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a b s t r a c t

A class of micro-cracks informed damage models for describing the softening behavior of brittle solids is
proposed, in which damage evolution is treated as a consequence of micro-crack propagation. The
homogenized stress–strain relation in the cracked microscopic cell defines the degradation tensor, which
can be obtained by the equivalence between the averaged strain energy of the microscopic cell and the
strain energy density of the homogenized material. This energy equivalence relationship serves as an
energy bridging vehicle between the damaged continuum and the cracked microstructure. Several dam-
age evolution equations are obtained by this energy bridging method. The size effect of the micro-cracks
informed damage law is characterized through the microscopic cell analysis, and the proper scaling of the
characterized damage evolution functions to eliminate mesh dependency in the continuum solution is
introduced.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Continuum damage mechanics (CDM) has been an active re-
search area for more than 50 years (Kachanov, 1958; Robotnov,
1968; Lemaitre and Chaboche, 1974; Mazars, 1984; Ju, 1989; Faria
et al., 1998). However, CDM is generally phenomenological, where
the damage evolution functions are not related to specific micro-
structural parameters and local defects. Some earlier efforts have
been devoted to the micromechanical investigation of cracked sol-
ids (Budiansky and O’connell, 1976; Norris, 1985; Hashin, 1988),
however the link to CDM is lacking.

Damage evolution based on a multi-scale framework has been
investigated in recent years. Lee et al. (1999) combined the stan-
dard finite element method (FEM) with asymptotic homogeniza-
tion in the undamaged domain and the voronoi cell finite
element model (VCFEM) in the damaged region. Fish et al. (1999)
proposed a nonlocal damage theory based on asymptotic homoge-
nization to account for damage effects in a heterogeneous media.
The reliability of this approach, however, depends on reliability
of the micro-scale damage models. Dascalu et al. (2008) and Das-
calu (2009) defined the damage variable directly by the micro-
crack length. Then a series of differential equations was introduced
to describe damage evolution in the microscopic cell based on the
homogenization theory and the energy controlled crack propaga-
tion. By introducing an internal length in the damage evolution
equation, the size effect was characterized.

Damage processes in brittle solids are driven by the distribution
of micro-cracks and their evolution. Explicit modeling of micro-
cracks in brittle solids is computationally infeasible, while classical
damage models are phenomenological in nature; missing the link
to microscopic properties. Micromechanics based approaches have
been introduced (Nemat-Nasser and Hori, 1999) to obtain homog-
enized material properties of cracked solids. However, they are
limited to certain idealized crack configurations and loading condi-
tions. Alternatively, asymptotic expansion offers a rigorous means
for relating physical variables defined at different scales (Benssou-
san et al., 1978; Bakhvalov and Panasenko, 1989; Guedes and Kiku-
chi, 1990; Fish et al., 1997). However, the key step in an asymptotic
type method is solution of the characteristic functions in the
microscopic cell, which is typically very time consuming.

The present work aims at constructing damage models based on
thermodynamics of ‘‘cracked’’ microscopic cells and the corre-
sponding ‘‘damaged’’ macroscopic continua. Crack evolution in
the microscopic cell is first modeled numerically. Then, corre-
sponding damage evolution functions in the continuum are con-
structed through a Helmholtz free energy relationship between
damaged and undamaged homogenized continua. This approach
avoids the tedious solution of characteristic functions in the con-
ventional asymptotic type method.

An outline of this paper is as follows. In Section 2, the two-scale
model problem is stated and the homogenization procedures are
defined. Based on the homogenized stress and strain, the energy
relation between micro- and macro-scales is established in Sec-
tion 3. In Section 4, procedures for constructing damage evolution
functions based on the cracked microscopic cell solution for a
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scalar damage model, 2-parameter damage model, and fully tenso-
rial damage model are presented. Numerical formulations for the
microscopic cell analysis are given in Section 5. In Section 6, the
numerical procedures for energy based characterization of the mi-
cro-cracks informed damage model in the continuum scale is dis-
cussed, and proper scaling of the characterized damage evolution
functions to eliminate mesh dependency of the continuum solu-
tion is introduced. Concluding remarks are given in Section 7.

2. Model problem and homogenization operators

We start with a two-scale representation of the model problem.
A heterogeneous solid with domain X and boundary C containing
a distribution of micro-cracks is considered, as shown in Fig. 1. The
solid is subjected to surface traction t on Ct and prescribed dis-
placement �u on Cu, Ct [Cu = C, and is assumed to undergo static
elastic deformation without body force. For a given material point
in the macroscopic solid, it corresponds to a microscopic cell
microstructure with domain Xy containing micro-cracks with sur-
face, Cc. We use x as the macroscopic coordinate and y as the
microscopic coordinate.

The boundary-value problem is given as follows:

r � re ¼ 0 in X ð1Þ

with the corresponding boundary conditions,

re � n ¼ t on Ct ð2Þ
ue ¼ �u on Cu ð3Þ

and the effective traction acting on the crack surface,

re � n ¼ h on Cc ð4Þ

where re is the total stress field, ue is the total displacement field,
superscript ‘‘e’’ denotes that the coarse and fine scale responses
are embedded in the total solution, n is the unit outward normal
vector on the boundary, and the traction h is applied to the union
of crack surfaces Cc.

We consider a linear elastic material law:

re ¼ Ce : ee ð5Þ

where Ce is the heterogeneous constitutive tensor, and ee is the total
strain field,

ee ¼ 1
2 r� ue þ ue �rð Þ ð6Þ

Direct simulation of the total scale governing Eqs. (1)–(4) is time
consuming due to the fine-scale microscopic defects and heteroge-
neities, and an attempt is made to conduct homogenization as
shown in Fig. 2, where the homogenized stress and strain are de-
fined by the microscopic cell.

The tractions and displacements prescribed on the outer bound-
ary of the microscopic cell oXy are related to the homogenized
stress and strain in the continuum as:

�r ¼ 1
Vy

I
oXy

te � xð Þds ð7Þ

�e ¼ 1
2Vy

I
oXy

ue � nþ n� ueð Þds ð8Þ

where Vy ¼
R

Xy
dX is the volume of the microscopic cell. Alterna-

tively, the averaged stress and strain in the microscopic cell are de-
fined as

reh i ¼ 1
Vy

Z
Xy

re dX ð9Þ

eeh i ¼ 1
Vy

Z
Xy

ee dX ð10Þ

where

h�i ¼ 1
Vy

Z
Xy

�dX ð11Þ

The following equation is used to obtain the relation between
homogenized and averaged stresses for the cracked microscopic
cell:

r � re � xð Þ ¼ r � re � xþ re � r � xð Þ ¼ re ð12Þ

By substituting Eq. (12) into the averaged stress definition in Eq. (9),
we have

hrei ¼ 1
Vy

Z
Xy

re dX ¼ 1
Vy

Z
Xy

r � re � xð ÞdX

¼ 1
Vy

I
oXy

te � xð Þds� 1
Vy

I
Cc

te � xð Þds

¼ �r� 1
Vy

I
Cc

te � xð Þds ð13Þ

The second term on the right hand side of Eq. (13) vanishes due to
equilibrium of the cohesive stresses on the crack surface. Hence the
homogenized stress equals to the averaged stress even in the case of
a cracked microscopic cell, that is,

�r ¼ hrei ð14Þ

Substituting Eq. (6) into averaged strain defined in Eq. (10) and con-
sidering the divergence theorem, we have

heei ¼ 1
Vy

Z
Xy

ee dX ¼ 1
2Vy

Z
Xy

r� ue þ ue �rð ÞdX

¼ 1
2Vy

I
oXy

ue � nþ n� ueð Þds� 1
2Vy

�
I

Cc

ue � nþ n� ueð Þds

¼ �e� 1
2Vy

I
Cc

ue � nþ n� ueð Þds ð15Þ

Consequently we obtain the relation between homogenized strain
and averaged strain as follows

�e ¼ heei þ 1
2Vy

I
Cc

ue � nþ n� ueð Þds ð16Þ

Here it is shown that the homogenized strain consists of the average
strain and the additional strain induced by the displacement jump
across the crack surfaces. In other words, macroscopic strain cannot
be directly obtained by the averaging of microscopic strain when
micro-cracks exist.
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Fig. 1. Microscopic and macroscopic structures.
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To obtain the homogenized material tensor, we define the
fourth order influence tensor as:

eeðxÞ ¼ I� AeðxÞ
� �

: �e ð17Þ

where I is the fourth order identity tensor. Substituting Eq. (17) into
the stress–strain relation in Eq. (5), we have

re ¼ Ce : ee ¼ Ce : I� AeðxÞ
� �

: �e ð18Þ
Using the equivalence between the homogenized stress and aver-
aged stress, we obtain

�r ¼ hCe : ½I� AeðxÞ�i : �e � C : �e ð19Þ

From the above equation, we express the homogenized material re-
sponse tensor as

C ¼ ðI� DÞ : hCei ð20Þ
where

D ¼ hCe : Aei : hCei�1 ð21Þ
Here D is a degradation (damage) tensor expressed by the influence
tensor Ae(x).

Remark 2.1. The fourth order influence tensor Ae(x) represents the
inter-scale relation between properties of the cracked microstruc-
tures and properties of the homogenized continua. Micromechanics
offers an analytical bases for obtaining the influence tensor, for
example, Mori–Tanaka method (Mori and Tanaka, 1973), self-
consistent method (Budiansky and O’connell, 1976) and differential
scheme (Norris, 1985). On the other hand, asymptotic expansion
based homogenization offers a general approach for calculating the
influence tensor, which utilizes the numerical solution of charac-
teristic functions for scale-coupling in the microscopic cell.

Remark 2.2. Using the asymptotic expansion based method, the
influence tensor can be obtained from the characteristic tensor
v(y) (detailed derivations see Appendix A):

Ae ¼ �rs
yvðyÞ ð22Þ

where the characteristic tensor v(y) is solved from the following
boundary-value problem defined in the microscopic cell:

ry � Ce : rs
yvðyÞ

� �
¼ 0 in Xy ð23Þ

Ce : rs
yvðyÞ : rs

xv
½0�ðxÞ

h i
� n ¼ � Ce : rs

xv
½0�ðxÞ

� �
� nþ h on Cc ð24Þ

Clearly the numerical solution of the above boundary-value prob-
lem for obtaining the third order tensor v(y) is computationally
intensive. This issue is addressed by introducing the energy bridg-
ing method as discussed in the next section.

3. Energy bridging between scales

To establish the relationship between the micro-cracks induced
material degradation and the damaged continuum described by

conventional damage mechanics, the Helmholtz free energy
(HFE) is employed:

W ¼ 1
2
�r : �e ð25Þ

According to the second principle of thermodynamics, we have

�r ¼ oW
o�e

ð26Þ

Y ¼ � oW
oD

ð27Þ

where D is the damage tensor and Y is the damage energy release
rate (DERR) representing a driving force of damage evolution. Con-
sequently, the damage evolution equation is expressed by the evo-
lution potential, U, as follows

_D ¼ _k
oU
oY

ð28Þ

where k is the consistency parameter. In conventional continuum
damage mechanics, HFE is determined experientially. In the present
approach, the HFE is obtained through homogenization of the
cracked microstructure. The microscopic free energy is defined as

We ¼ 1
2r

e : ee ð29Þ

where reand ee are the microscopic stress and strain. Integrating
microscopic HFE in the microscopic cell yieldsZ

Xy

We dX ¼ 1
2

Z
Xy

re : ee dX ¼ 1
2

Z
Xy

1
2
re : r� ue þ ue �rð ÞdX

¼ 1
2

Z
Xy

1
2
r � ue � reð Þ þ r � re � ueð Þ½ �ue � r � re

�r � re � ue�dX ¼ 1
2

Z
Xy

r � ue � reð ÞdX ð30Þ

Note that we have used equilibrium without body force. Introduc-
ing the divergence theorem in Eq. (30) results inZ

Xy

We dX ¼ 1
2

Z
Xy

r � ue � reð ÞdX

¼ 1
2

I
oXy

ue � re � nds� 1
2

I
Cc

ue � re � nds

¼ 1
2

I
oXy

ue � te ds� 1
2

I
Cc

ue � hds ð31Þ

Here we consider a strain driven homogenization, where the dis-
placement boundary conditions obtained from macroscopic strain
are applied to the microscopic cell to compute the local stress field.
The local stress field is then averaged, which is the same as the
homogenized stress �r according to Eq. (14), and is passed back to
the coarse scale. The prescribed boundary displacements on the
microscopic cell are obtained from the macroscopic strain by

ue ¼ �e � x on oXy ð32Þ

where oXy is the outer boundary of the microscopic cell. Substitut-
ing Eq. (32) into the first term on the right hand side of Eq. (31), we
have

1
2

I
oXy

ue � te ds ¼ 1
2

I
oXy

�e � xð Þ � te ds ¼ 1
2

I
oXy

te � xð Þds

" #
: �e

¼ Vy

2
�r : �e ¼ VyW ð33Þ

Combining Eqs. (31) and (33) we have

W ¼ 1
Vy

Z
Xy

We dXþ 1
2

I
Cc

ue � hds

 !
ð34Þ

Homogenization 

y

h

,e , e

Fig. 2. Homogenization of microscopic cell with fluctuating fields.
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The right hand side of (34) is the averaged free energy of the micro-
scopic cell, while the left hand side of (34) is the energy density of
the homogenized material. Thus Eq. (34) concludes that the aver-
aged energy of the microscopic cell is equal to the energy density
of the homogenized material.

Remark 3.1. The result in Eq. (34) is an extension of Hill’s theorem
(Hill, 1963), with addition of the second term on the right hand
side resulting from the crack discontinuous displacement field.
This result is consistent with the one obtained by Belytschko et al.
(2008) where the power expression of the energy bridging
equation has been introduced. Further, the energy equivalence in
Eq. (34) can also be obtained by the asymptotic expansion
approach as detailed in Appendix B.

4. Characterization of parameters in continuum damage
mechanics by energy bridging

We use the Helmholtz free energy relationship between the
homogenized continuum and the cracked microstructure to derive
damage parameters for several commonly used damage models.

4.1. One-parameter scalar damage model

The one-parameter damage model (Mazars, 1984) is expressed
as

W ¼ ð1� dÞW0 ð35Þ

where W is Helmholtz free energy computed from the microscopic
cell in Eq. (34), and W0 is the effective Helmholtz free energy ob-
tained by

W0 ¼ 1
2
�e : C0 : �e ð36Þ

where C0 is the homogenized undamaged material tensor. Then the
damage scalar is obtained by

d ¼ 1� W
W0

ð37Þ

4.2. Two-parameter damage model

The two-parameter damage model has been extensively studied
and widely adopted for description of more complicated damage
mechanisms (Faria et al., 1998; Wu et al., 2006; Li and Ren,
2009). For geological materials such as sand or soil, the volumet-
ric–deviatoric splitting approach has been adopted to describe
damage mechanisms driven by pressure and shear. On the other
hand, the hydrostatic tension–compression decomposition ap-
proach has been used for quasi-brittle materials like concrete
and rock (Faria et al., 1998), which is the case demonstrated herein.
The framework of the two-parameter damage model is described
in Appendix C.

The initially undamaged macroscopic stress is obtained as

�r0 ¼ C0 : �e ð38Þ

The macroscopic stress can be decomposed as

�r0 ¼ �rþ0 þ �r�0 ð39Þ

where �rþ0 and �r�0 are the tensile and compressive stresses, respec-
tively, defined as

�rþ0 ¼
X

i

r̂iH r̂ið Þpi � pi ð40Þ

�r�0 ¼ �r0 � �rþ0 ð41Þ

r̂i and pi are the ith eigenvalue and the corresponding eigenvector
of �r0, and H(�) is the Heaviside function.

The macroscopic Helmholtz free energy is then expressed as

W ¼ ð1� dþÞWþ0 þ ð1� d�ÞW�0 ð42Þ

where d+ and d� are tensile and compressive damage parameters,
respectively, and the corresponding expressions of the effective
Helmholtz free energy are

W�0 ¼ 1
2
�r�0 : C�1

0 : �r�0 ð43Þ

Consider the Clausius–Duhem inequality of irreversible thermody-
namics, the following can be derived from the Helmholtz free en-
ergy in Eq. (42):

Y� ¼ W�0 ð44Þ

and

d� ¼ 1� oW

oY�
	 1� DW

DY�
ð45Þ

where W is the Helmholtz free energy calculated from the micro-
scopic cell in Eq. (34). By using the finite difference operation in
Eq. (45), the evolution of damage parameters is obtained.

4.3. Fully tensorial damage model

Derivation of the tensorial damage tensor based on the influ-
ence tensor Ae(x) according to Eq. (21) is limited to special cases
if Ae(x) is obtained by micromechanical methods, and is costly if
Ae(x) is calculated using the asymptotic expansion method. By
introducing bridging based on Helmholtz free energy, a more effi-
cient approach for obtaining the damage tensor is introduced. Re-
call the definition of the macroscopic Helmholtz free energy in Eq.
(25), we have

W ¼ 1
2
�e : ðI� DÞ : C0 : �e ð46Þ

Performing partial differentiation of the Helmholtz free energy in
Eq. (46) with respect to the fourth order damage tensor, D, we ob-
tain the damage energy release rate as follows

Y ¼ � oW
oD
¼ 1

2
�e : C0 : �e ð47Þ

By taking the derivative of the Helmholtz free energy of the micro-
scopic cell in Eq. (34) with respect to the damage energy release
rate, Y, we obtain the fourth order damage tensor:

D ¼ I � o �W
oY
	 I � DW

DY
ð48Þ

Here a finite difference approach could be used in Eq. (48) to obtain
the fourth order damage tensor usingDW and DY.

5. Microscopic cell analysis

The essential step in obtaining the damage evolution functions
in the proposed method is the microscopic cell analysis. In the
present study, the microscopic cell is made of an isotropic linear
elastic material with a center crack subjected to boundary condi-
tions as shown in Fig. 3. The boundary conditions on the micro-
scopic cell are defined based on the type of damage mechanisms
to be captured. The crack is modeled by a cohesive crack model
with linear degradation as shown in Fig. 3. The crack propagation
direction is determined by the maximum hoop stress criterion.

In this work, we consider an enriched reproducing kernel parti-
cle method (RKPM) for the microscopic cell analysis. The micro-
scopic cell solution is then used in the homogenization as
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described in Section 4 for characterization of the damage parame-
ter evolution.

In RKPM (Liu et al., 1995; Chen et al., 1996), the approximation
of a function u is expressed as

uhðxÞ ¼
X

I

/IðxÞuI ð49Þ

where /I(x) is the reproducing kernel (RK) shape function and uI is
the corresponding coefficient. In the following, we use multi-
dimensional notation: a = (a1,a2, . . . ,ad), jaj ¼

Pd
i¼1ai,

xa ¼ xa1
1 � � � x

ad
d , xa

I ¼ xa1
1I � � � x

ad
dI , and d is the spatial dimension. The

RK shape functions are constructed using monomials as basis func-
tions expressed as

/IðxÞ ¼ uaðx� xIÞ
X
aj j6n

ðx� xIÞabaðxÞ
 !

ð50Þ

where ua(x � xI) is the kernel function with support size a,
{(x�xI)a}jaj6n is the set of monomial basis functions, and {ba(x)}jaj6n

are the coefficients of the basis functions obtained by imposing the
following reproducing conditions:X

I

/IðxÞxa
I ¼ xa; jaj 6 n ð51Þ

Obtaining ba(x) from (51), the RK shape function is constructed:

/IðxÞ ¼ HTð0ÞM�1ðxÞHTðx� xIÞuaðx� xIÞ ð52Þ

where HðxÞ ¼ fxagjaj6n ¼ f1; x1; . . . ; xn
dg is the vector containing all

the basis functions and M is the moment matrix defined as

MðxÞ ¼
X

I

Hðx� xIÞHTðx� xIÞuaðx� xIÞ ð53Þ

To consider enrichment of RKPM by a set of enrichment functions,
pi (x), the following reproducing conditions are introduced (Fleming
et al., 1997):

Q iðxÞ ¼
X

I

/IðxÞQiðxIÞ þ piðxÞ ð54Þ

where Qi(x) is the target function and pi(x)is the corresponding
enrichment. The enrichment is thus expressed as

piðxÞ ¼ Q iðxÞ �
X

I

/IðxÞQ iðxIÞ ð55Þ

The enriched RKPM is given in the following form:

uhðxÞ ¼
X

I

/IðxÞuI þ
X

i

ki Q iðxÞ �
X

I

/IðxÞQ iðxIÞ
( )

ð56Þ

where ki is the coefficient of the enrichment function pi. For the
microscopic cell analysis, the following target functions for enrich-
ment of the crack tip solution (Möes and Belytschko, 2002) have
been introduced:

½Q1;Q 2;Q 3;Q 4� ¼
ffiffiffi
r
p

sin h
2

� �
;
ffiffiffi
r
p

cos h
2

� �
;
ffiffiffi
r
p

sin h
2

� �
sin h;

�
ffiffiffi
r
p

cos h
2

� �
sin h

�
for LEFM

½Q1;Q 2;Q 3� ¼ r sin h
2

� �
; r

3
2 sin h

2

� �
; r2 sin h

2

� �h i
for Cohesive Crack Model

8>>>><
>>>>:

ð57Þ

The functional for the microscopic cell problem is expressed as

P ¼ 1
2

Z
Xy

eijCijklekl dX�
Z

Ct

ui�ti dCþ a
2

Z
Cu

ðui � �uiÞðui

� �uiÞdC ð58Þ

where a is the penalty parameter for imposing the essential bound-
ary conditions. Introducing the enriched RK approximation in Eq.
(56) into the stationary condition of Eq. (58), we have

ðKþ aKuÞU ¼ f þ afu ð59Þ

where K is the stiffness matrix, f is the force vector, and Ku and fu

are the terms associated with imposition of essential boundary con-
ditions. For the simulation of solids, the penalty parameter a is cho-
sen to be 103–106E where E is the elastic modulus.

6. Numerical tests

In the aforementioned homogenization calculation of damage
parameters, modeling of the microscopic cell with micro-cracks
propagation as described in Section 5 is first performed. The micro-
scopic cell analysis results are then processed according to the
homogenization procedures in Sections 3 and 4 to obtain the evo-
lution of damage parameters. It is noted that the homogenized
damage evolution functions need to be properly scaled with re-
spect to the ratio between dimensions of the microscopic cell
and mesh to avoid the ‘‘numerical size effect’’. This will be dis-
cussed in the following section.

A notched beam under three point bending, as shown in Fig. 4,
is to be modeled by the proposed methods. This problem has been
extensively studied both experimentally (Petersson, 1981) and
numerically (de Borst, 1986 and Meyer et al., 1994). The overall
behavior of the beam is governed by the Mode I crack initiated at
the vertex of the notch. Hence the microscopic cell model with
an evolving Mode I crack is considered for generation of the dam-
age evolution function. In this example, we consider the two-
parameter damage model as given in Section 4.2 with the compres-
sive damage evolution suppressed due to the bending condition
and moderate beam thickness. The material properties of elastic
modulus and Poisson’s ratio are 30 GPa and 0.2, respectively. Ten-
sile strength of the material is fu = 3.33 MPa, and fracture energy of
the cohesive crack is GI = 124 N/m (de Borst, 1986).

1y

2y
y

Physical crack-tip 

Mathematical crack-tip 

Cohesive stress 

l

l

uf

2 I

u

G

f

O

IG

Crack opening displacement (COD) 

Fig. 3. Microscopic cell problem and cohesive crack model.
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6.1. Characterization of damage evolution functions

The microscopic cell geometry with initial crack and boundary
conditions are shown in Fig. 3. We consider a microscopic cell sub-
jected to uniform tension with a centered crack propagating per-
pendicular to the loading direction. In this study, the initial crack
length is set to be one-tenth of the microscopic cell dimension.
Based on the numerical method described in Section 5, we first ob-
tain the stress and strain fields in the microscopic cell at different
loading stages. Normal stresses in the direction of loading at differ-
ent stages of crack propagation are shown in Fig. 5. The homoge-
nized stress and strain are shown in Fig. 6(a). The energy
bridging Eq. (34) is employed to calculate the damage variable as
a function of deformation as discussed in Section 5. The homoge-
nized tensile damage evolution is shown in Fig. 6(b).

Here we study the size effect by considering various sizes of
microscopic cells which correspond to structural models with
coarse, medium and fine meshes. For this purpose, define a dimen-
sionless parameter, k, as the ratio between the microscopic length
parameter lmic and the macroscopic length parameterlmac. Here we
consider the dimension of the microscopic cell l and height of the
beam h as the two-scale parameters and define their ratio as:

k ¼ lmic

lmac
¼ l

h
ð60Þ

It is observed in Fig. 7 that the homogenized stress–strain curves
are strongly affected by the size of the microscopic cell. The cohe-
sive law employed in the microscopic analysis of crack propagation
involves a length scale, which is the crack opening displacement
corresponding to zero stress (2GI/f in Fig. 3), called the critical crack
opening displacement. This length scale does not scale with the
microscopic cell, and thus leads to different homogenized stress–
strain curves based on different cell dimensions. As the cell dimen-
sion increases, the homogenized strain corresponding to the critical
crack opening displacement decreases, and yields strain softening
with a larger negative slope as shown in Fig. 7. Computationally,
the macroscopic mesh dimension is used to represent the averaged
material behavior within the mesh. Thus if the cohesive law is used
in a microscopic cell for obtaining the homogenized stress–strain
curve for a macroscopic calculation, the corresponding microscopic
cell dimension needs to be dimensionally close to the mesh dimen-
sion when strain softening exists for the above said reason. Unfor-
tunately this is practically tedious for arbitrary mesh geometry.
Therefore, a scaling law will be introduced in the following discus-
sion so that the homogenized stress–strain curves for different
mesh points are scaled based on a ‘‘reference microscopic cell
analysis’’.

It is also noted that as the microscopic cell size increases, the
energy dissipation capacity of the microscopic cell (the area under
the stress–strain curve) decreases. The reason is that the energy
dissipated by the cohesive crack propagation is dominated by the
elastic energy within the microscopic cell as its size increases.
For the microscopic cell with dimension exceeding the dimension

of the macroscopic solid, its elastic energy becomes greater than
the cohesive crack opening energy, hence the snap-back behavior
as shown in Fig. 7 for k = 5,10. Fig. 8(a) demonstrates the size
dependence of the calculated nominal strength which can be well
fitted to the size effect law proposed by Bazant (1984):

rN ¼
Bfuffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

p ; b ¼ l
l0

ð61Þ

where fu is the tensile strength of concrete, l is the specimen dimen-
sion, and B and l0 are material parameters identified by experimen-
tal data or numerical simulation. This size dependent property is
due to influence of the internal length scale, i.e., the crack opening
displacement characteristic length, which does not scale with the
overall dimension of the microscopic cell and specimen. The scale
dependence of rupture strain, eu, is also shown in Fig. 8(b), where
a size effect law for eu can also be extracted from numerical results.

For microscopic cells with different dimensions and with the
center crack dimension defined in proportion with the microscopic
cell dimension, the homogenized damage evolution curves takes
different paths from 0 to 1, as can be seen in Fig. 9. Note that a crit-
ical size lc for the microscopic cell exists. This inherent critical size
represents the constraint on the discretization of the macroscopic
structures.

Remark 6.1. Besides the dimension of the microscopic cell, the
characterized macroscopic damage evolution is also affected by the
criteria of the micro-crack propagation. While cohesive energy has
been employed in this work as the crack propagation criterion, for
general applications it should be carefully investigated according
to the key characteristics of material behavior.

6.2. Mesh insensitive solution by scaled damage evolution functions

The characterized tensile damage evolution equation for two-
parameter damage model, given in Section 6.1, is employed in
the structural level analysis based on continuum damage mechan-
ics. Due to softening behavior of the material response, the arc-
length method is used for the nonlinear analysis. To study mesh
sensitivity of the multi-scale analysis, coarse, medium and fine
meshes are constructed for the notched beam as shown in Fig. 10.

In the conventional damage models, the damage evolution
curves are directly used in the structural analysis without consid-
eration of the relationship between microstructure dimension and
mesh size. Fig. 11 shows a strong mesh dependency induced by
this standard procedure where only one microscopic cell is used
to characterize the damage evolution equation without use of the
scaling law in Eq. (61) and linear fit of Fig. 8(b). With the proposed
method, the micro-cracks induced damage evolution curve is first
characterized by the cracked microscopic cell simulation results.
By introducing the scaled damage evolution curves in Fig. 9 accord-
ing to the mesh dimension, the mesh independent results are ob-
tained. The agreement between numerical results with different

P
5

20h =
10

4

200

Fig. 4. Notched beam subjected to three-point bending (unit: cm).
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mesh refinements and the benchmark results (from Abaqus 6.5
user’s manual (2005)) is shown in Fig. 12. The stress and strain
contours representing damage evolution in the structures are
shown in Figs. 13 and 14.

Remark 6.2. The macroscopic mesh is a numerical representation
of the solids included within its domain, and the stress–strain
relation introduced in the quadrature points describes the homog-
enized behavior of the solid within the mesh. For an elastic solid,
the homogenized stress–strain curve is insensitive to the mesh
dimension, and thus no mesh dependency issues exist for elastic
problem. On the other hand, the softening solid typically involves
length scales in the material laws, for example, the ones con-
structed by homogenization of microscopic fracture analysis with
cohesive law introduced in this work. When the length scales in
the material laws do not scale properly with the representative
domain of the macroscopic quadrature points, mesh dependent
results arise. In the present work, the mesh dependency in the
softening problem is removed by adopting a scaling law to a
‘‘reference homogenized stress–strain curve’’ obtained from a
reference microscopic cell analysis.

7. Conclusions

In this work, we consider damage in the continua as the homog-
enization of micro-cracks in the microstructures. Bridging between
the cracked microstructure and the damaged continuum is facili-
tated by the equivalence of Helmholtz free energy between the
two scales. As such, damage in the continua represented by the

Fig. 5. Normal stress contours (in direction of loading) at different loading stages.
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Fig. 6. (a) Homogenized stress and strain and (b) tensile damage parameter calculated by the microscopic stress and strain fields, where a, b, c, d and e denote the
corresponding homogenized stresses, strains and damage parameters calculated based on the stress fields (a), (b), (c), (d) and (e) shown in Fig. 5, respectively.
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degradation of continua can be characterized from the Helmholtz
free energy. Under this framework, a unified approach for numer-
ical characterization of a class of damage evolution functions has
been proposed. It is shown that this energy equivalence relation-

ship is consistent with that obtained from asymptotic based
homogenization, and it serves as an energy bridging vehicle be-
tween the damaged continuum and cracked microstructure.
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Fig. 8. Size dependent of microscopic cells: (a) nominal strength; (b) difference
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Fig. 10. Finite element mesh with different levels of refinement: (a) coarse mesh,
(b) medium mesh and (c) fine mesh.
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Fig. 11. Mesh dependent load–displacement responses using inconsistent micro-
scopic cell.
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It is shown that the damage evolution functions characterized
by the microscopic cell with energy bridging exhibit a strong
numerical size effect identical to the physical size effect reported
in the literature. We attribute this to the critical value of crack
opening displacement which does not scale with the overall
dimension of the microscopic cell and the specimen. Approaches
without this consideration, such as the conventional continuum
damage models, yield a strong mesh dependency in the numerical
solution. The proposed method with energy bridging allows for
proper scaling of the damage evolution functions to eliminate this
mesh dependency in the continuum solution.

In this approach, the microscopic cell analysis is used to obtain
the homogenized stress–strain curves associated with fundamen-
tal damage modes for characterization of the macroscopic damage
evolution functions through energy bridging. The numerical exam-
ple of a three-point bending test with Mode I fracture is considered
due to the available experimental data for comparison with the
numerical prediction. For more general and complex loading histo-
ries, including those that could yield heterogeneous failure pro-
cesses where different damage modes exist at different
macroscopic points, one needs to consider (1) the appropriate mac-
roscopic damage model suitable for describing the complex dam-
age mechanisms (with the most complete model being the fully
tensorial damage model), and (2) the corresponding microscopic
cell analyses sufficient for characterizing each of the damage evo-
lution functions associated with the damage model parameters.
Practically, especially for the most general tensorial damage model,
these whole processes add considerable complexities into the com-
putational framework, and this calls for further research
investigation.

The proposed method can be used as a means for numerical
characterization of damage evolution functions that have been tra-
ditionally done by experimentation. This approach can also be used
as the enhancement of continuum damage mechanics with embed-
ded microstructure properties for a wide range of solids containing
arbitrary crack configurations and microstructures. These will be
the extension of the present work, and the results are to be re-
ported in the forthcoming publications.
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Appendix A. Derivation of influence tensor using asymptotic
expansion based homogenization

An alternative approach for relating microscopic and macro-
scopic variables is the asymptotic expansion based homogeniza-
tion method. Consider the model problem described by coarse-
scale coordinate x and fine-scale coordinate y as shown in Fig. 1.
The two length scales are related with a small parameter, e, as

y ¼ 1
e

x ðA:1Þ

The spatial derivatives of a function Ue with superscript e denoting
the combined (total) coarse-fine scale characters is expressed as

rxU
eðxÞ ¼ rxUðx; yÞ ¼ rxUðx; yÞ þ

1
e
ryUðx; yÞ ðA:2Þ

Based on asymptotic expansion, the total displacement vector is ex-
panded as

ueðxÞ ¼
X1
i¼0

eiu½i�ðx; yÞ ðA:3Þ

Substituting (A.3) into Eq. (6) and considering (A.1) and (A.2), we
obtain expansion of the strain tensor as

ee ¼ rs
xue ¼

X1
k¼�1

eke½k� ðA:4Þ

where

e½�1� ¼ rs
yu½0� ðA:5Þ

e½k�ðuÞ ¼ rs
xu½k� þ rs

yu½kþ1� k P 0 ðA:6Þ

Introducing the elasticity tensor, we have the stress expansion as
follows

re ¼ Ce : ee ¼
X1
k¼�1

ekr½k� ðA:7Þ

where

r½k� ¼ Ce : e½k� ðA:8Þ

Substituting expansion (A.8) into the equilibrium condition in Eq.
(1), we obtain the leading order equilibrium equations

Fig. 13. Contour of normal stress in horizontal direction.

Fig. 14. Contour of normal strain in horizontal direction.

X. Ren et al. / International Journal of Solids and Structures xxx (2011) xxx–xxx 9

Please cite this article in press as: Ren, X., et al. Micro-cracks informed damage models for brittle solids. Int. J. Solids Struct. (2011), doi:10.1016/
j.ijsolstr.2011.02.001

http://dx.doi.org/10.1016/j.ijsolstr.2011.02.001
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.001


ry � r½�1� ¼ 0 ðA:9Þ
rx � r½k� þ ry � r½kþ1� ¼ 0; k P �1 ðA:10Þ

The formal solutions of these equations have been discussed in
the literature (Guedes and Kikuchi, 1990; Cheng, 1992; Fish et al.,
1997, etc.), and here we only outline the important results. The first
and second order formal solutions for displacement are expressed
as

u½0� ¼ v½0�ðxÞ ðA:11Þ
u½1� ¼ v½1�ðxÞ þ vðyÞ : rs

xv
½0�ðxÞ ðA:12Þ

where v[0](x) and v[1](x) are the coarse and fine-scale solution func-
tions of u, and v (y) is the third order characteristic tensor function
of the microscopic cell (Bakhvalov and Panasenko, 1989).

Consider the truncation of the strain and stress expansions to
two scales:

ee ¼ 1
e

e½�1� þ e½0� þ � � � 	 1
e

e½�1� þ e½0� ðA:13Þ

re ¼ 1
e
r½�1� þ r½0� þ � � � 	 1

e
r½�1� þ r½0� ðA:14Þ

where

e½�1� ¼ rs
yu½0� ¼ rs

yv
½0�ðxÞ ¼ 0 ðA:15Þ

r½�1� ¼ Ce : e½�1� ¼ Ce : rs
yu½0� ¼ Ce : rs

yv
½0�ðxÞ ¼ 0 ðA:16Þ

e½0� ¼ rs
xu½0� þ rs

yu½1� ¼ Iþrs
yvðyÞ

h i
: rs

xv
½0�ðxÞ ðA:17Þ

r½0� ¼ Ce : e½0� ¼ Ce : Iþrs
yvðyÞ

h i
: rs

xv
½0�ðxÞ ðA:18Þ

Substituting (A.15)–(A.18) into (A.13), (A.14), we have

ee 	 e½0� ¼ rs
xu½0� þ rs

yu½1� ¼ ½Iþrs
yvðyÞ� : rs

xu½0�ðxÞ ðA:19Þ
re 	 r½0� ¼ Ce : ½Iþrs

yvðyÞ� : rs
xu½0�ðxÞ ðA:20Þ

where I denotes the fourth order identity tensor. Substituting stress
expression (A.20) into equilibrium equation (1) and the cohesive
traction equation. (4), we have the following equations for solving
the third order tensor v(y)

ry � Ce : rs
yvðyÞ

� �
¼ 0 in Xy ðA:21Þ

½Ce : rs
yvðyÞ : rs

xv
½0�ðxÞ� � n ¼ �½Ce : rs

xv
½0�ðxÞ� � nþ h on Cc

ðA:22Þ

Comparing Eqs. (17) and (A.19), the influence tensor can be expres-
sive by the characteristic tensor:

Ae ¼ �rs
yvðyÞ ðA:23Þ

Appendix B. Derivation of energy bridging equation using
asymptotic expansion based homogenization

Here we show that the energy bridging Eq. (34) can be obtained
by the asymptotic expansion based method. Substituting Eqs.
(A.19) and (A.20) into the microscopic free energy defined in Eq.
(29) yields

We ¼ 1
2r

e : ee ¼ 1
2ee : Ce : ee ¼ 1

2 r
s
xu½0� þ rs

yu½1�
� �

: Ce

: rs
xu½0� þ rs

yu½1�
� �

¼ 1
2r

s
xu½0� : Ce : rs

xu½0� þ 1
2r

s
yu½1� : Ce

: rs
yu½1� þ rs

xu½0� : Ce : rs
yu½1� ðB:1Þ

Integrating over the microscopic cell, we obtain

Z
XY

We dX ¼
Z

XY

1
2
rs

xu½0� : Ce : rs
xu½0�

	 

dX

þ
Z

XY

1
2
rs

yu½1� : Ce : rs
yu½1�

	 

dX

þ
Z

XY

rs
xu½0� : Ce : rs

yu½1�
� �

dX ðB:2Þ

The three terms on the right hand side of Eq. (B.2) are rearranged as
follows. The first term is expressed asZ

XY

1
2
rs

xu½0� : Ce : rs
xu½0�

	 

dX ¼ Vy

2
rs

xu½0� : hCei : rs
xu½0� ðB:3Þ

The second term can be further manipulated by considering
k = �1 in Eq. (A.10) to yield:

rx � r½�1� þ ry � r½0� ¼ 0 in Xy ðB:4Þ

Further considering the crack surface traction condition

r½0� � n ¼ h on Cc ðB:5Þ

Substituting Eq. (A.16) in Eq. (B.4), we have

ry � r½0� ¼ 0 ðB:6Þ

Multiplying Eq. (B.6) by u[1] and integrating it over Xy yieldsZ
XY

u½1� � ry � r½0� dX ¼ 0 ðB:7Þ

By integration by parts, we haveZ
XY

u½1� � ry � r½0� dX ¼
Z

XY

r½0� � ry � u½1�dX�
Z

Cc

u½1� � r½0�

� ndS

¼ 0 ðB:8Þ

where Cc is the crack surface within the microscopic cell. Consider-
ing the boundary condition in Eq. (B.5) and the symmetry of stress
tensor, r[0], we haveZ

XY

r½0� : rs
yu½1�dX ¼ �

Z
Cc

u½1� � hdS ðB:9Þ

Substituting Eq. (A.18) into Eq. (B.9), one obtainsZ
XY

rs
xu½0� : Ce : rs

yu½1� dXþ
Z

XY

rs
yu½1� : Ce : rs

yu½1� dX

¼ �
Z

Cc

u½1� � hdS ðB:10Þ

The second term on the right side of Eq. (B.2) is then obtained. For
the third term on the right hand side of Eq. (B.2), considering Eq.
(A.12):Z

XY

rs
xu½0� : Ce : rs

yu½1� dX ¼ rs
xu½0� :

Z
XY

Ce : rs
yvðyÞdX

� �

: rs
xu½0� ðB:11Þ

Substituting Eq. (A.20) into the homogenized stress expressed in Eq.
(14) yields

�r ¼ hrei ¼ Ce : Iþrs
yvðyÞ

h iD E
: rs

xu½0�ðxÞ ¼ Ce
 �
: rs

xu½0�ðxÞ þ hCe : rs
yvðyÞi : rs

xu½0�ðxÞ ðB:12Þ

Comparing Eq. (B.11) with (B.12) gives

Vy �r : rs
xu½0� ¼ Vyrs

xu½0� : Ce
 �
: rs

xu½0� þ
Z

XY

rs
xu½0� : Ce : rs

yu½1�dX

ðB:13Þ
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Then substituting Eqs. (B.3), (B.10) and (B.13) into Eq. (B.2), we
obtain

1
Vy

Z
XY

We dXþ 1
2

Z
Cc

u½1� � hdS
	 


¼ 1
2

�r : rs
xu½0� ðB:14Þ

It is observed that rs
xu½0� is the macroscopic strain, �e, which is im-

posed on the microscopic cell by Eq. (32). By substituting Eq. (25)
in Eq. (B.14), we finally obtain

W ¼ 1
Vy

Z
XY

We dXþ 1
2

Z
Cc

u½1� � hdS
	 


ðB:15Þ

Appendix C. Two-variable damage model

According to the continuum damage theory, the general expres-
sion of the fourth order damage representation is

r ¼ ðI� DÞ : C0 : ee ðC:1Þ

where C0 is the initial elastic stiffness tensor, D is the fourth order
damage tensor, and ee = e � epand ep is the plastic strain. The effec-
tive stress is defined as

r0 ¼ C0 : ee ðC:2Þ

Hence the damage model in (C.1) can be expressed as

r ¼ ðI� DÞ : r0 ðC:3Þ

To account for the unilateral effect, the positive-negative decompo-
sition of the effective stress tensor is defined as follows

r0 ¼ rþ0 þ r�0 ðC:4Þ
rþ0 ¼ Pþ : r0 ðC:5Þ
r�0 ¼ r0 � rþ0 ¼ P� : r0 ðC:6Þ

where the fourth order projection tensors P+ and P� are (Faria et al.,
1998):

Pþ ¼
X

i

Hðr̂iÞpi � pi � pi � pi ðC:7Þ

P� ¼ I� Pþ ðC:8Þ

in which I is the fourth order identity, r̂i and pi are the ith eigen-
value and the corresponding eigenvector for the effective stress ten-
sor r0, and H(�) is the Heaviside function:

HðxÞ ¼
1 x P 0
0 x < 0

�
ðC:9Þ

Correspondingly, two damage scalars, d+ and d�, are introduced to
describe the damage of materials under tension and compression
respectively. According to the thermodynamics, the state of an
ensemble could be described by using the definition of Helmholtz
free energy (HFE), which is expressed by using the state variables
and internal variables. We define the total elastoplastic HFE as

w ¼ wðee;j;dþ;d�Þ ðC:10Þ

where j is plastic variables. Decomposing the total HFE into the
elastic and the plastic components, we have

wðee;j;dþ;d�Þ ¼ weðee; dþ; d�Þ þ wpðee;j;dþ;d�Þ ðC:11Þ

Neglecting the plastic strain under tension, we have the following
plastic HFE

wpðee;j;dþ; d�Þ ¼ wpðee;j;d�Þ ¼ ð1� d�Þwp
0 ðC:12Þ

The elastic HFE is further decomposed as

weðee;dþ;d�Þ ¼ weþðee;dþÞ þ weþðee;d�Þ
¼ ð1� dþÞweþ

0 ðeeÞ þ ð1� d�Þwe�
0 ðeeÞ ðC:13Þ

Here the superscripts ‘‘e’’ and ‘‘p’’ refer to ‘‘elastic’’ and ‘‘plastic’’
components, respectively, and the subscript ‘‘0’’ refers to the ‘‘ini-
tial’’ state.

According to the second principle of thermodynamics, the fol-
lowing equation is obtained

r ¼ owe

oee
¼ ð1� dþÞrþ0 þ ð1� d�Þr�0 ¼ ðI� dþPþ � d�P�Þ

: r0 ðC:14Þ

The damage energy release rate (DERR) can then be obtained as

Y� ¼ ow

od�
ðC:15Þ
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