motions can be described by the use of a combination of sine or cosine
functions of time and are consequently called harmonic motions. The sim­
plest of these motions follows a single sine or cosine curve and is called
simple harmonic motion. Examples of harmonic motion and simple har­
monic motion are shown in Figure 12-2.
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12-2 Elasticity
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In an earlier discussion of collision problems, we used the word elastic to
describe a process in which mechanical energy was conserved. In the pres­
ent section the word "elastic" will be used to describe a different but
related property of matter. When a force is applied to a solid body made
of anyone of a great variety of materials, the shape of the body is altered
in a nonpermanent way. When the force is removed, the body returns to
its original shape, as in the example of a coil spring. In general, the body
deforms until the restoring force exerted by the body is equal and opposite
to the applied force. Experiments conducted by Robert Hooke (1635-1703)
showed that the nonpermanent deformation of many bodies was directly
proportional to the force which created the deformation. The name
Hooke's law is applied to all cases where the restoring force exerted by a de­
formed object is proportional to the deformation. Many materials follow
Hooke's law over a limited range of deformation, and one finds that, over
this range of applicability of Hooke's law, an object returns to its initial
configuration without permanent deformation when the applied force is
released. Such materials are called elastic. In neither sense of the uses
to which we have put the word "elastic" is rubber a perfectly elastic ma­
terial, for the deformation of a rubber band is not proportional to the
applied force, nor is the impact between a rubber ball and an anvil a col­
lision in which mechanical energy is conserved.

We have already seen that a helical spring stretches in proportion to
the applied force, but we need not restrict ourselves to linear motion. In a
clock spring, or a rod clamped at one end, the angular displacement is
proportional to the applied torque tending to twist the rod or the spring.

To describe the elastic restoring force exerted by a stretched spring
or by a beam which is deflected from its equilibrium position, we may write

IF = -lex, I ( 12-1)

which states that the force F exerted by the spring or the beam is propor­
tional to the displacement x and is in a direction opposite to that displace­
ment, hence the minus sign. The spring constant k is a constant of propor­
tionality which has the dimensions of force per unit length.

To describe the elastic restoring torque of a clock spring or a twisted
shaft, we may write

(12-2)
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where G is the restoring torque exerted by the spring or shaft when it has
been twisted from its equilibrium position through an angle 9. We repre­
sent 9 as a vector quantity in this case, for the axis of rotation is fixed in
space. The torque exerted by the spring is opposite in direction to the
displacement. The constant K (kappa) is a constant of proportionality
which has the dimensions of torque per unit angular displacement.

When an object obeying Hooke's law, as represented in Equations (12-1)
and (12-2), is displaced from its equilibrium position and released, the sub­
sequent motion is simple harmonic. An elastic system in which the restoring
force is directly proportional to the displacement is said to obey Hooke's
law. The forces exerted by the materials from which engineering structures
are constructed are elastic in character. The forces exerted by adjacent
atoms in a molecule may be approximated by Hooke's law. The study of
simple harmonic motion is thus of considerable importance in engineering
as well as in the physics of atoms and molecules.

12-3 Equations of Simple Harmonic Motion

Let us consider simple harmonic motion along the x axis. In the previous
paragraph we have indicated that motion in which the restoring force was
proportional to the displacement was simple harmonic; that is, the motion
could be described in terms of sine or cosine functions. If a particle of
mass m is subject to an elastic restoring force, we may write, from Newton's
second law and from Equation (12-1),

ma = -kx,

d ". f" " I "h "f h I I d
2
xan ,wntmg or a Its va ue usmg t e notatIOn 0 t e ca cu us, a = -2 '

dt

we have

Transposing, we find

({2x
'in dt2 + /;;:c = O.

Let us divide the equation by m and set

(12.3)

so that the equation becomes

(12-4)
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Equation (12-4) is a second-order differential equation, for it involves
not only the variable x but also its second derivative with respect to the

d2x
time, -2' Such equations are commonly encountered in physics and

dt
engineering, and their solutions are often quite complex. For Equation
(12-4) the solution is straightforward. First we observe that the equation
contains a second derivative and will have to be integrated twice to find a
solution for x as a function of time. The solution will therefore contain
two constants of integration which will have to be evaluated in terms of the
initial conditions of the problem. Knowing these facts in advance, we
propose as a trial solution

x = A cos(wt + ¢). (12-5)

Remembering that d (cos x) = - sin x dx, and that d (sin x) = cos x dx,
we find that

and,

from which

dx
v = - = -Aw sin (wt + ¢)

dt

dv d2x
a = - = -" = -Aw2 cos (wt + ¢),

dt dt~

(12-6)

(12-7)

(12-8)

(12-9)

The constants A and ¢ are the two constants of integration. The constant
A is the amplitude of the simple harmonic motion; that is, it represents the
largest value the displacement x can attain. The constant ¢ is called the
phase angle; that is, the value of x when t is zero is given by A cos ¢.

d2x
On substituting the values of x and -2 from Equations (12-5) and

(12-7) into the Equation (12-4), we find dt

-Aw2 cos (wt + ¢) + w2A cos (wt + ¢) = 0,

0=0,

so that Equation (12-5) is a correct solution to the differential Equation
(12-4) .

The period T for one complete oscillation is given by

271"
T=-,

w

for if the time is increased by T, the angle at which the cosine is to be

evaluated is increased from [wt + ¢] to [w (t + 2:) + ¢ ] ' an increase of

271", which is the angular interval in which the sine or cosine repeats itself.
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The number of oscillations per second is called the frequency f, which is
given by

1
.f = T'

and, substituting from Equation (12-9), we find

w = 27rj,

(12.10)

(12-11)

which is exactly the same as the relationship between angular velocity and
the frequency for uniform circular motion.

From Equation (12-8) we note that the acceleration of a particle in
simple harmonic motion is proportional to the displacement but is always
in the opposite direction.

Illustrative Example. A particle attached to a spring has a frequency of 4
vibrations per second (abbreviated vib/sec) and an amplitude of 6 cm. Deter­
mine (a) the period of the vibration, (b) the maximum velocity of the particle,
and (c) the maximum acceleration of the particle.

(a) From Equation (12-10) we have

T=!= __I__
f 4 vib/sec

1 sec=--,
4 vib

and since vibration is a dimensionless quantity, a pure number,

T = t sec.

(b) The maximum velocity may be obtained from Equation (12-6) by ob­
serving that the largest numerical value of v occurs when cos (wt + cjJ) = 1. Thus
we have

vrnax = Aw.
From Equation (12-11)

w = 27rf = 87r radia:ns .
sec

Thus, substituting for A its value of 6 cm, we find

Vrnax = 6 cm X 87r sec- 1

= 487r cm.
sec

(c) The greatest numerical value of the acceleration is

= 6 cm X 647r2 sec- 2

= 3847r 2 cm .
sec 2
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If, instead of the cosine function a sine function had been used as a
trial solution, we would have found that the sine function would have
proved equally satisfactory. Formally there is no essential difference
between a sine-function solution and a cosine-function solution; one can
be changed into the other by simply adding +90 0 or -900 to the angle, for

sin (0 + 90 0
) = cos 0,

and cos (0 - 90 0
) = sin O.

While a description of simple harmonic motion has been achieved in
the present section through the use of the calculus, another way to gain
insight into simple harmonic motion is to compare it to uniform motion
in a circle, called the reference circle.

12-4 The Reference Circle y

(12-12)

x

When an object moves in uniform
circular motion, its projection onto
the x or y axis moves in simple
harmonic motion. The projected
position corresponds to the position
of a particle moving in simple har­
monic motion; the projected accel­
eration vector corresponds to the
acceleration of a particle moving
in simple harmonic motion.

Referring to Figure 12-3, let us
suppose that at time t = 0, an
object in uniform circular motion Fig. 12-3 The reference circle. A is the
(solid circle) is located at a posi- radius of the circle.

tion on the circle of radius A given
by the angle c/>, and that it rotates in the counterclockwise direction with
uniform angular speed w. The angular position of the object at a sub­
sequent time t is given by the angle 0 such that 0 = wt + c/>. The
x coordinate of the object is

x = A cos (wt + c/»,

while the y coordinate is given by

y = A sin (wt + c/», (12-13)

but these are also the coordinates of the projection of the circular motion
onto the x and y axes, respectively.

Comparing Equations (12-12) and (12-5), we see that the projection of
the motion in the reference circle onto the x axis is precisely the same a,s the
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simple harmonic motion, provided that the radius of the reference circle
is made equal to the amplitude of the simple harmonic motion, and the
rotational speed of the object in the reference circle is made equal to the
angular frequency w of the simple harmonic motion. The reference-circle
analogue clarifies the meaning of the phase angle 4> in the simple harmonic
motion.

We see also that either a sine function or a cosine function is suitable
for the description of simple harmonic motion. The projected motion along
the y axis is of the same frequency and amplitude as that along the x axis,

y

(a)

y

(b)
Fig. 12-4 Use of the reference circle to determine (a) the velocity of the particle (white)
in simple harmonic motion, and (b) the acceleration of this particle.

but the two motions are 90° out of phase with each other. When the x
projection is at the origin, the y projection has its maximum value A.

To make the case for the reference circle complete, let us find the
velocity and acceleration of the projected particle, shown as a white circle
in Figure 12-4. The black particle moving in uniform circular motion with
angular speed w has a linear speed v = wA directed tangentially. The
projection of this vector onto the x axis is the velocity of the white pro­
jected particle moving in simple harmonic motion in the x direction. From
the figure

Vx = -wA sin e = -Aw sin (wt + 4»,

which is identical with Equation (12-6). An object moving in uniform
circular motion must experience a centripetal acceleration a = w2A. From
Figure 12-4(b) the acceleration of the projected (white) particle is the
projection of the acceleration of the real (black) particle onto the x axis.
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Thus we have
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ax = -w2A cos () = -Aw2 cos (wt + </»,

which is identical with Equation (12-7).
Remembering that A cos () = A cos (wt + </» = x, and substituting in

the above equation, we find that the acceleration of the white particle on
the x axis is

2a = -w x, (12-14)

which is identical with Equation (12-8).
The basic condition for simple harmonic motion was that the restoring

force was proportional to the displacement, or that F = - kx. Substituting
for F from Newton's second law, we found that for a particle of mass m
subject to an elastic restoring force,

ma = -kx,

k
or a= - :;;;,x, (12-15)

and again we see that the acceleration of the projected particle on the x
axis, given by Equation (12-14), is identical with that experienced by a
real particle which is subject to an elastic restoring force as given in Equa­
tion (12-15), provided that,

k
w2 = -,

m

which is identical with Equation (12-3). The device of the reference circle
is a very useful method for solving problems in simple harmonic motion at
the level of this text. In using the reference circle, it must be remembered
that the radius of the reference circle is equal to the amplitude of the simple
harmonic motion it is chosen to represent; the frequency of the rotational
motion in the reference circle must be equal to the frequency of the simple
harmonic motion; and the phase angle </> must be chosen so that the pro­
jected particle is at the proper location at time t = O.

Illustrative Example. A particle attached to a spring has a frequency of
4 vib/sec and an amplitude of 6 em. Determine (a) the period of the vibration,
(b) the maximum velocity of the particle, (c) the velocity of the particle when its
displacement is 2 em, (d) the acceleration of the particle when its displacement
is 2 em, (e) the maximum acceleration of the particle, and (f) the time required
by the particle to move from a displacement of +2 em to a displacempnt of
+4 em.

(a) The period of the vibration is the reciprocal of the frequency of vibra­
tion. Hence

1 1
T = - = - sec.

f 4
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To solve the remainder of the problem, we make use of the reference circle.
Let us suppose that the simple harmonic motion takes place along the x axis,
and let us construct a reference circle of radius equal to the amplitude of the
simple harmonic motion; thus the radius of the reference circle is 6 cm. The real
particle in simple harmonic motion will be referred to as the white particle, while

y

Fig. 12·5

x

the imagined particle moving in the reference circle will be referred to as the
black particle, corresponding to the manner in which they have been drawn in
Figure 12-5. The frequency with which both particles move is given by the
frequency of the simple harmonic motion which is 4 vib/sec. This implies that
the angular speed of the black particle is w = 27rf = 87r radians/sec, which, for
convenience, we imagine to be in the counterclockwise direction,

(b) The black particle moves with constant angular speed and therefore with
constant linear speed, but its velocity vector is constantly changing in direction.
Since the speed of the white particle is the projection onto the x axis of the
velocity vector of the black particle, the white particle will move with greatest
speed when the black particle is moving parallel to the x axis. This occurs at the
two positions where the circle intersects the y axis, that is, when the white particle
passes through its equilibrium position. At this position the speeds of the two
particles are identical, so that the maximum speed of the white particle is equal
to the constant linear speed of the black particle. Thus

v = wA = 87r X 6 cm = 487r cm ,
sec sec

v = 151 cm.
sec

(c) When the white particle is displaced 2 cm from the equilibrium position,
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the position angle of the blaek partiele is 01 sueh that

01 = arc cos (i) = 1.23 radians.

To find the velocity of the white particle, we must find the x component of the
velocity of the black particle, which is given by

v = v sin 01

cm
= 1.51 X 0.942 ­

sec

= 142 cm.
sec

(d) The acceleration of the white partiele is the x component of the accelera­
tion of the black particle and is therefore given by

ax = - a cos 01,

where the minus sign indicates the direction of the acceleration vector. For the
black particle in circular motion,

2 . enl
a = w A = (8'11-)2 X 6­

sec 2

cm
= 3,789--,

see 2

so that
2 cm

-3789 X ---
, 6 sec 2

-1263 cm .
, sec 2

(e) The maximum acceleration of the white particle will occur when the
centripetal acceleration of the blaek particle is in the direction of the x axis;
that is, where the cirele intersects the x axis. At these points the acceleration of
the two particles is identical. Thus the maximum acceleration of the white
partiele in simple harmonic motion is

cm
a = 3,789--,

sec 2

occurring at the position of maximum displacement.
(f) When the white particle is at a displacement of 2 cm, we have already

seen that the black particle is located at angle 01• When the displacement of'
the white particle is 4 cm, the black partiele is located at angle O2 • The angular
displacement of the blaek partiele in rotating from O2 to 01 is e (capital theta).

e = 01 - O2 •

We have already seen that 01 = 1.23 radians, while

O2 = arc cos (!) = 0.84 radian.

Thus e = 1.23 radians - 0.84 radian

= 0.39 radian.
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Knowing that w, the angular speed of the black particle, is 811" radians/sec, we
find the time for the black particle to travel from the first to the second position as

8t = ~

w

0.39 radian ,
811" radians/sec

so that t = 0.016 sec.

This problem may also be solved by the substitution of appropriate numbers for
A, w, and ¢ in Equations (12-5), (12-6), and (12-7), as in a previous example.
From the statement of the problem, A = 6 em, w = 211"f = 811" sec-I, and if we
wish to have the initial position of the particle at the undisplaced or equilibrium
position when t = 0, we would set ¢ = 11"/2 radians. The maximum values of the
velocity and acceleration are given by v = Aw and a = Aw 2. The value of the
velocity and acceleration when the displacement was 2 cm could be found by
substituting x = 2 cm in Equation (12-5), solving for t, and substituting that
value of the t in Equations (12-6) and (12-7). To find the time at which the dis­
placement is 4 cm, we set x = 4 cm in Equation (12-5), and to find the elapsed
time in traveling between a displacement of 2 cm and a displacement of 4 cm,
we would subtract the two times. The geometric procedure using the reference
circle and the procedure involving the use of the formulas derived by mathemat­
ical analysis yield equivalent results. Note that in the analytic treatment and
in the reference circle the particle in simple harmonic motion could be thought
to move along either the x or the y axis, at our convenience.

12-5 Angular Harmonic Motion

A system capable of rotating about a fixed axis will move with angular
harmonic motion when the torque G which acts on it is proportional to its
angular displacement 8 and opposite in direction to it, as given by

(12-2)

If I is its moment of inertia about this axis, we can write

G = la,

where a is its angular acceleration. Solving the above equations for a,
we get

(12-16)a=
K

- -8
I '

which shows that the angular acceleration a is proportional to the angular
displacement and opposite in direction to it. Equation (12-16) can be com­
pared with Equation (12-8) for linear simple harmonic motion; Equation
(12-16) is its analogue and is the equation for angular harmonic motion.
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The period for angular harmonic motion is then given by

T = 2~~~ (12-17)

for the period of a system of moment of inertia I and restoring constant K

moving with angular harmonic motion about a fixed axis.
The equations for the angular displacement and the angular velocity

as functions of the time can be obtained in exactly the same manner as
those for the linear displacement and the linear velocity, and will be their
respective analogues.

12-6 The Pendulum

The motion of a pendulum is another example of periodic motion. When
the amplitude of oscillation of a pendulum is small, the pendulum motion
may be approximated as simple harmonic. This property was discovered
by Galileo, and was first applied to the construction of a clock by the
Dutch physicist Christian Huygens (1629-1695) in 1657.

The pendulum appears in two forms-the simple pendulum consisting
of a string of negligible weight, one end of which is attached to some fixed
support while the other end is attached to a small ball called a pendulum
bob, and the physical pendulum, a rigid body which is supported at some
point above its center of gravity. When at rest, the bob is vertically be­
neath the point of support, as shown in Figure 12-6, and is in equilibrium
under the action of two forces, its weight mg and the tension S in the string.
When pulled aside to some position A and released, it travels in a circular
arc through its equilibrium position C to a point B on the other side. When
the pendulum was moved to A, it was actually lifted through a height h.
From the principle of conservation of energy, the points A and B must be at
equal heights h above the point C. In the absence of frictional forces, the
motion would continue indefinitely, but of course, no device can be built
which completely eliminates frictional forces, hence the amplitude gradu­
ally diminishes as mechanical energy is converted to other forms of energy.

To derive an expression for the period of the simple pendulum, we
observe that the torque on the simple pendulum which tends to rotate it
about the point of support is due to the weight of the pendulum bob and is
given by

G = -mgL sin O. (12-18)

Comparing the torque on a simple pendulum with the condition for an
elastic restoring torque in Equation (12-2), we see that the torque acting
on a simple pendulum is proportional not to the angular displacement but
to the sine of the angular displacement, so that the motion is not simple
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harmonic. But if the displacement is restricted to small angles, the sine
of 0 is practically equal to 0, and we may write

G = -mgLO. (12-19)

For small displacements from the equilibrium position, the pendulum moves
under the influence of restoring torque proportional to the angular dis-

o
1\
1\
I \
I \
I \
I \

\
~ \e I \

I \
I \
I \
I \
I \
I \

I "I \
I \
I \
I \
I \

:0 >-

c
(0)

Fig. 12-6 The simple pendulum.

(b)

(12-20)

placement, and its motion is simple harmonic. Considering the pendulum
as a rigid body, of moment of inertia I = mL2

, we may write

G = la,

and, eliminating G from the above equations, we find

mgL
a= -10.

By combining Equation (12-20) with Equation (12-16), we can see that
the period is

T = 27r~ I ,
mgL

and, substituting for I its value mL2
, we find that

T = 27r~~'

(12-21)

(12-22)
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Fig. 12-7 The physical pen­
dulum. The distances hand h'
are measured from eta 0 and
0' respectively. L = h + h'
is the equivalent simple pen­
dulum length.

(12-23)

(12-24)
I

L=-·
mh

Thus the period of a simple pendulum does not depend upon the mass of
the pendulum bob but only upon its length and the value of g. The simple
pendulum therefore provides one method of determining the value of g.

In Figure 12-7 a physical pendulum has been drawn in which the point
o is the point of support and the point C is the position of the center of
gravity. The distance between C and 0 is represented by h. If the mass
of the physical pendulum is m and
its moment of inertia about an axis
through 0 is I, the equations for the
torque and the angular acceleration
are identical with those for the simple
pendulum except that h replaces L.
The period of a physical pendulum is
then given by

T = 211" I I .
"'Vmgh

L is called the equivalent simple pen­
dulum length of the physical pendulum
and is shown in Figure 12-7 as the distance between 0 and a point 0' below
the center of gravity. The point 0' is called the center of oscillation and
has the interesting property that, if the pendulum is suspended about 0'
as an axis, its period will be exactly the same as it is when suspended about 0
as an axis. An accurate determination of the locations of the two points
o and 0' makes possible an accurate determination of the equivalent simple
pendulum length L and is one of the best methods for determining g.

The physical pendulum is often used for pendulum clocks. In order
for such a pendulum clock to keep accurate time, it is necessary that the
pendulum be so constructed that the moment of inertia and the length L
are constant and remain the same in spite of temperature variations. Such
pendulums are said to be compensated.

It is appropriate to note here that a clock or watch consists of two
separate mechanisms. One of these beats off equal time intervals, and the
other counts them and moves the hands. In a pendulum clock a physical
pendulum is the means of measuring equal time intervals, while in a watch

Comparing Equations (12-22)
and (12-23), we find that a physical
pendulum will have the same period
asa simple pendulum of length L when
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or chronometer the torsional vibrations of the balance wheel perform this
necessary function. The pendulum clock is adjusted to keep correct time by
altering both h and I, while in the watch the coarse adjustment is made by
varying the moment of inertia of the balance wheel, and the fine adjustment
is made by altering the torsion constant K of the watch spring. In both
cases the primary characteristic of simple harmonic motion that is essential
to the measurement of time is the fact that the period does not depend on
the amplitude of vibration. Such motion is called isochronous, meaning that
the oscillation requires the same time for all possible amplitudes.

12-7 Resonance

The frequency with which a pendulum or an elastic object vibrates when
it is displaced from its equilibrium position and released is called the
natural frequency of the system. Thus a piano string or a diving board
will vibrate with its natural frequency after being displaced from an

Frequency

Fig. 12-8 The amplitude of vibra­
tion of an oscillator of natural fre­
quency f 0 depends upon the fre­
quency f with which it is driven.
At resonance, f = fo, and the oscil­
lator vibrates with maximum am­
plitude.

equilibrium position. If such a mechanical oscillator is not simply struck a
blow, or displaced from an equilibrium position and then released, but is
driven by a force which varies periodically, it is required to move with the
frequency of the driving force. The amplitude with which the oscillator
will vibrate under the influence of such a force will depend markedly upon
the driving frequency. When the frequency with which the oscillator is
driven is far from its natural frequency, the amplitude of vibration will be
quite small, but when the driving frequency is the same as the natural
frequency of the oscillator, it will be excited to large amplitudes, as shown
in Figure 12-8. This condition is known as resonance. At resonance the
amplitude of the oscillations will depend upon the degree of damping in the
oscillator itself, that is, on the amount of internal friction in the oscillator.
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Although we shall not undertake the analysis of resonant motion, we shall
mention some examples of resonance of importance in engineering. Any
elastic structure which is deflected to large amplitudes by a periodic driving
force is thereby exposed to large alternating stresses and is likely to fail at
far smaller loads than the same structure could safely withstand under
static loading, through a process called fatigue failure.

As an illustration, consider an airplane engine that is designed to
operate at N rev/sec. Because it is impossible to build a perfectly balanced
engine, the rotation of the engine acts as a driving force which drives the

Fig. 12-9 Reed comb of a Frahm tachometer. The reeds are tuned in intervals of
50 vib/min from 3,000 at the left to 4,000 at the right. The assemblage was in contact
with the case of a motor rotating at 3,600 rpm. (Courtesy of James G. Biddle Co.)

entire airplane at a frequency of N vib/sec. Any part of the airplane
whose natural frequency is close to N will be excited to large amplitudes.
If, by inadvertence, the natural frequency of the wing, or the propeller,
were the same as that of the engine, failure of these parts would occur in a
much shorter time than might otherwise be the case. In such circumstances
a part can often be made stronger, that is, can be made to last longer, by
removing material from it in such a way as to alter its natural frequency.

The phenomenon of resonance can be used in the measurement of the
rotational frequency of a motor. Figure 12-9 shows a reed tachometer
consisting of a comb of "harmonica" reeds which have been adjusted so
that their natural frequencies are close to each other. If this tachometer is
placed on the floor or table adjacent to a motor, some reeds will be driven
by the vibration of the motor; the natural frequency of the reed driven to
largest amplit.ude will measure the frequency of rotation of the motor.
Such a tachometer may be mounted almost anywhere on board a single­
engine airplane to indicate the engine speed in revolutions per minute.
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Problems

12-1. A body whose mass is 500 gm hangs from a vertical spring whose con­
stant is 200,000 dynes/cm. The body is pulled down a distance of 6 cm and
released. Determine (a) the period of the motion, (b) the resultant force on the
body when at the 6-cm point, and (c) the acceleration at this position.

12-2. In Problem 12-1 determine (a) the velocity of the body, when its dis­
placement is 3 cm, and (b) its maximum velocity. Obtain your answers by con­
siderations of simple harmonic motion and also by applying the principle of
conservation of energy.

12-3. A body which has a mass of 60 gm is attached to a helical spring 25 cm
long and, when lowered gently, stretches the spring 5 cm. The body is then
pulled down an additional 8 cm and released, thus setting the spring in vibration.
(a) What is the constant of the spring? (b) What is the period of oscillation?

12-4. A body which. has a mass of 40 gm is attached to a spring, and the
system is then set into vibration. The measured value of the period of vibration
is 0.50 sec. (a) Determine the constant of the spring. (b) Determine the velocity
of the body at the equilibrium position if the amplitude is 6 cm. (c) Determine its
maximum acceleration.

12-5. When a cylinder whose mass is 4.0 kg is hung from a spring and set
into motion, the frequency is 2.4 vib/sec. When another cylinder is substituted
for the first one, the frequency of vibration is 3.2 vib/sec. Determine the mass
of the second cylinder.

12-6. Determine the period of a simple pendulum, oscillating with small
amplitude, when the length of the pendulum is 75 cm.

12-7. A simple pendulum 1.0 m long, having a mass of 250 gm, is displaced
through an angle of 10° and released. Determine (a) the resultant force acting
on the pendulum bob at this position of maximum displacement, (b) its maximum
angular acceleration, (c) its maximum angular velocity, (d) the tension in the
pendulum string when the displacement is 5°, and (e) the velocity and accelera­
tion of the pendulum bob when the displacement is 5°.

12-8. (a) Determine the period of vibration of a pendulum 80 cm long at a
place where g = 980 cm/sec 2 • (b) What length of pendulum at the same place
will have half this period?

12-9. A "seconds" pendulum has a period of 2 sec. A seconds pendulum
which kept accurate time at a place where g was 980 cm/sec 2 is found to lose 2
min/day at a new location. Find g at this new location.

12-10. An object moves in simple harmonic motion with period of 4 sec and
amplitude 1 m. (a) What is the frequency of the motion? (b) What is the
velocity when the displacement is 30 cm? (c) What is the acceleration when the
displacement is -60 cm? (d) How long a time is required for the object to move
from the point where the displacement is 30 cm to the point where the displace­
ment is -60 cm?

12-11. An object moves in rotational simple harmonic motion with period
4 sec and amplitude 1 radian. (a) What is the frequency of the motion? (b)
What is the angular velocity when the angular displacement is 0.30 radian?
(c) What is the angular acceleration when the angular displacement is -0.60
radian? (d) How long a time is required for the object to move from an angular
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displacement of 0.30 radian to a point where the angular displacement is -0.60
radian?

12-12. Two simple harmonic oscillators have the same frequency of 4
cycles/sec and the same amplitude of 10 em. At a particular time it is observed
that the first oscillator is moving to the right and the second oscillator is moving
to the left along the same line when both oscillators have the same displacement
of 6 em. (a) How far were they apart 0.25 sec later? (b) How far were they apart
0.10 sec after the initial observation?

12-13. Two simple harmonic oscillators, having the same amplitude of 10 em
in the y direction, are displaced so the first has a positive initial displacement
of 10 em, while the second has a negative initial displacement of 10 em. The
first oscillator has a frequency of 8 cycles/sec, while the second has a frequency of
4 cycles/sec. The oscillators are released at the same instant. Find the time at
which both oscillators are at the same position.

12-14. A spring of spring constant 50 Ib/ft has one end fastened to the wall
and the other end fastened to a rectangular block of wood weighing 32 lb. The
spring is horizontal, and the block rests on a horizontal table. The coefficient
of friction between the block and the table is 0.1. The block is initially displaced
so that the spring is stretched 1 ft from its equilibrium position and is released.
What will be the speed of the block when it passes through the equilibrium posi­
tion? [NOTE: The motion is not simple harmonic, for there is loss of mechanical
energy through friction. Solve from energy considerations.]

12-15. A meter stick of mass 400 gm is pivoted 30 em from one end and is
allowed to oscillate as a physical pendulum. The width of the meter stick is 2 em,
and its thickness is t em. Find the period of the oscillation.

12-16. A circular disk 1 em thick and of radius 20 em, having a mass of 4 kg,
is suspended from a pivot 2 em from the edge of the disk and is allowed to
oscillate while it hangs downward. Find the period of the disk for small oscilla­
tions.

12-17. A particle moves in simple harmonic motion in the x direction with
amplitude 10 em and frequency 5 cycles/sec. The particle is moving in the
positive x direction at a displacement of x = +5 em when t = O. Find the
position of the particle when t = 0.02 sec.

12-18. Two identical springs are laid side by side on a horizontal frictionless
table, each having a spring constant of lIb/in. A sphere of mass 0.1 slug is
connected to the free end of one spring, while a second sphere of mass 0.2 slug is
connected to the free end of the second spring. Both masses are drawn aside a
distance of 6 in. and released. What is the displacement of the sphere of mass
0.2 slug when the displacement of the other sphere is - 3 in.?

12-19. Find the period of vibration of a cylinder of radius T, height h, and
density p which is floating upright, partially immersed in a fluid of density po.

12-20. A wire is bent in the form of the arc of a circle of radius R, and is
mounted so that it is in the vertical plane. A bead is placed upon the wire and
released. In the absence of friction between the bead and the wire, show that the
bead will oscillate with period

T = 27r(R/g)72

provided that its initial displacement is sufficiently small.
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