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Abstract   

MicroRNA (miRNA) deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). 

Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1-

positive MCL (n=30) and cyclin D1-negative MCL (n=7) and compared them with small lymphocytic 

leukemia/lymphoma (SLL, n=12), aggressive B-cell lymphomas (n=138), normal B-cell subsets and stromal 

cells. We identified a 19-miRNA classifier which included six upregulated miRNAs (miR-135a, miR-708, 

miR-150, miR-363, miR-184, miR-342-5p) and 13 downregulated miRNAs, that was able to distinguish 

MCL from other aggressive lymphomas with >90% probability. Some of these upregulated miRNAs are 

highly expressed in naïve B-cells. MicroRNA classifier showed consistent results in FFPE tissues and was 

able to distinguish cyclin D1-negative MCL from other lymphomas. A 26-miRNA classifier could 

distinguish MCL from SLL, dominated by 23 upregulated miRNAs in MCL. Unsupervised hierarchical 

clustering of MCL cases demonstrated a cluster characterized by high expression of miRNAs from 

polycistronic miR17~92 cluster and its paralogs miR-106a-363 and miR-106b-25, which was distinct from 

the other clusters showing enrichment of stroma associated miRNAs. The corresponding gene-expression-

profiling (GEP) data showed that the former cluster of MCL had significantly higher proliferation gene-

signature (PS), while the other subsets had higher expression of stroma associated genes. Clinical outcome 

analysis suggests that miRNAs can serve as prognosticators.  

http://bloodjournal.hematologylibrary.org/
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Introduction 

Mantle cell lymphoma (MCL) constitutes approximately 6% of all non-Hodgkin lymphomas and occurs 

predominantly in males of advanced age1,2. Several histological variants including the classical, small cell, 

blastoid and pleomorphic variants of MCL have been reported1 with varying proliferation rates and genetic 

profiles3,4. The putative cell-of-origin is considered to be a naïve B-cell in the mantle zones or primary 

follicles. However, 20-30% of cases show mutated immunoglobulin variable-region heavy chain (IGHV) 

genes2. The immunophenotype is characterized by expression of B-cell associated antigens (CD20, CD22 

and CD79), and CD5 with strong expression of IgM and IgD, but lack of CD23, CD10 and BCL61, 2. 

Historically, the majority of MCL patients exhibited an aggressive clinical course, but this has improved with 

current management to a reported median survival of 5-7 years5. Recent studies have identified an indolent 

subtype of MCL with an even longer survival6-7. The neoplastic cells in these cases exhibit hypermutated 

IGVH genes, a non-complex karyotype and lack SOX11 expression.  

The genetic hallmark of MCL is the t (11;14)(q13;q32), resulting in the overexpression of cyclin D1. 

Nonetheless, small subsets of cases (<5%) lack this genetic aberration, but exhibit an almost 

indistinguishable gene expression profile (GEP) and genomic profile compared to cyclin D1-positive cases8, 

9.  Several recurrent genetic abnormalities have been reported in MCL, including frequent losses of 9p21.3, 

11q22-q23, and 22q11.22, and gains of 10p11.23 and 13q31.33, 4, 9.  Specific mutations and deletions in  p16 

(CDKN2A), ATM, CHEK2 and TP53 have also been frequently noted in MCL2. Partial uniparental disomy 

has also been reported in the regions that are frequently targeted by chromosomal deletions10. 

Abnormal miRNA expression has been implicated in the pathogenesis of lymphoma, including the recurrent 

13q31.3 gain9 harboring MIHG1 which encodes the miR17~92 cluster composed of six polycistronic 

miRNAs (miR-17, miR-18a, miR-19a, mir19b-1, miR-20a and miR-92a). Alteration in miRNA expression 

has been explored in B-cell lymphomas including MCL11-13. We have performed a large scale global analysis 

on multiple types of B-cell lymphoma to compare with MCL, using a miRNA profiling platform based on 

high-throughput Taqman® quantitative real-time PCR (qRT-PCR). The study was aimed to identify 

http://bloodjournal.hematologylibrary.org/
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diagnostic and prognostic signatures in MCL, including cyclin D1-positive and -negative cases.  The qRT-

PCR assay permits highly accurate quantitation of individual miRNAs over a wide dynamic range and 

distinguishes between closely related miRNA family members. We also explored the applicability of this 

platform to both cryopreserved and formalin-fixed paraffin-embedded (FFPE) tissues. We correlated the 

miRNA profiles with the corresponding gene expression profiling (GEP) data as well to investigate the 

molecular mechanisms or pathways associated with deregulated miRNA expression. 

 

Materials and methods 

Patient samples, cell lines and normal primary cells 

Frozen tumor specimens and fresh tonsils from routine tonsillectomy were obtained from patients with a 

protocol approved by the Institutional Review Board of University of Nebraska Medical Center. Tumor 

biopsies taken from a series of cyclin D1-positive MCL (n=30) and small lymphocytic lymphoma /chronic 

lymphocytic leukemia (SLL/CLL, n=12) patients were studied for miRNA and GEP. We compared these 

miRNA/GEP results to a series of diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma (BL) 

(n=138). We compared miRNA profiles obtained from cryopreserved tissues with corresponding FFPE 

tissues in 8 (of 30) MCL, and 35 (of 138) DLBCL/BL samples. The other FFPE samples included cyclin D1-

negative MCL (n=7), and GEP of 6 cases have been reported previously 8, 14. A panel of expert 

hematopathologists reviewed and confirmed the diagnosis of cases using the World Health Organization 

classification1. The experimental details about cell lines and primary B-cells are included in supplemental 

Materials and method section. 

 

The detailed protocol about (i) RNA isolation from fresh frozen and FFPE tissues for miRNA and/or 

gene expression profiling (ii) MicroRNA profiling and GEP data analysis (iii) immunological and 

fluorescence in-situ hybridization (FISH) analysis and (iv) Survival outcome analysis are included in 

supplemental Materials and method section. 

 

 

http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 5

Results 

Patient characteristics 

The clinical characteristics of the MCL and SLL patients are summarized in Table-1. The median age of the 

MCL patients (n=30) was 63 years (range 37-88 years) at the time of diagnosis with a high male to female 

ratio (5:1). These MCL patients exhibited an aggressive clinical course with a median OS of 2.98 years 

(Supplemental Figure-1). These cases were also profiled for gene expression and were classified as MCL 

with >90% confidence. Most of the cases were CD5+ and/or CD43+ and expressed cyclin D1 or showed 

cyclin D1 translocation by FISH (Supplemental Table-1a).  

Of the other MCL cases (n=7) negative for t(11;14) and cyclin D1 expression, the GEP of six cases has been 

reported previously8. The seventh case, without GEP, showed MCL morphology and SOX11 expression 

consistent with other t(11;14) negative MCL cases. Similar to cyclin D1+ MCL cases, the median age at the 

time of diagnosis was 60 years (range 51-65) with male predominance (5 of 7 cases), and the cases also 

showed a similar immunophenotype, with expression of B-cell markers and CD5. The expression of SOX11 

(7 of 7), and cyclinD2 (3 of 5) or D3 (2 of 5) was noted in the cyclin D1-negative cases (Supplemental 

Table-1b).   

The median age of the SLL/CLL patients was 59 years (range 40-90) at the time of diagnosis with a male to 

female ratio of 2:1. These cases had the characteristic morphology and immunophenotype including lack of 

cyclin D1 expression. The majority (70%) of SLL/CLL patients had not received any chemotherapy, and the 

median follow-up since diagnosis was 6.2 years.  

 

Molecular classifier for MCL based on miRNA profile 

Unsupervised hierarchical clustering (HC) analysis revealed that the MCL and SLL cases formed a distinct 

cluster compared to other lymphoma entities (Figure-1A). Of the 30 MCL and 12 SLL/CLL cases, only one 

case each clustered separately in a DLBCL clusters. However, both cases were molecularly classified as 

 

http://bloodjournal.hematologylibrary.org/
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MCL or SLL with the miRNA classifiers upon further analysis (see paragraph below), indicating that the 

tumors still maintained a substantial differentiation-associated miRNA profile.  

Further examination of the miRNA profile showed that two prominent miRNA signatures were differentially 

expressed among the major lymphoma entities: one signature reflected miRNAs highly expressed in stromal 

cells, and they were more highly expressed in DLBCL and BL. The other signature was associated with non-

dividing, quiescent cells (naïve, resting PB), which was highly represented in MCL or SLL/CLL cases. 

These observations are consistent with the morphological findings that MCL lacks a major stromal 

component compared with DLBCL and that most MCL cases are not as proliferative as other aggressive 

lymphomas.  

We used a Bayesian algorithm to derive a miRNA classifier that differentiate MCL from DLBCL/BL and 

LOOCV for classification precision15. This algorithm resulted in a 19-miRNA classifier, which included 6 

upregulated miRNAs (miR-135a, miR-708, miR-150, miR-363, miR-184 and miR-342-5p) and 13 

downregulated miRNAs (Figure-1B). When this signature was evaluated in normal B-cell subsets, the 

majority of the upregulated miRNAs were also highly expressed in either naïve B-cells, resting B-cells or 

CC, with the exception of miR-135a and miR-708, which were normally more highly expressed by CB/CC 

and stromal cells respectively. However, they were also expressed by two MCL cell lines JEKO and/or 

JVM2.  The majority (8 of 13) of downregulated miRNAs (miR-424, miR-382, miR-376c, miR-127-3p, 

miR-539, miR-379, miR-376a, and miR-411) were expressed by stromal cells at a higher level, consistent 

with a low stromal content in MCL. The expression of the other downregulated miRNAs was also low in 

naïve B-cell and resting B-cells.  

 

Morphological evaluation of the discrepant cases identified by miRNA classifier 

We evaluated the precision of the miRNA classifier by LOOCV and observed that two cases of GEP defined 

DLBCL (n=89) were misclassified as MCL with >90% probability. These two cases were classified as ABC-

DLBCL (n=1) and unclassifiable-DLBCL (n=1) by GEP analysis. However, upon morphological review, 
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these cases were compatible with the paraimmunoblastic variant of SLL. It was also noted that in general 

SLL/CLL cases had a high association (80-90% probability) with the MCL classifier and therefore, required 

a separate analysis (see below).  

Only one MCL case showed probability <90 % by the miRNA classifier (see Figure 1B). This case was 

different from the other one that clustered within DLBCL cases in unsupervised HC (see Figure1A), but by 

miRNA classifier showed >95% probability as MCL.  This case upon review showed blastoid-variant 

morphology. 

 

Comparison of miRNA expression profile between MCL and SLL 

As expected from the close clustering of MCL and SLL cases (Figure-1A), the miRNAs in the MCL 

classifier (derived from comparison with DLBCL/BL) showed significant overlap with the SLL cases with 

the exception of four miRNAs (miR-363, miR-184, miR-708 and miR-135a), which were highly expressed 

in MCL (Figure-1B). When only the MCL and SLL cases were analyzed by unsupervised HC, we observed 

two separate clusters (A and B) of SLL (Figure-2A). The SLL cluster-A showed mainly upregulated 

miRNAs compared with cases in cluster-B and was characterized by high expression of miRNAs shown to 

have tumor suppressive function (miR-1, miR-133a16, miR-133b16, miR-139-5p, miR-139-3p, miR-14317, 

miR-10b18 miR-14516, miR23b) and stroma-related (miR-23a, miR-27a, miR-27b, miR-152, miR-221). One 

case each of two paraimmunoblastic SLL cases (identified above), clustered with SLL cluster-A and cluster-

B, and showed no association with MCL clusters. 

To more definitively separate MCL and SLL, we constructed a classifier consisting of 26 miRNAs that was 

dominated by 23 miRNAs upregulated in MCL, including miR-184 and members of two polycistronic 

miRNA clusters, miR106b-25 (miR-106b and miR-25) and miR106a-363 (miR-363 and miR-20b), which 

are paralogs of the miR17~92 cluster. In the classifier, only miR-150, miR-511 and miR-375 were 

significantly upregulated in SLL cases (Figure-2B). We observed that 5 MCL cases showed a probability of 

<90% [40-70% (4 case), 20% (1 cases)],  and 1 case was classified as SLL suggesting that a small subset of 
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MCL cases may have a miRNA profile very similar to SLL cases. The latter two cases showed low 

expression of proliferation gene signature (PS) (log2 signal intensity 7.3, 7.6; range in 30 cases of PS is 6.9-

9.1), and were part of the indolent MCL case cluster (see below). Interestingly the two SLL 

paraimmunoblastic variants, despite their much higher proliferation, showed significant similarity with the 

SLL group (80% and 90% probability respectively) in their miRNA expression profile (Figure-2B)  

 

Identification of MCL subsets by miRNA profiling and correlation with GEP signatures 

When MCL cases alone were analyzed by unsupervised HC, three distinct clusters were observed (Figure-

3A) with a significant difference in expression of 95 miRNAs (p<0.005) among these clusters. We applied 

previously defined MCL proliferation gene expression signature (PS)19, and observed a significant difference 

(p=0.01, Kruskal-Wallis Test) in the median expression of PS among the three miRNA-defined clusters, 

designated as cluster-A (high PS), cluster-B (medium PS) and cluster-C (low PS) (Figure-3A). The 

difference was more prominent between clusters-A and -C. The cases in cluster-A showed upregulation of 

miR17~92 cluster members and its paralogs miR-106a-363 and miR-106b-25, indicative of proliferative 

miRNA profile and a subgroup of miRNAs closely associated with CB, CC and cell lines, but not with naïve 

B-cell (Figure-3B).  The cases in cluster-C showed upregulation of miRNA having growth inhibitory 

functions including miR-1, miR-133b16, miR-10b18, and stroma-associated markers (miR-23a, miR-23b, let-

7c, let-7-b, miR-125b). Of the differentially expressed miRNAs, miRNAs associated with stroma were 

significantly enriched in cluster-C, thus indicating the contribution of stroma in this subset of cases. The 

cluster-B cases showed low expression of majority of the miRNAs compared with clusters-A and -C, though 

high expression of miRNAs associated with stroma (miR-636, miR-539 and miR-485-3p) was noted 

specifically in this subset.  

 To further understand the biological significance of these clusters, we also examined the GEP data. 

Interestingly GEP–based unsupervised HC showed that cases in -cluster-A as defined by miRNA profile 

were almost identical to one of the three sub-clusters defined by GEP (all 8 cases in cluster-A) supporting 

 

http://bloodjournal.hematologylibrary.org/
http://bloodjournal.hematologylibrary.org/subscriptions/ToS.dtl


 9

that cluster-A has distinctive molecular characteristics. When gene expression of the three miRNA-defined 

clusters was analyzed, 649 transcripts showed significant differential expression (p<0.005). Functional 

analysis showed that transcripts encoding proteins with roles in cell cycle progression and proliferation, or 

inhibition of apoptosis, were highly upregulated in cluster-A, consistent with the association with a high PS 

(Figure-3C). The transcript level of the proliferation marker Ki67 was significantly associated with this 

group (p<0.0001). Additionally, in this group, we observed high expression of genes encoding proteins 

secreted by macrophages (e.g. CHI3L1) including CD163 expressed in M2 macrophages. The cases in 

cluster-C (low PS group) compared to cluster-A (high PS group  showed relatively high expression of genes 

encoding cytokines mainly associated with T-cells (CX3CL1, CXCL12, CXCL2, and CXCL5) and genes 

associated with WNT signaling (FZD, WNT5A, and SFRP2). The cases in this group also expressed 

transcripts encoding extracellular-matrix related proteins (ECM2, EDN1, EGFR, EPS8, ITGA9 and 

PDGFD). Interestingly, many upregulated and downregulated  genes in cluster-C showed similar expression 

pattern in cluster-B, however unique gene signature were also noted in these groups, but functional 

characteristics of these genes is limited in literature (Figure 3C). GSEA complemented above results, with 

significant enrichment of the proliferation-related gene signatures in cluster-A, whereas both of the other 

clusters showed enrichment of IL-6, TGF-β, hypoxia, VEFG, Hox10-induced and quiescent/stem cell-like 

gene signatures. Compared to cluster-C, cluster-B had a higher TGF-β signature and showed more genotoxic 

stress with higher p21 and ATM signatures, whereas cluster-C showed higher expression of WNT and IL-4 

signaling pathway genes (Supplemental Table-2). We performed IHC of β-catenin on 3 representative cases 

from Cluster-C, and 2 cases from cluster-A. We observed strongly positive expression of β-catenin  in 

stromal/endothelial cells in all 3 cases from Cluster-C. The vast majority of tumor cells are negative, whereas 

cases with high proliferation signature (cluster-A) show only occasional cell weakly positive for beta-catenin 

(Supplemental Figure 3 )  indicating that WNT activation may be attributed mostly to stromal components in 

Cluster-C cases.   
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Validation of GEP signatures: To further validate the GEP findings of these 30 MCL cases, we performed 

validation of the genes signatures in another cohort of MCL cases (n=82). In our initial analysis we derived a 

specific gene expression signature from the GEP data of the 30 MCL in this report (training data) that can 

distinguish Cluster-A and Cluster-C cases using Bayesian algorithm. This resulted in a 71 probe set with two 

gene signatures, one enriched in proliferation related genes (Signature-1) and the other enriched in stroma-

related genes including WNT pathway genes (Signature-2) as indicated in supplemental Figure 4A.  The 

mean expression level of these two gene signatures was inversely correlated and the ratio of the mean 

expression of the two signatures was significantly associated with EFS (p<0.01). We then analyzed the gene 

signatures in the independent MCL series (n=82) using hierarchical clustering, and obtained four subset of 

MCL cases with the majority of cases showing inverse correlation between Signature -1 and -2 expression. 

However, a small subset of cases expressed both signatures at similar levels (both high and both low).  There 

is significant association of OS with the Signature-1 being predicting worse prognosis. When the ratio of 

expression of the two signatures was correlated with OS, higher ratios (Signature-1 vs 2) were associated 

with poorer prognosis (Supplemental Figure 4B).  

  

Comparison of the naïve B-cells and MCL miRNA profile and functional implications 

We identified a miRNA signature significantly associated with naive B-cells by comparison with other B-

cell subsets, including CCs and CBs (supplemental Figure-2). The miRNAs significantly associated with 

naïve B-cell subsets were miR-150, miR-223, miR-342-3p, miR-146-5p, miR-95, miR-342-5p, and miR-

146b-3p, with at least 4 of the 7 miRNAs noted in previous studies20-22. These upregulated miRNAs were 

also observed in resting B- and T- cells and showed marginal enrichment in MCL cases compared to other 

lymphoid entities(data note shown), but were largely absent from lymphoid cell lines. 

To identify miRNAs that may have pathogenetic significance, we compared the miRNA profile of normal 

naïve B-cells to that of MCL. Excluding differences that may be attributable to the stromal elements, we 

observed that the majority (>80%) of differentially expressed miRNAs were upregulated in MCL compared 
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to naïve B-cells (Figure-4). The miRNAs upregulated in MCL but not in naïve B-cells or in stromal elements 

included miR-184, miR-21, miR-10b and miR-135a, whose oncogenic roles have been demonstrated in 

several malignancies23-26, but the functional characteristics of many other upregulated miRNAs is not known. 

Only a few miRNAs were downregulated in MCL compared with normal naïve B-cells; however, these 

included some of the most abundant miRNAs (miR-150, miR-223, miR-222, and miR342-5p/3p) in naïve B-

cells, suggesting that low expression of these miRNAs may be important for the pathogenesis of MCL 

(Figure 4).  

 

Evaluation of cryopreserved and FFPE miRNA profile 

 The miRNA classifier obtained from cryopreserved tissues was evaluated in corresponding FFPE MCL 

(n=8) and DLBCL/ BL (n=35) cases. Of the 19 miRNAs, 2 miRNAs showed inconsistent expression in the 

FFPE cases; but remaining 17 miRNAs were able to distinguish MCLs from DLBCLs and BLs with similar 

sensitivity and specificity. The expression pattern of this 17-miRNA signature was similar between cyclin 

D1-positive and cyclin D1-negative MCL cases (n=7) and they were clearly classified, when compared with 

DLBCL/BL cases (Figure-5A).  

Cyclin D1-negative vs -positive MCL: Despite the substantial similarity in miRNAs profiles, cyclin D1-

positive and -negative MCL cases clustered separately in unsupervised HC, and showed 30 differentially 

expressed miRNAs (p<0.05 and 4-fold differences) (Figure-5B,C). The differences included down-

regulation of miRNAs negatively regulated by MYC (miR-15a, miR-22, miR-29a, miR-29b, miR-29c and 

miR-142-3p)27 and upregulation of oncomiR miR-15528 in cyclin D1-negative MCL cases. In contrast, cyclin 

D1-positive cases showed significant upregulation of miR-27 and miR-19a, thus suggesting distinct 

pathogenetic mechanisms in these two subgroups of MCL. In addition, we did not observe significant 

expression changes of miRNAs located on 11q13 (miR-1237, miR-192, miR-194-2, miR-612, miR-548, 

miR-139, and miR-326) encompassing the CCND1 locus between cyclin D1 positive and -negative MCL 

cases.   
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Association of miRNA profile with clinical outcome 

The correlation of miRNA expression with clinical outcome was evaluated by (i) correlation with the mRNA 

based proliferation signature; and (iii) using the Bair et al29 unsupervised principle to identify miRNAs, 

which predict OS or EFS with PS as a covariate in the analysis. When miRNAs were analyzed with respect 

to the mRNA-based PS, 28 miRNAs were significantly (p<0.05) differentially expressed between the 

highest-tertile (n=10) and lowest-tertile (n=10) proliferative subgroups (Figure-6A). The high proliferative 

group is characterized by high expression of miR-18a of the miR17~92 cluster and miR-18b, miR-20b, and 

miR-363 of the miR-106a-363 cluster, indicating a proliferative miRNA signature30, 31. The low proliferative 

group included miR-125-3p, miR-126, miR-10b, miR-143 and miR-145, many of which were highly 

expressed in stromal cells, suggesting that the lower proliferative group is associated with a higher 

microenvironment signature. 

We also performed survival risk prediction and a multivariate proportional hazards model was developed 

using PS as one of the covariate. We identified a six-miRNA signature (high expression of miR129-3p, miR-

135a, miR-146a, miR-424, miR-450-5p and low expression of miR-222), separating MCL into good (median 

OS, ~4 years) and poor prognostic groups (median OS, ~ 2 years) independent of miRNAs associated with 

PS (Figure-6C and Supplemental Table-3b). 

 

Discussion  

We profiled 187 cases of B-cell lymphoma and subsets of normal B-cells, with the goals of constructing a 

reliable miRNA classifier for MCL, identifying miRNA based predictors of outcome, and determining 

possible roles of miRNA in the pathogenesis of MCL. Since the putative cell of origin for MCL is naïve, pre-

germinal center B-cell, we determined miRNAs associated with naïve B-cells and their expression pattern in 

other quiescent B-cells. These miRNAs included miR-150, miR-223, miR-29a, miR-29c, miR-101, miR-320, 

miR-331, let-7b, miR-26a, and miR-342, some of these (miR-150, miR-29c, miR-101, miR-223, miR-320) 

have been previously reported as enriched in naïve B-cells, using multiple platforms including deep 
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sequencing21, 22.  Some of these miRNAs may have a role in maintaining the quiescent state or uncommitted 

status of B-cells in peripheral lymphoid organs. For example, the expression of miR-223 in naïve B-cells has 

been shown to block of the differentiation of naïve B-cells to GC B-cells by repressing LMO2 and 

MYBL121, 22.  Similarly, miR-150 controls B1 cell expansion and the humoral immune response in mice by 

targeting the key transcription factor MYB32. However, the miRNA profile of MCL showed substantial 

differences from that of naïve B-cells. Since the MCL contains stromal elements, we included the miRNA 

profiles of stromal cells and T-cells isolated from the tonsils to facilitate our interpretation of the data. 

Though some changes in miRNA profiles on culturing the stroma cells may occur, but many miRNAs are 

associated with tissue of origin and we anticipate that this set of miRNA would be maintained. Although the 

stromal cells we generated represent only a portion of the tumor microenvironment, the expression of this 

stromal miRNA signature is clearly correlated with the abundance of stroma in a tumor (Figure-1). After 

excluding stromal miRNAs, there were still many overexpressed miRNA compared with naïve B-cells, 

suggesting that they may play a role in MCL. Of these, miR-135a has been demonstrated as oncogenic role 

by downregulating adenomatous polyposis coli (APC) and activating the WNT pathway in colorectal 

cancer25 , but in classic Hodgkin lymphoma, it is associated with better prognosis and targets JAK2, resulting 

in downregulation of Bcl-xl33. The miR-21 has been demonstrated as an oncomiR in a pre-B-cell lymphoma 

mouse model24, its direct targets include several tumor suppressor genes (PTEN, PDCD4, ANP32A)34. 

Similarly, the other upregulated miRNAs (miR-10a and -10b) are oncomiRs that induce cell motility and 

invasiveness by suppressing HOXD1023. Interestingly, miR-10a was downregulated in cluster-C (miRNA 

clustering Figure-3A/B) of MCL, and the HOX10-induced genes were correspondingly enriched in the same 

group when assessed by GEP. Consequently, low expression of miR-10a was significantly associated with 

better survival in MCL by univariate analysis (p=0.03). On the other hand, a few highly upregulated 

miRNAs in naïve B-cells (vs MCL), such as miR-150, miR-223 and miR-342-5p were also down-regulated 

in activated PB B-cells, suggesting that they regulate B-cell activation and that their downregulation may be 

important in terminating quiescence.  
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Our analysis identified a robust MCL miRNA classifier, which included 6 up- and 13 down-regulated 

miRNAs. The classifier was able to separate MCL cases from other aggressive lymphomas accurately in 29 

of 30 cases with >90% probability. Interestingly, the only two DLBCL cases were misclassified. Upon 

further morphological examination, these two cases were diagnosed as the paraimmunoblastic variant of 

CLL, and showed similarity to MCL and SLL in their miRNA expression profiles. It is interesting that these 

two highly proliferative cases still retain sufficient similarity to MCL and SLL to be included in this category 

rather than DLBCL/BL. The analysis of miRNA profiling performed on the corresponding FFPE tissues 

showed similar results, thus demonstrating that the classifier performed with striking accuracy in FFPE 

tissues. 

Of the miRNAs in the classifier, we observed a 45-fold downregulation of miR-150 upon differentiation of 

naïve B-cells to CBs. These observations suggest that miR-150 is a stage-specific marker of naïve B-cells 

and may block the transition of naïve B-cells to CB by downregulating MYB32. The association of miR-184 

with MCL may partly be attributed to its presence in 15q25.1, which is frequently gained or amplified 

(>20%) in MCL9, and has been functionally associated with cell proliferation and tumorigenesis26. The other 

upregulated miRNAs in the classifier with known roles include miR-135a33 and  miR-36331 that have been 

implicated in oncogenesis. However, the classifier contains highly selected miRNAs and the study of 

miRNAs in tumor biology is more appropriately performed in the context of differentially expressed genes 

compared with the normal counterpart and other B-cell lymphomas as discussed above. Since the function of 

miRNAs may be context dependent, their reported functions may need to be validated in the cell type of 

interest.  

We have demonstrated that the miRNA classifier for cyclin D1-positive MCL was very similarly expressed 

in cyclin D1-negative cases in FFPE tissues, which were all classified as MCL by this classifier. There are, 

however, sufficient differences that these two groups of cases tend to form their own clusters, when analyzed 

as a group. Of the differentially expressed miRNAs, miR-155 was upregulated while 6 miRNAs 

downregulated by MYC, including tumor suppressor miR-15a, were downregulated in cyclin D1-negative 
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MCL cases. Cyclin D1-positive cases showed significant upregulation of miR-27, miR-101, miR-142-5p, 

miR-19a, miR-19b, and two stroma-associated miRNAs, miR-126 and miR-143, compared to their cyclin 

D1-negative counterpart, suggesting subtle distinction in their pathogenesis. However, different miRNAs 

may affect the same oncogenic pathways through different mechanisms as illustrated by miR-155 

(upregulated in cyclin D1-negative cases) and miR-19 (upregulated in cyclin D1-positive group) that may 

both activate the PI3K pathway by suppressing SHIP1 and PTEN, respectively.  

 The SLL cases showed a miRNA expression pattern similar to that of MCL, probably partly due to their low 

proliferation, the non-GC B-cell origin of the neoplastic cells, and their low stromal content, although the 

majority of cases do form a separate cluster (Figure-1A). Most SLL cases can also be differentiated from 

MCL by a miRNA classifier, with miR-150 showing marked upregulation in SLL, whereas 23 of the 26 

other miRNAs showed higher expression in MCL, including miRNAs associated with the proliferation 

signature (miR-106b-25, miR-20b), pro-survival signal (miR-181a) via Bim down-regulation35, and 15q 

amplification (miR-184)9. Only one case of each was misclassified into the other category, the misclassified 

SLL case was an aggressive paraimmunoblastic variant, and the misclassified MCL case belongs to cluster-

C, which included more indolent cases. 

By unsupervised HC, the miRNA expression profile segregated the MCL cases into three clusters that 

appeared to have biologic and clinical differences. Cluster-A showed high expression of proliferation-related 

miRNAs including the miR17~92 cluster30 and its paralogs miR-106a-363 and miR-106b-25, also consistent 

with higher expression of proliferation-related genes. Contrary to cluster-A, cluster-C showed higher 

expression of stroma-associated miRNAs, including miR-23a, miR-23b, let-7c, let-7-b, miR-125b and 

miRNAs with growth inhibitory functions including miR-1, miR-133b16, miR-10b18. GEP analysis also 

showed low expression of proliferation related genes and interestingly showed high expression of transcripts 

encoding extracellular matrix-related proteins (ECM2, EDN1, EGFR, EPS8, ITGA9 and PDGFD). Further 

examination of these gene signatures in another MCL cohort (n=82) generally validated these findings. Most 

of the cases showed an inverse correlation between the signature enriched in proliferation associated genes 
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vs stromal associated genes and high ratio of these two signatures are associated with poorer survival. This 

observation suggests that the stroma may have influence on tumor cell proliferation.  The influence of the 

tumor microenvironment on the outcome of patients with follicular lymphoma has been clearly 

demonstrated36. Similarly, in diffuse large B-cell lymphoma, the “stromal-1 signature”, which is related to 

extracellular-matrix deposition, mesenchymal and histiocytic cells, is associated with favorable outcome37. 

Recently, we have also demonstrated the contribution of the stromal signatures in the prognosis of patients 

with angioimmunoblastic T-cell lymphoma38. This study suggests that a group of stroma-associated miRNAs 

may define a more indolent group of cases and warrant further investigation.  

These MCL subgroups also showed differences in the expression of distinct signaling pathways when the 

associated GEP data were examined. Cluster-C showed enrichment of pathways associated with 

“stemness/quiescence” such as WNT and TGF-β signaling, whereas cluster-B appeared to be associated with 

higher genotoxic stress (enriched ATM and p21 pathway genes). Because of the reported role of WNT 

signaling in chronic lymphocytic leukemia (CLL)39 and there is a previous report on the nuclear staining of 

β-catenin in neoplastic cells in 52% of MCL cases40, we further investigated the expression of  β-catenin by 

IHC. In our cases β-catenin seems to be mostly localized in stromal elements. Neither we nor our 

collaborators Elias Campo (personnel communication) were able to demonstrate nuclear expression of β-

catenin in neoplastic MCL cells suggesting that WNT activation may be attributed mostly to stromal 

components in cluster-C cases. The effects of WNT signaling on B-cells are complex with studies indicating 

that WNT signaling is important in the proliferation of pro- and pre-B-cells41. WNT signaling has also been 

reported to be pro-survival in GC-B cells and in CLL cells but several studies have reported that activation of 

canonical WNT signaling in stromal cells inhibits B-cell lymphopoeisis42 and WNT5a can signal through 

non-canonical WNT/Ca++ pathways to negatively regulate B-cell proliferation43. A more recent study has 

shown that activation of canonical WNT signaling in stromal cells blocked the proliferation and production 

of B and NK cells, as well as plasmacytoid dendritic cells44, and induced expression of extracellular matrix 

genes.  Since WNT signaling is observed in the least proliferative subset of MCL and β-catenin appears to be 
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in stromal cells, the possible role of microenvironmental miRNA in generating inhibitory signals to 

neoplastic MCL-cells, is intriguing and warrants further experimental studies.  

Among the miRNAs upregulated in the high PS group, miRNAs from miR17~92 cluster and its two paralogs 

have been confirmed in promoting cell proliferation and inhibiting apoptosis30. We have also shown that 

miR17~92 targets PHLPP2, an important negative regulator of the PI3K/AKT pathway, in addition to PTEN 

and BIM, and overexpression of miR17~92  leads to constitutive activation of  PI3K/AKT pathway and also 

chemoresistance in MCL cell lines30. In previous reports, high expression of miR17-5p and miR-20b in MCL 

was associated with short OS12, 13. In contrast, low expression of miR-29, whose target gene includes CDK6 

was associated with poor prognosis11. We observed that miR17 ~ 92 clusters and its paralogs miRNA-363 

and some of the other miRNAs did correlate with the PS (Figure-6A). We generated a 6-miRNA 

prognosticator for MCL, independent of the PS. Of the 6 miRNAs, miR-222 and miR-146a are expressed at 

relatively higher levels and shows higher fold-difference (>3 fold) in expression between the two prognostic 

groups. Of these miR-146a27 is repressed and miR-22245 is induced by MYC and these miRNAs showed 

expected correlation with MYC mRNA expression, suggesting that MYC may play a role in MCL prognosis 

consistent with previous findings46, and this may be partly mediated though the control of miRNA 

expression. It is interesting to note that miR-222 which is coexpressed as a cluster with miR-221 targets 

tumor suppressor p27Kip1 47, and loss of miR-146a promotes tumorigenesis in mice48. Aside from miRNAs 

that are correlated with the PS, there seems to be other miRNAs that could serve as predictors of survival. 

However due to limited number of cases in the analysis, more cases, particularly from clinical trial setting, 

will be needed to validate and refine this miRNA prognosticator in MCL.  
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 Table 1:  Characteristics of MCL (cyclin D1+) and SLL patients included in the study** 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OS; overall survival, EFS, event-free survival 
** The characteristics of 6 (of 7) cyclin D1-negative MCL cases have been described previously (Fu K, et al. 2005), the 
seventh case, without GEP, showed MCL morphology and SOX11 expression consistent with other t (11;14) negative 
MCL cases. One of 12 SLL cases lacked complete clinical data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Clinical features   MCL  SLL 
n=30 n=12 

Age Median (range) 63 (37 – 88) 59 (40 – 90) 

Gender Female 5 (17%) 3 (27%) 
Male 25(83%) 8 (63%) 

Performance  
score 

<70 3 (10%) 0 (0%) 
>70 27 (90%) 11 (100%) 

Stage I/II 2 (6%) 2 (18%) 
III/IV 28 (94%) 9 (82%) 

Serum LDH Normal 21 (70%) 9 (82%) 
Elevated 9 (30%) 2 (11%) 

Number of 
extranodal sites 

<2 26 (87%) 10 (91%) 
>2 4( 13%) 1 (9%) 

Survival (median) OS 3.0 - 
EFS 1.5 6.2 
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Figure legend 

Figure-1: (A) Unsupervised Hierarchical clustering of lymphoma samples, normal cells and cell lines. MCL, 

SLL, DLBCL and BL formed largely distinct clusters. A stromal cell associated miRNA signature is more 

highly expressed in DLBCL and BL cases. There are also significant differences in the expression of miRNA 

associated with naïve B, resting B, CB and CC, with miRNA associated with naive and resting B-cells more 

highly represented in MCL or SLL cases. (B) A miRNA classifier, derived using Bayesian algorithm resulted 

in a 19-miRNA classifier (6 upregulated and 13 downregulated miRNAs), can separate most MCL from 

DLBCL and BL cases. The expression of this miRNA classifier is illustrated in SLL, normal cells and cell 

lines. Golden boxes highlight naïve B-cell and MCL cell lines. 

 

Figure-2: (A) Unsupervised hierarchical clustering of MCL and SLL samples showed two separate clusters 

of SLL cases with each having unique miRNA profiles. (B) A 26-miRNA signature differentiates MCL from 

SLL, with 23 miRNAs including two polycistronic miRNA clusters, miR106b-25 (miR-106b and miR-25) 

and miR106a-363 (miR-363 and miR-20b) significantly upregulated in MCL compared to SLL. 

 

Figure-3: (A) Unsupervised hierarchical clustering of MCL cases, showed three distinct MCL clusters with 

significant difference in the proliferation gene expression signature (PS) among the three groups (p=0.01, 

Kruskal-Wallis Test). PS included the same gene set as identified in reference 34. (B) Differential miRNA 

expression (95 miRNAs, p<0.005) among these clusters; designated as cluster-A (associated with high PS), 

cluster-B (medium PS) and cluster-C (low PS). (C) Differential gene expression (649 transcripts, p<0.005) 

among the three clusters  with cluster A showing high expression of genes associated proliferation, whereas 

the other clusters showing higher expression of genes associated with stromal components. 

 

Figure-4: Comparison of the MCL miRNA profile with other B-cell subsets, T-cells and stromal elements. 

>80% of differentially expressed (p<0.005) miRNAs were upregulated in MCL compared with naive B-cells. 
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Figure-5: (A) MCL classifier obtained from cryopreserved tissues showed similar predictive power in FFPE 

tissues and cyclin D1-negative MCL are classified as MCL. (B)  Unsupervised clustering based on miRNA 

profiles showed distinct clusters of cyclinD1-negative and cyclin D1-positive MCL cases. (C) Differential 

expression of miRNA between cyclin D1-negative and positive MCL cases.  

 

Figure-6: Correlation of miRNA expression with clinical outcomes: (A) Differential miRNA expression 

between cases in highest-tertile (n=10) and lowest-tertile (n=10) of proliferation signature (p<0.05). (B) 

Kaplan-Meier curves of miRNAs-636 and miR-424 showing significant (p<0.05) association with overall 

survival on univariate analysis. (C) Kaplan-Meier curves for risk groups using 6-miRNA signature obtained 

for survival risk prediction by Bair’s et.al principle. 
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