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Influence of Iron and Aeration on Staphylococcus aureus Growth,
Metabolism, and Transcription

Nagender Ledala,a Bo Zhang,b Javier Seravalli,c Robert Powers,b Greg A. Somervillea

School of Veterinary Medicine and Biomedical Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USAa; Department of Chemistry, University of Nebraska—
Lincoln, Lincoln, Nebraska, USAb; Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, USAc

Staphylococcus aureus is a prominent nosocomial pathogen and a major cause of biomaterial-associated infections. The success
of S. aureus as a pathogen is due in part to its ability to adapt to stressful environments. As an example, the transition from re-
siding in the nares to residing in the blood or deeper tissues is accompanied by changes in the availability of nutrients and ele-
ments such as oxygen and iron. As such, nutrients, oxygen, and iron are important determinants of virulence factor synthesis in
S. aureus. In addition to influencing virulence factor synthesis, oxygen and iron are critical cofactors in enzymatic and electron
transfer reactions; thus, a change in iron or oxygen availability alters the bacterial metabolome. Changes in metabolism create
intracellular signals that alter the activity of metabolite-responsive regulators such as CodY, RpiRc, and CcpA. To assess the ex-
tent of metabolomic changes associated with oxygen and iron limitation, S. aureus cells were cultivated in iron-limited medium
and/or with decreasing aeration, and the metabolomes were examined by nuclear magnetic resonance (NMR) spectroscopy. As
expected, oxygen and iron limitation dramatically decreased tricarboxylic acid (TCA) cycle activity, creating a metabolic block
and significantly altering the metabolome. These changes were most prominent during post-exponential-phase growth, when
TCA cycle activity was maximal. Importantly, many of the effects of iron limitation were obscured by aeration limitation. Aera-
tion limitation not only obscured the metabolic effects of iron limitation but also overrode the transcription of iron-regulated
genes. Finally, in contrast to previous speculation, we confirmed that acidification of the culture medium occurs independent of
the availability of iron.

Staphylococcus aureus is a versatile pathogen capable of infecting
almost any niche within a human or animal host. As with most

bacterial pathogens, successful pathogenesis requires that S. au-
reus gain entry into a host (e.g., through a breach in the skin),
adhere to a suitable surface, avoid being killed by the host’s im-
mune system, acquire nutrients, and proliferate. Notably, every
step in this pathogenic process involves metabolic changes and/or
metabolic regulation. Entry into a host is an environmental
change that dramatically alters the availability of nutrients and
cofactors. Similarly, the transition from synthesizing adhesins to
producing tissue-damaging secreted virulence determinants is
preceded by changes in the bacterial nutritional status (1). To
avoid being killed by the host’s immune system, S. aureus alters its
metabolism to limit damage by oxidative and nitrosative stress
(2). The act of acquiring nutrients is regulated by metabolite-
responsive regulators that respond to changes in the bacterial met-
abolic status (3). Finally, proliferation is a carbon- and energy-
intensive undertaking. In short, the success of S. aureus as a
pathogen depends on its ability to meet the rapidly changing nu-
tritional and energy requirements necessary for survival and pro-
liferation within a host. The ability to meet the changing nutri-
tional and energy requirements is complicated by the host, which
limits access to enzymatic cofactors such as oxygen and iron by
sequestering these cofactors in host proteins and molecules (e.g.,
hemoglobin, heme, and transferrin). The limited availability of
these cofactors creates metabolic blocks that hinder virulence fac-
tor synthesis (4, 5), which leaves S. aureus vulnerable to the host’s
immune system.

The potential consequences of a metabolic block(s) (i.e., de-
creased fecundity and fitness and/or death) create selective pres-
sure to maintain a functional metabolic state. Over time, this
selective pressure has led to the evolution/acquisition of metabo-

lite-responsive regulators (e.g., CodY, CcpA, and RpiRc) that
maintain metabolic homeostasis when nutritional and environ-
mental conditions are favorable and that facilitate metabolic ad-
aptations when nutritional and environmental conditions change
(6–8). Specifically, CodY responds to changes in branched-chain
amino acids and GTP concentrations (9, 10), while CcpA indi-
rectly responds to glucose-6-phosphate and fructose-1,6-bis-
phosphate (11). While the RpiR regulators all have sugar isomer-
ase binding domains, the metabolites that modulate their activi-
ties have yet to be determined (8). These metabolite-responsive
regulators, i.e., CodY, CcpA, and RpiRc, coordinate both viru-
lence determinant biosynthesis and metabolism in staphylococci
(8, 9, 12). In general, the activity of metabolite-responsive regula-
tors is controlled by intracellular concentrations of numerous
compounds, such as biosynthetic intermediates (13), amino acids
(14), nucleic acids (15), and cofactors (e.g., iron) (16). In Staphy-
lococcus epidermidis, the intracellular concentrations of metabo-
lites can be altered by environmental stressors such as antibiotics,
ethanol, metal ion limitation, or nutrient depletion (3, 17, 18).
This creates a mechanism by which extracellular stress can be
transduced into intracellular metabolic signals that elicit regula-
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tory changes via metabolite-responsive regulators. While the
transduction of external factors into internal metabolic signals has
been demonstrated in S. epidermidis, it has not been shown in S.
aureus.

Two important enzymatic cofactors that influence S. aureus
fitness and that are controlled by the host are oxygen and iron.
Numerous studies have shown that oxygen and iron availability
can influence growth, antibiotic tolerance, and the synthesis of
virulence factors (19–23); however, little regard has been given to
the metabolic changes that accompany iron and oxygen limitation
(24–26). Where the metabolic effects of iron or oxygen limitation
have been examined, those studies addressed only the metabolic
effects of a single stress and in a single growth phase/state. The
analysis of a single growth phase/state overlooks the fact that
staphylococci have two very distinct metabolic states that correlate
with the exponential and post-exponential growth phases (27).
Because pathogenic bacteria rarely encounter a single stress, we
chose to examine the effect of combined stresses of iron and oxy-
gen limitation on exponential- and post-exponential-phase
metabolomes. In addition, we also assessed the contributions of
single stresses (i.e., iron or oxygen limitation) to the overall effects
of combined stresses (i.e., iron and oxygen limitation). Finally, by
analyzing the metabolic effects of single stresses, we can identify
common metabolic signals, similar to what was done with S. epi-
dermidis (17, 18). In the current study, the effects of oxygen and
iron limitation on the metabolome of S. aureus strain SA564 were
examined by using nuclear magnetic resonance (NMR) metabo-
lomics. In addition, a select set of genes was examined for tran-
scriptional changes that might be associated with the altered
growth conditions.

MATERIALS AND METHODS
Bacterial strains, media, and cultivation conditions. S. aureus strain
SA564 was grown in tryptic soy broth (TSB; BD Biosciences) or on tryptic
soy agar (TSA). For iron limitation cultivation conditions, deferrated TSB
(DTSB) medium was used (17). In this study, iron-limited medium was
preferred over “iron-free” medium because iron-free medium requires
the addition of adulterants such as deferoxamine mesylate. These adulter-
ants are added to chelate iron; however, they also chelate other cations
(28), which makes comparisons between cultivation conditions imprac-
tical because more than one variable would be changed. To prevent py-
rolysis of labile metabolites, DTSB and TSB were prepared by filter steril-
ization. For iron-limiting conditions, bacterial cultures were grown
overnight in 10 ml of DTSB, harvested by centrifugation at 3,795 � g,
washed once in 10 ml of DTSB, and suspended in fresh DTSB. This culture
was used to inoculate the starter cultures at a 1:100 dilution, and the
starter cultures were cultivated in 100 ml of DTSB or TSB for 2 h. After 2
h of growth, these cultures were used to inoculate the primary cultures to
an optical density at 600 nm (OD600) of 0.06. Each primary culture was
cultivated in prewarmed DTSB or TSB at defined flask-to-medium ratios.
All cultures were grown at 37°C with constant aeration (225 rpm) and
growth (OD600), and pHs were measured at hourly intervals for 12 h. For
the purpose of changing culture aeration during growth, flask-to-medium
ratios (vol/vol) of 10:8, 10:4, 10:2.5, and 10:1 were used. This approach
takes advantage of the poor coefficient of diffusion of oxygen into water to
alter the amount of oxygen available to the bacteria (29).

Sample preparation for NMR metabolomic analysis. Bacterial cul-
tures were harvested during the exponential (2 h) and post-exponential (6
h) growth phases. For one-dimensional (1D) 1H NMR experiments, eight
biological replicates (10 OD600 units each) were harvested for each culti-
vation condition and growth phase. For two-dimensional (2D) 1H-13C
heteronuclear single quantum coherence (HSQC) experiments, four bio-
logical replicates (20 OD600 units each) were harvested for each cultiva-

tion condition and growth phase. Bacteria were harvested by using a ster-
ile 0.45-�m Microfil V filtration system (EMD Millipore Corporation)
that had been prewashed with 5 ml of sterile phosphate-buffered saline
(PBS) (pH 7.4). Following filtration, bacteria were washed twice with 5 ml
of ice-cold PBS, and each membrane was transferred into a 50-ml conical
tube and quenched in liquid nitrogen. After quenching, the conical tubes
were placed in ice, and bacteria were collected from the filter by using
ice-cold 20 mM phosphate buffer (1 ml). The bacterial suspensions were
normalized to equal OD600 units (10 for 1D NMR and 20 for 2D NMR) in
a 1-ml total volume, transferred into lysing matrix B tubes, and lysed twice
(speed 6 for 40 s) by using a FastPrep FP120 instrument (MP Biomedi-
cals). The samples were rested on ice for 5 min between lysings. To remove
cell debris and glass beads, samples were centrifuged at 17,000 � g for 2
min at �9°C, and 700 �l of the supernatant from each tube was trans-
ferred into a new 2-ml microcentrifuge tube (precooled to �20°C). One
milliliter of ice-cold phosphate buffer was added to the residual sample in
the lysing matrix B tubes, mixed, and centrifuged. After the second cen-
trifugation, 900 �l of the supernatant from each tube was pooled with the
samples from the first centrifugation. Of the 1.6-ml volume for each sam-
ple, 100 �l was removed, and the protein concentration was determined
by using a modified Lowry assay kit (Thermo Fisher Scientific). The re-
maining 1.5 ml of each sample was lyophilized, and 600 �l of D2O was
added prior to analysis. A total of 50 �M 3-(trimethylsilyl)propionic acid-
2,2,3,3– d4 (TMSP-d4) or 500 �M TMSP-d4 (Sigma-Aldrich) was added
to each sample as the internal standard for 1D 1H NMR or 2D 1H-13C
HSQC experiments, respectively.

Data collection. 1D data collection was performed as described pre-
viously (30), while 2D time zero extrapolated 1H-13C HSQC (HSQC0)
NMR spectra were processed as described previously (31). For each sam-
ple, a total of 1,024 data points with a spectrum width of 10.00 ppm in the
1H dimension and a total of 64 data points with a spectrum width of
140.00 ppm in the 13C dimension were collected. A total of 16 dummy
scans and 64 scans with a receiver gain of 9,195.2 and a relaxation delay of
1.5 s were applied for each sample.

Data analysis. 1D 1H NMR spectra were processed as described pre-
viously (18). 2D 1H-13C HSQC spectra were processed by using the
NMRPipe software package (32). Peak picking and peak matching were
done by using NMRViewJ version 8 (33). A table of peaks along with the
respective intensities were recorded, and the concentrations of metabo-
lites were calculated by using a standard curve generated by using nine
metabolites with known concentrations [D-glucose-13C6, D-fructose-13C6,
glycine-13C2, DL-alanine-3-13C, sodium pyruvate-13C3, succinic acid-
13C4, sodium acetate-13C2, 2-keto-3-(methyl-13C)-butyric acid-4-13C, so-
dium salt, and 2-ketobutyric acid-4-13C sodium salt hydrate (Sigma-Al-
drich)] (31). A Student t test was used to determine the statistical
significance (P � 0.05) of metabolite concentration changes.

The principal component analysis (PCA) and orthogonal projections
to latent structures-discriminant analysis (OPLS-DA) score plots and the
shared and unique structure (SUS) plots were generated by using the
SIMCA 12.0� statistical package (Umetrics). The OPLS-DA models were
validated by using a modified leave-one-out method (34, 35) and analysis
of variance of cross-validated residuals (CV-ANOVA) (36). The metabo-
lomics tree diagrams (dendrograms) and the ellipses corresponding to the
95% confidence limits from a normal distribution for each cluster within
the PCA score plots were generated by using our PCA/PLS-DA utilities
(http://bionmr.unl.edu/pca-utils.php) (37, 38).

Data interpretation. The peaks were assigned to metabolites by using
chemical shift references from the Human Metabolomics Database
(HMDB) (39), the Platform for RIKEN Metabolomics (PRIMe) (40), the
Biological Magnetic Resonance Data Bank (BMRB) (41), and Chenomx
NMR Suite 7.6 software (Chenomx, Inc., Edmonton, Canada). Heat maps
were generated in R with a gplots package (42).

ICP-MS analysis of DTSB. Cultivation of S. aureus strain SA564 was
performed as described above. For the determination of iron concentra-
tions in the culture supernatants, 1 ml of each culture was harvested dur-
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ing the exponential (2 h) or post-exponential (6 h) growth phase by cen-
trifugation at 3,795 � g for 5 min at room temperature. To remove any
residual bacteria, samples were passed through Nalgene 0.2-�m poly-
ethersulfone membrane syringe filters (Thermo Fisher Scientific). All
samples were diluted 1:20 with a solution containing 52.6 ppb 71Ga in
0.1% HNO3, which resulted in a 71Ga concentration of 50 ppb, which was
used as an internal standard. Inductively coupled plasma mass spectrom-
etry (ICP-MS) analyses were performed at the University of Nebraska—
Lincoln Spectroscopy Core Facility by using an Agilent Technologies
ICP-MS 7500cs instrument with an ESI SC-4 high-throughput autosam-
pler (Elemental Scientific, Inc.). The concentration of metals was calcu-
lated by using ChemStation for ICP software with a calibration curve for
18 elements from serial dilutions of a standard stock from Inorganic Ven-
tures. The instrument was operated with an octopole collision reaction
cell filled with He at a flow rate of 5.0 ml/min and the following Ar plasma
conditions: plasma power of 1,500 W, plasma gas at 17 liters/min, auxil-
iary gas at 1 liter/min, sample gas at 0.9 to 1.1 liters/min, makeup gas at 0.1
to 0.2 liters/min, and a sample flow rate of 0.1 ml/min. For each sample,
three replicates from three independent cultures were analyzed. Statistical
significance was determined by one-way ANOVA using SigmaPlot 11.2
software (Systat Software, Inc.).

Aconitase activity assay. Aconitase enzymatic activity was measured
as described previously (17). Protein concentrations were determined by
using a modified Lowry protein assay kit (Thermo Fisher Scientific).

Real-time quantitative RT-PCR (qRT-PCR). Total RNA was isolated
from 10 OD600 units of bacteria harvested in the exponential (2 h) and
post-exponential (6 h) growth phases by using the FastRNA Pro Blue kit
(MP Biomedical) and the RNeasy kit (Qiagen), as described previously
(43). For mRNA analysis, a two-step real-time reverse transcription-PCR
(RT-PCR) was performed with cDNA synthesis from total RNA followed
by PCR. Ten micrograms of Turbo DNase (Bio-Rad)-treated total RNA
for each sample was used to prepare cDNA by a reverse transcriptase
reaction using iScript master mix (Bio-Rad) according to the manufac-
turer’s protocol. The reaction mixtures for real-time PCR contained 10 �l
of 2� SsoAdvanced SybrGreen Supermix (Bio-Rad), 7 pmol of each
primer (Table 1), and 5 �l of 10-fold-diluted cDNA, in a total volume of
20 �l. As an internal reference, primers for 16S rRNA were used in the
same reaction volume containing 1,000-fold-diluted cDNA as a template.
The real-time PCR cycling conditions were an initial denaturation step at
94°C for 3 min, followed by 40 cycles at 94°C for 15 s, 60°C for 25 s, and
72°C for 20 s. Relative transcript levels were determined by the compara-
tive threshold (��CT) method (Bio-Rad). Experimental setup and data
analysis were carried out by using a CFX96 real-time PCR detection sys-
tem and Bio-Rad CFX Manager software version 3.0 (Bio-Rad).

Determination of acetate, glucose, and lactate levels in medium su-
pernatant. Metabolite concentrations in the culture media were deter-
mined by using kits purchased from R-biopharm, Inc.

RESULTS
Growth of S. aureus under conditions of iron and oxygen limi-
tation. The transition from an oxygen- and iron-replete environ-
ment (e.g., the skin and the nares) to an oxygen- and iron-limited
environment (e.g., blood) constrains metabolic possibilities be-
cause many enzymatic reactions require iron and oxygen as cofac-
tors. These constraints have fitness consequences, specifically the
ability to place progeny into the next generation (44–46). To assess
the extent of the fitness cost of iron and oxygen limitation on
growth yield, S. aureus strain SA564 was cultivated under iron-
and/or oxygen-limited conditions, and growth was monitored
(Fig. 1A and B). As expected, the growth rates were largely inde-
pendent of iron- and/or oxygen-limited conditions. Consistent
with the Pasteur effect (47), oxygen-limited growth conditions
dramatically decreased biomass generation, whereas iron limita-
tion did not significantly alter the biomass generated per mmol of
glucose (Fig. 1C). Importantly, these data demonstrate the ease
with which a batch culture can become microaerobic/anaerobic at
an atmospheric oxygen concentration of 20.946% (29) and with
vigorous agitation at 225 rpm. This transition to a microaerobic/
anaerobic status is due to two factors: first, the poor diffusion
coefficient for oxygen into water, and second, the relatively small
surface area that is exposed to atmospheric oxygen as the volume
of medium in a culture flask is increased. In contrast to oxygen
limitation, iron limitation decreased the growth yield of strain
SA564 by only �25% relative to growth in iron-replete culture
medium (Fig. 1A). In S. aureus, the demand for iron is greatest in
the post-exponential growth phase (5), when the tricarboxylic
acid (TCA) cycle and the electron transport chain are most active;
hence, the small amount of iron in the culture medium (Fig. 1B) is
sufficient to maintain the exponential growth rate but not the
growth yield (Fig. 1A).

S. aureus is a facultative anaerobe and is well adapted for
growth in low-oxygen environments when nutrients are abun-
dant. As nutrients become scarce, S. aureus catabolizes incom-
pletely oxidized carbon compounds (e.g., lactic acid or acetic acid)
that accumulate in the medium during the exponential growth
phase (27); hence, the pH of the culture medium will alkalinize. As
expected, strain SA564 grown under oxygen- and iron-replete
conditions began to alkalinize the culture medium during the
transition from the exponential growth phase to the post-expo-
nential growth phase (Fig. 1D). Iron-limited growth slightly de-
layed and decreased the alkalinization of the culture medium,
while oxygen limitation severely restricted alkalinization of the
medium.

In contrast to previous speculation, iron limitation does not
lead to the acidification of the culture medium (26). As stated
above, the acidification of the culture medium is the result of the
inefficient use of carbohydrates during growth under nutrient-
rich conditions, which occurs irrespective of the availability of
iron or oxygen (Fig. 1C to F). The decreased ability of oxygen-
limited cultures and, to a lesser extent, iron-limited cultures to
alkalinize the medium was most likely due to a diminished capac-
ity to catabolize organic acids and amino acids. To address this
possibility, the concentrations of acetic acid and lactic acid in the
culture media were measured throughout the growth cycle (Fig.
1E and F). During microaerobic/anaerobic growth (i.e., when the
flask-to-medium ratio is 10:8), pyruvate is largely reduced to lactic
acid (48, 49) (Fig. 1F). In contrast, when the flask-to-medium

TABLE 1 Real-time RT-PCR primers used in this study

Primer Mu50 ORFa Sequence

16SrRNA RTF SAVrRNA16 CGTGCTACAATGGACAATACAAA
16SrRNA RTF SAVrRNA16 ATCTACGATTACTAGCGATTCCA
citB RTF SAV1350 GCGCAACAGCAACTGATTTA
citB RTR SAV1350 GTTGTACACCTGGACCAAAGA
feoB RTF SAV2584 GGAATGACAGCAACACAGTTAC
feoB RTR SAV2584 GTGCTGACTGACCACCTAAA
sbnA RTF SAV0116 TTCTGTAGGGCAAACACCTATG
sbnA RTR SAV0116 GCTGCCTCCAGGATTCATATAC
sstC RTF SAV0735 GACCTAATGGTGCGGGTAAG
sstC RTR SAV0735 CAGACATGAGCTGTCCATCTATT
a Gene designations based on the Staphylococcus aureus strain Mu50 genomic DNA
sequence (68). ORF, open reading frame.
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FIG 1 Cultivation of S. aureus strain SA564 under aeration- and/or iron-limiting conditions. (A) Growth curves. (B) Iron concentrations of uninoculated media
and cultivation media harvested in the exponential and post-exponential growth phases. (C) Glucose utilization as a function of growth. (D) pH profiles. (E)
Acetate accumulation and depletion in culture media. (F) Lactate accumulation and depletion in culture media. Data are representative of experiments
performed at least twice. The data in panel B are presented as the means of 3 independent experiments done in triplicate, with error bars representing standard
deviations. TSB, tryptic soy broth; DTSB, deferrated TSB. Flask-to-medium ratios were 10:1 (aerobic) and 10:8 (microaerobic/anaerobic).
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ratio was altered to 10:1, pyruvate was oxidized to acetyl coenzyme
A (acetyl-CoA) and CO2 by the pyruvate dehydrogenase complex
(50) (Fig. 1E). In the exponential growth phase, acetyl-CoA is used
to generate the small phospho-donor acetyl-phosphate, which
serves as a substrate for acetate kinase in substrate-level phosphor-
ylation to generate ATP and acetic acid (Fig. 1E). During the post-
exponential growth phase, this acetic acid can be used for the
synthesis of acetyl-CoA to fuel the TCA cycle. When iron was
limiting, the catabolism of acetate and the biomass generated from
that catabolism were reduced (Fig. 1E). As expected, oxygen lim-
itation inhibited the catabolism of acetate; however, it had only a
slight effect on lactate catabolism (Fig. 1E and F). The latter data
were surprising because acetate catabolism through the TCA cycle
(27) and lactate catabolism through L-lactate-quinone oxi-
doreductase (Lqo) (51) both require electron acceptors to balance
the redox status.

Iron and oxygen limitations create metabolic blocks. Staph-
ylococci lack a glyoxylate shunt and catabolize acetate through the
TCA cycle (27, 52); hence, a diminished ability to catabolize ace-
tate (Fig. 1E) suggests that the TCA cycle had reduced activity
under iron- and oxygen-limited growth conditions. To test this
suggestion, the TCA cycle enzyme aconitase was assayed for
activity under iron- and oxygen-limited growth conditions
(Fig. 2A and B). Since aconitase is an iron-sulfur cluster-con-
taining enzyme, iron limitation would be expected to decrease
its activity. As expected, growth of S. aureus strain SA564 in
iron-limited culture medium dramatically decreased post-expo-
nential-growth-phase aconitase activity (Fig. 2A). As stated above,
one function of iron is to facilitate electron transfer reactions, a
process that requires an electron donor (e.g., NADH and
NADPH) and an electron acceptor (e.g., oxygen). In the presence
of iron but in the absence of an electron acceptor, reduced di-
nucleotides will accumulate, which should inhibit enzyme activity
through a feedback mechanism. To test this hypothesis, we limited
oxygen availability by changing the flask-to-medium ratio and
assayed for aconitase activity (Fig. 2B) (29). As the medium vol-
ume was increased, the surface area available for oxygen diffusion
decreased, resulting in a post-exponential-growth-phase decrease
in aconitase activity. While aconitase is an excellent metabolic
sentinel, iron and oxygen limitation will affect the activity of many
enzymes in bacteria.

Iron and/or oxygen limitation alters the S. aureus metabo-
lome. Iron- and oxygen-limited growth created a metabolic block
at aconitase in the TCA cycle (Fig. 2A and B); however, these
stresses also inhibit the activities of many different metabolic en-
zymes and pathways. It is impractical to assay for all enzymes that
might be affected by iron- and/or oxygen-limited growth, so met-
abolic changes were assessed by using NMR metabolomics (Fig.
3). As expected, principal component analysis (PCA) of exponen-
tial-growth-phase metabolomes revealed that they were mini-
mally affected by iron limitation, whereas oxygen limitation
caused modest changes in the metabolomes (Fig. 3A and C). The
heterogeneity of the exponential-growth-phase metabolomes is
easily demonstrated in a PCA shared and unique structure (SUS)
plot, where very few shared or inversely shared metabolites were
identified (Fig. 3E). In contrast to the exponential growth phase,
iron limitation significantly altered the post-exponential-growth-
phase metabolome PCA score plot (Fig. 3B, D, and F). Similarly,
oxygen limitation had a very pronounced effect on the metabo-
lome. Interestingly, strain SA564 metabolomes from cultures

grown in iron-limited medium and with reduced aeration clus-
tered more closely to the aeration-limited cultures than to the
iron-limited cultures in a PCA score plot (Fig. 3B). In other words,
the effect of iron limitation was masked by growth under condi-
tions that limit the diffusion of oxygen into the culture medium.
This can also be easily seen in the metabolic heat map, where the
metabolic changes in post-exponential-growth-phase (6 h) cul-
tures grown under conditions of aeration limitation are very sim-
ilar, irrespective of iron limitation (Fig. 4). Taken together, these
data demonstrate that the significance of iron limitation in S. au-
reus metabolism is determined largely by the growth phase and the
availability of oxygen.

To identify metabolites that contributed to the separation of
the sample clusters, OPLS-DA was employed (see Fig. S1 and S2 in

FIG 2 Temporal and stress-related aconitase activity differences in S. au-
reus strain SA564 in the exponential (2 h) and post-exponential (6 h) growth
phases. (A) Aconitase activity during iron-limited growth. (B) Aconitase ac-
tivity with decreasing aeration flask-to-medium ratios of 10:8, 10:5, 10:2.5, and
10:1. (C) Addition of iron to DTSB medium restores aconitase activity.
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the supplemental material). In contrast to PCA, OPLS-DA is a
supervised classification analysis where all the variation leading to
separation between the two groups is aligned in the x axis (Pp) and
all other variation is aligned in the y axis (Po) (53). To achieve
separation based on aeration in an OPLS-DA scoring plot, clusters
of TSB at a 10:1 dilution and DTSB at 10:1 were assigned a value of
0, and clusters of TSB at 10:8 and DTSB at 10:8 were assigned a
value of 1 (see Fig. S1 in the supplemental material). This model
resulted in one predictive and two orthogonal (1 � 2) compo-
nents with a cross-validated predictive ability of Q2(Y) 	 0.883,
which indicated that the data fit well within the model. The model
was validated with CV-ANOVA, producing a statistically signifi-
cant P value of 8.27 � 10�12. Based on this model, the perturba-

tions caused by iron limitation were largely suppressed when aer-
ation was also limiting. As expected, the majority of the
metabolic differences between aerobic growth and oxygen-lim-
ited growth include fermentation products, metabolites of
pyruvate homeostasis, and amino acids (see Fig. S1 in the sup-
plemental material). To achieve separation based on iron avail-
ability in an OPLS-DA score plot, clusters of TSB at 10:1 and
TSB at 10:8 were assigned a value of 0, and clusters of DTSB at
10:1 and DTSB at 10:8, were assigned a value of 1 (see Fig. S2 in
the supplemental material). This model also produced an ex-
cellent fit that resulted in one predictive and three orthogonal
(1 � 3) components with a cross-validated predictive ability of
Q2(Y) 	 0.969 (see Fig. S2 in the supplemental material). This

FIG 3 Exponential- and post-exponential-growth-phase metabolomic changes associated with iron- and/or oxygen-limited cultivation. (A and B) PCA
score plots of the exponential (A) and post-exponential (B) growth phases of iron- and/or oxygen-limited cultures of S. aureus strain SA564. The ellipses
in the PCA score plots correspond to the 95% confidence limits from a normal distribution for each cluster. (C and D) Metabolic tree generated by using the PCA
score plot data demonstrating the relationship of iron- and/or oxygen-limited cultures in the exponential growth phase (C) and post-exponential growth phase
(D). The statistical significance of each node in the metabolic tree is indicated by a P value. (E and F) Shared and unique structure (SUS) plots generated from the
PCA model of the exponential (E) and post-exponential (F) growth phases comparing the classes of DTSB at a 10:1 ratio and TSB at 10:8 to a common reference
(TSB, 10:1). The red boxes highlight the chemical shift bins with intensity changes that are shared by both models. The blue boxes highlight the chemical shift bins
with intensity changes that are negatively shared by both models (relative intensity changes are in the opposite direction). The brown boxes highlight the chemical
shift bins with intensity changes unique to model 1 (TSB at 10:8 versus TSB at 10:1). The green boxes highlight the chemical shift bins with intensity changes
unique to model 2 (DTSB at 10:1 versus TSB at 10:1). In the post-exponential growth phase, 73 bins were found to be present in the shared/inversely shared region
of the plot, compared to 29 bins found in the same regions in the exponential phase. The flask-to-medium ratios were 10:1 (aerobic) and 10:8
(microaerobic/anaerobic).
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model was also validated by CV-ANOVA, producing a statisti-
cally significant P value of 1.33 � 10�17. In this model, the four
metabolomic clusters are largely separated from each other,
suggesting that oxygen limitation as a stressor cannot be over-
whelmed by iron limitation. Altogether, the clustering of
metabolomes in both models suggested that the effects of iron
limitation were suppressed by oxygen limitation.

Iron-regulated gene transcription varies with oxygen avail-
ability. If oxygen limitation can mask metabolic changes associ-
ated with iron limitation, it raises the question as to whether iron-
dependent transcriptional changes can be obscured by oxygen
limitation. To address this question, bacteria were grown under
iron- and/or oxygen-limited culture conditions, and transcrip-
tional changes in genes regulated by iron were assessed by using
qRT-PCR (Fig. 5). As a positive control, transcription of the aco-
nitase gene acnA (also known as citB) was assessed and compared
to the enzyme activity data (Fig. 2A). Overall, the acnA mRNA
levels correlated well (r 	 0.83) with the enzymatic activity data.
Similar to the metabolomics data, oxygen limitation was able to
mask the effect of iron-limited growth on some genes. Specifically,
oxygen limitation dramatically decreased the exponential-
growth-phase (2 h) and post-exponential-growth-phase (6 h)
transcription of the ferrous iron transporter feoB and the first gene
(i.e., sbnA) of the staphyloferrin B biosynthetic locus (54). This
reduction in transcript levels occurred despite the fact that the
culture medium was iron limited (Fig. 1B). In contrast to feoB and
sbnA, some genes (e.g., sstC, which codes for an ATP binding
cassette in a siderophore transporter [55]) had only minimal
changes in mRNA levels under iron- and/or oxygen-limited

growth conditions. These data demonstrate that iron-dependent
regulation of transcription in S. aureus can be suppressed under
conditions of low oxygen availability. In addition, these data high-
light the necessity of carefully considering, and reporting, bacte-
rial cultivation conditions (29).

DISCUSSION

When cultures of Staphylococcus epidermidis are challenged with
ethanol, antibiotics, iron limitation, or high glucose concentra-
tions, these stresses cause common phenotypic changes; namely,
they favor biofilm formation and/or biosynthesis of polysaccha-
ride intercellular adhesin (56–59). These same stresses cause the
post-exponential-growth-phase metabolomic profiles to resem-
ble that of an S. epidermidis TCA cycle mutant (17, 18). The fact
that divergent environmental challenges produce similar meta-
bolic and phenotypic alterations suggests that common regulatory
changes are occurring to produce the similar phenotypic out-
comes (3). This suggestion was confirmed when it was observed
that an S. epidermidis ccpA mutant failed to respond to metabolic
changes associated with TCA cycle stress (7). Similar to S. epider-
midis, we hypothesize that divergent environmental stresses cause
common metabolic changes in S. aureus that alter the activity of
metabolite-responsive regulators. The first step in identifying me-
tabolite-responsive regulators is to define the common metabolic
changes associated with environmental stresses (Fig. 4 and 6). The
metabolic effects of many of the environmental stresses that S.
aureus encounters have been studied in detail but with little, or no,
deference to the temporal nature and the interconnectedness of
metabolic changes (26, 60–62). The intent of the current study was

FIG 4 Heat maps showing the changes in metabolites as a function of cultivation conditions and growth phase. Culture media were TSB (tryptic soy broth) and
DTSB (deferrated TSB). Flask-to-medium ratios were 10:1 (aerobic) and 10:8 (microaerobic/anaerobic). Statistical significance (P � 0.05) is indicated by **
(both oxygen and iron limitation), * (only oxygen limitation), and � (only iron limitation).
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to identify common metabolic changes associated with iron
and/or oxygen limitation that could alter the activity of metabo-
lite-responsive regulators; the identification of these regulators is
an active area of research in our laboratories. As a side benefit, this
study reinforces the necessity of carefully considering and report-
ing cultivation conditions (63).

While the most prominent metabolomic differences are in the
post-exponential growth phase, the exponential-growth-phase
changes are greatest under conditions of combined iron- and ox-
ygen-limited growth (Fig. 3, 4, and 6). For example, both iron and
oxygen limitation redirect carbon into amino sugar biosynthesis
(e.g., UDP-N-acetylglucosamine, glucosamine-6-phosphate, and
acetyl-glucosamine). This redirection of carbon appears to be at
the expense of the exponential-growth-phase basal-level TCA cy-
cle carbon flow because the concentration of succinate is de-
creased relative to that under iron- and oxygen-replete growth
conditions (Fig. 4 and 6). We observed a similar redirection of
carbon into amino sugar biosynthesis in S. epidermidis, where

TCA cycle stress induces the formation of an N-acetylglucosamine
polymer known as polysaccharide intercellular adhesin (43, 64).
Together, these data suggest that TCA cycle-dependent regulation
of polysaccharide intercellular adhesin synthesis is common to the
staphylococci and not just S. epidermidis. While amino sugar bio-
synthesis was increased during oxygen- and iron-limited growth,
S. aureus acidified the culture medium irrespective of iron or ox-
ygen availability (Fig. 1D). The latter observation is consistent
with previous observations of staphylococcal carbohydrate catab-
olism (27, 65, 66) yet is inconsistent with more recent speculation
(26).

As stated above, the metabolic perturbations during iron-
and/or oxygen-limited cultivation are greatest in the post-expo-
nential growth phase (Fig. 3A and B). These differences are pri-
marily a consequence of the following three factors: (i) the TCA
cycle is catabolite repressed during the exponential growth phase
(27), (ii) derepression of the TCA cycle creates a large demand for
iron in the post-exponential growth phase (Fig. 1F) (5), and (iii)

FIG 5 Oxygen limitation influences transcription of iron-regulated genes in the exponential (2 h) and post-exponential (6 h) growth phases. Relative mRNA
levels for acnA, sbnA, feoB, and sstC were determined by qRT-PCR. The data are the means and standard errors of the means of at least 2 biological replicates, each
determined in duplicate. Culture media were TSB (tryptic soy broth) and DTSB (deferrated TSB). Flask-to-medium ratios were 10:1 (aerobic) and 10:8
(microaerobic/anaerobic).
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TCA cycle activity generates reducing potential, which creates a
need for an electron acceptor, most commonly oxygen. Once glu-
cose is depleted from the culture medium during growth under
iron- and oxygen-replete conditions (Fig. 1B), catabolite repres-
sion of the TCA cycle genes is relieved, and enzymatic activities
increase (Fig. 2A and B and 5). In contrast, when S. aureus cells are
cultivated under iron- and/or oxygen-limited conditions, levels of
transcription of TCA cycle genes and enzymatic activity remain
low despite the depletion of glucose (Fig. 1, 2A, and 5). Although
oxygen and iron are both important for post-exponential-phase
growth (Fig. 1A), the availability of oxygen is the major determi-
nant of the metabolome (Fig. 3B and 4). The absence of oxygen
prevents carbon flow through the TCA cycle, decreasing the con-
centrations of biosynthetic intermediates and the amino acids de-
rived from these intermediates (Fig. 2A and B and 3); specifically,
levels of citric acid, succinate, 
-ketoglutarate, glutamate, glu-
tamine, aspartate, and asparagine are decreased (Fig. 4 and 6). In
other words, the decreased carbon flow through the TCA cycle
results in multiple amino acid auxotrophies. In addition, the de-
creased carbon flow through the TCA cycle likely decreased the
availability of oxaloacetate/phosphoenolpyruvate (PEP) for glu-

coneogenesis, which is essential for growth when glucose has been
depleted from the medium. Combined, the amino acid auxotro-
phies, a lack of gluconeogenesis, and the inhibition of the electron
transport chain (i.e., due to the lack of an electron acceptor) result
in a decreased growth yield (Fig. 1A).

Inhibition of electron transport forces bacteria to use alterna-
tive pathways to oxidize dinucleotides; however, these alternatives
are strongly dependent upon carbon availability. When carbon
sources that can generate pyruvate (e.g., glucose and serine) are
abundant in the medium, bacteria can maintain redox balance by
using enzymes like lactate dehydrogenase, which leads to the ac-
cumulation of lactic acid in the medium (Fig. 1F and 4). In addi-
tion to lactate dehydrogenase, S. aureus can oxidize dinucleotides
through alanine dehydrogenase, a result consistent with the post-
exponential-growth-phase accumulation of D-alanyl–D-alanine
and alanine. These data suggest that as readily catabolizable car-
bon sources are being depleted from the medium, several path-
ways are used to oxidize dinucleotides, resulting in an accumula-
tion of NAD� (Fig. 4). While oxidation of dinucleotides is
important, it is only one part of redox homeostasis, the other
being reduction.

FIG 6 Schematic representation of the central metabolic changes associated with iron or oxygen limitation. The black and blue arrows indicate
exponential/post-exponential-growth-phase (EXP/PE) increases or decreases in intracellular concentrations of metabolites in strain SA564 cultivated in
TSB with a 10:8 flask-to-medium ratio relative to a control culture grown in TSB with a flask-to-medium ratio of 10:1. The red and orange arrows indicate
exponential/post-exponential-growth-phase increases or decreases in intracellular concentrations of metabolites in strain SA564 grown in DTSB with a
flask-to-medium ratio of 10:1 relative to a control culture of S. aureus strain SA564 grown in TSB with a flask-to-medium ratio of 10:1. Statistical significance
at the 95% confidence level (P � 0.05) is denoted by asterisks above the arrows. Glucose-1-P, glucose-1-phosphate; FBP, fructose-1,6-bisphosphate; DHAP,
dihydroxyacetone phosphate; GAP, glyceraldehyde-3-phosphate; 3PG, 3-phosphoglycerate; OAA, oxaloacetate; 2-KG, 
-ketoglutarate.
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When the TCA cycle is inhibited by iron and/or oxygen limi-
tation, the ability to reduce dinucleotides and restore redox bal-
ance is also greatly impaired. This inability to reduce dinucleotides
is reflected in the decreased concentrations of TCA cycle-associ-
ated metabolites and amino acids, namely, aspartate asparagine,
citrate, succinate, 
-ketoglutarate, glutamate, and glutamine. In
addition to the TCA cycle, glycerol-3-phosphate can be used in an
electron transfer reaction to reduce NAD� to NADH and generate
dihydroxyacetone phosphate. This reduction reaction is consis-
tent with the oxygen-limited accumulation of dihydroxyacetone
(the phosphate is labile and can be lost during harvest and sample
preparation to generate the more stable dihydroxyacetone) (Fig.
4). When carbon flow through the TCA cycle and pentose phos-
phate pathway is decreased, the ability to generate reducing po-
tential via the NAD(P)H-dependent glycerol-3-phosphate dehy-
drogenase (Fig. 4) can be important for redox homeostasis and
biosynthesis. That being said, this metabolic rearrangement is in-
sufficient to offset the accumulation of NAD�. In summary, the
necessity of maintaining redox homeostasis explains why the
availability of oxygen (i.e., its function as an electron acceptor)
has a greater influence on the post-exponential-growth-phase
metabolome than does the availability of iron (Fig. 3B). In the
absence of an electron acceptor, iron is not needed for electron
transport; hence, the demand for iron is lower. This also explains
why oxygen availability alters the transcription of genes involved
in iron acquisition (Fig. 5). In essence, decreased oxygen availabil-
ity suppresses the iron-sparing response, a phenomenon similar
to that seen in Saccharomyces cerevisiae (67).
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Supplemental table 1. Summary of metabolite changes a 
1 

Culture conditions TSB, 10:8 DTSB, 10:1 DTSB, 10:8 Metabolite Metabolic Pathway 
Growth phase Exp PE Exp PE Exp PE KEGG ID KEGG ID 
Xanthosine     ↓  C01762 00230, 01065 
Uracil    ↓   C00106 00240,00410,00770 
UDPAcGlcN ↑↑  ↑↑↑  ↑  C00043 00520, 00540,00550 
Succinate  ↓↓↓    ↓↓↓ C00042 00020,00190,00250,00350,00360 ,00630,00650,02020 
Proline  ↑    ↑↑↑ C00148 00330,00970 ,01230,02010 
NAD+ ↑↑ ↑↑↑    ↑↑ C00003 00190 
Lysine  ↑↑↑    ↑ C00047 00300,00310,00780, 00970,01210,01230,02010 
Lactate  ↑↑↑    ↑ C00186 00010,00620,00640 
GPC   ↓ ↓  ↓ C00670 00564,00565 
Glyceraldehyde    ↓  ↓ C00577 00030,00051,00561 
Glutamine  ↓↓↓    ↓↓↓ C00064 00230,00240,00250,00330,00471,00970,01230,02010,02020 
Glutamate  ↓↓↓    ↓↓↓ C00025 00250,00330,00340,00430,00471,00480,00650,00660,00970,01210,

01230,02010,02020 
Glc6P ↑ ↑↑↑ ↑   ↑↑↑ C00352 00250,00520,02060 
Dihydroxyacetone ↑↑ ↑↑↑    ↑↑↑ C00184 00561,00680 
Betaine ↓↓  ↓ ↑↑ ↓↓ ↑↑ C00719 00260,02010 
Aspartate ↑↑ ↓↓↓ ↓ ↓↓   C00049 00250,00260,00270,00300,00330,00340,00410,00770,00970,01210,

01230,02010,02020 
Asparagine ↑↑↑ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ ↓↓↓ C00152 00250,00970,01230 
Alanyl-alanine  ↑↑  ↑↑ ↓ ↑↑↑ C00993 00473,00550 
Alanine ↓ ↑↑↑ ↓↓ ↑↑ ↓↓ ↑↑↑ C00041 00250,00270,00430 ,00473,00970,01230,02010 
Acetyl-phosphate  ↓↓   ↓ ↓↓ C00227 00430,00620,00680 
Acetyl-glucosamine  ↑↑↑  ↑↑   C00140 00520, 01110,02010,02060 
Acetate  ↑↑  ↑↑  ↑↑↑ C00033 00010,00430,00440,00534,00620,00660,00680 
4-Aminobutyrate    ↑↑  ↑↑ C00334 00250,00330,00410,00650 
2-Hydroxyglutarate  ↓↓↓  ↑   C00026 00020,00040,00053,00250,00300,00340,00430,00471,00650,00660,

01210,01230 
a “↑” indicates an increase; “↓” indicates a decrease. One arrow represents a p≤0.05 (Student’s T-test), two arrows represents a p≤0.01, three 2 

arrows represents a p≤0.001.  3 
bMetabolites altered in the exponential (Exp) growth phase in TSB, 10:8, DTSB,10:1 and DTSB10:8 relative to the cultures grown in TSB with 4 

a 10:1 flask-to-medium ratio. 5 
cMetabolites altered in the post-exponential phase (PE) of growth in TSB, 10:8, DTSB,10:1 and DTSB10:8 relative to the cultures grown in 6 

TSB with a 10:1 flask-to-medium ratio.  7 



dKEGG (Kyoto Encyclopedia of Genes and Genomes) database identification number for the metabolite and the associate metabolic pathways. 8 



Supplemental Figure1. 9 

 10 

 11 

Figure S1. (A) OPLS-DA scores plot generated from 1D 1H NMR spectra of iron- and/or 12 

aeration-limited cultures of S. aureus strain SA564 in the exponential (2 h) growth phase. 13 

The ellipses in the OPLS-DA scores plot correspond to the 95% confidence limits from a 14 

normal distribution for each cluster. TSB, 10:1 (▲); DTSB, 10:1 (▲); TSB, 10:8 (▲); 15 

DTSB, 10:8 (▲). (B) Metabolic tree generated using the OPLS-DA data demonstrating 16 

the relationship of iron- and/or oxygen-limited cultures in the exponential growth phase. 17 

(C) S-plot identifies the chemical shift bins that significantly contribute to class 18 

separation in the OPLS-DA scores plot. (D) OPLS-DA loading plot comparing two 19 

aeration conditions 10:1 and 10:8 for S. aureus strain SA564 grown on either TSB or 20 

DTSB media. Negative values indicate a decrease in peak intensity when comparing 10:8 21 

to 10:1, while positive values indicate an increase in peak intensity. The color scale on 22 

the right indicates the relative correlation of the data to the OPLS-DA model and class 23 

separation.24 

 25 
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 29 

Figure S2. (A) OPLS-DA scores plot generated from 1D 1H NMR spectra of iron- and/or 30 

aeration-limited cultures of S. aureus strain SA564 in the post-exponential (6 h) growth 31 

phase. The ellipses in the OPLS-DA scores plot correspond to the 95% confidence limits 32 

from a normal distribution for each cluster. TSB, 10:1 (▲); DTSB, 10:1 (▲); TSB, 10:8 33 

(▲); DTSB, 10:8 (▲). (B) Metabolic tree generated using the OPLS-DA data 34 

demonstrating the relationship of iron- and/or oxygen-limited cultures in the exponential 35 

growth phase. (C) S-plot identifies the chemical shift bins that significantly contribute to 36 

class separation in the OPLS-DA scores plot. (D) OPLS-DA loading plot comparing two 37 

aeration conditions 10:1 and 10:8 for S. aureus strain SA564 grown on either TSB or 38 

DTSB media. Negative values indicate a decrease in peak intensity when comparing 39 

DTSB media to TSB media, while positive values indicate an increase in peak intensity. 40 

The color scale on the right indicates the relative correlation of the data to the OPLS-DA 41 

model and class separation.  42 

 43 
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