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The Viral Etiology of AIDS-Associated Malignancies
Peter C. Angeletti, Luwen Zhang, and Charles Wood
Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska

I. Chapter Overview

The first documented cases of acquired immunodeficiency syndrome (AIDS) were characterized 
by the presence of rare Kaposi’s sarcoma (KS) skin lesions. More than 10 years later, it was discov-
ered that the causative agent of KS was a γ-herpesvirus, human herpesvirus-8 (HHV-8) (KS-associ-
ated herpesvirus, KSHV). It is now abundantly clear that cancers induced by viral agents [such as, 
Epstein-Barr virus (EBV) and human papillomavirus (HPV)] are exacerbated by human immunode-
ficiency virus (HIV) infection and subsequent immune suppression. For example, the incidence of 
and primary central nervous system (CNS) lymphoma (PCNSL) and Hodgkin’s and high grade B-
cell non-Hodgkin’s lymphomas (NHL), nasopharyngeal carcinoma (NPC), anal, penile, oral, and in-
vasive cervical carcinomas are much higher in AIDS patients. Also common in the AIDS-afflicted, 
are hematopoietic cancers, B- and T-cell lymphomas, myelosarcomas, lung cancers, and gastrointes-
tinal tract cancers. The development of highly active antiretroviral therapy (HAART) has proved ef-
fective in inducing regression of PCNSL, NHL, KS, and other cancers caused by viruses, extending 
the life span and quality of life of AIDS patients. However, the general availability of HAART and 
other antiretrovirals in developing countries, where most HIV infections are reported, is still poor. 
Furthermore, several reports indicate that HAART is not effective in reversing HPV-induced cervi-
cal cancers, for unknown reasons. The development of the prophylactic HPV vaccine offers some 
hope that future generations can be protected against cervical and penile cancers. However, in coun-
tries with high rates of cervical cancers, such as in sub-Saharan Africa, the rate of HIV-positivity ap-
proaches 30%, antiretrovirals are scarce, and the HPV vaccine is not available, nor would it be effec-
tive for those already infected with HPVs. Thus, better methods of surveillance and management of 
these malignancies in HIV-positive individuals continues to be a need.

II. Introduction

Since the first report of AIDS over 25 years ago, it was noted that there is a close association between 
HIV infection and the development of a number of cancers (Levine, 2006; Noy, 2006; Pantanowitz 
et al., 2006; Wood and Harrington, 2005). They include KS, Hodgkin’s and high-grade B-cell NHL, 
anal, and invasive cervical carcinomas. In fact, AIDS was recognized in 1981 through an unusual in-
crease in the number of cases of KS found among the young adult male having sex with male (MSM) 
population (Durack, 1981). Since then, increasing numbers of KS as well as other cancers were found 
in this population. Subsequently in 1982, the US Center for Disease Control and Prevention (CDC) 
included two malignancies, KS and PCNSL, as definitions for AIDS (1982). A third AIDS-associated 
malignancy, NHL, was also included as one of the AIDS-defining illnesses in 1987, and a fourth, the 
invasive cervical carcinoma was added in 1992. In addition to these four malignancies commonly 
found in AIDS patients, a number of other cancers have also increased substantially in the HIV-1in-
fected immunosuppressed population. These cancers include multiple myelomas, leukemia, and 
leiomyosarcomas in children, oral cavity cancers, lung cancers, and Hodgkin’s disease (Goedert et 
al., 1998; Grulich et al., 2002). Prior to the era of HAART, it has been estimated that up to 25% of all 
cancers in males under 45 years of age in the United States were associated with HIV and up to 30% 
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of all HIV-infected individuals will develop cancer. Especially with NHL, it has been estimated that 
individuals with immune deficiency have between 10- and 150-fold higher risk in developing NHL 
(Biggar and Rabkin, 1996; Grulich and Vajdic, 2005). Moreover, the management and prognosis of 
these patients were poor, mainly due to the aggressiveness of the tumors on immunosuppression, 
an increase in hematological toxicity due to treatment, and complications due to opportunistic in-
fections (Kaplan et al., 1997). Treatment outcomes were shown to be poor, regardless of the types of 
treatment, with the response rate for AIDS-related lymphomas (ARL) of about 50% and the medium 
survival rate time of between 5 and 8 months (Kaplan et al., 1991; Navarro and Kaplan, 2006).

With the introduction of antiretroviral treatment in the mid-1990s, the spectrum of AIDS-associated 
malignancies and the epidemiology of the disease has been completely changed. There was a sub-
stantial decline in incidence of KS. It has been shown in a Swiss cohort that the standardized inci-
dence rates for KS was 25 for those on HAART versus 239 for those that were not on treatment (Clif-
ford et al., 2005). Similarly, changes in the incidences of ARL were observed for individuals that were 
on HAART. A number of studies have shown a decrease in incidence and mortality in patients with 
ARL (Besson et al., 2001; Kirk et al., 2001; Lee and Hurwitz, 2000; Navarro and Kaplan, 2006). The 
same Swiss cohort study has shown an overall decrease of HNL incidence of about 76% on HAART 
treatment. Similarly, for PCNSL, the impact of HAART is even more dramatic than other systemic 
ARL; a combination of radiotherapy with HAART had led to improvement of survival rate (Hoff-
mann et al., 2001; Newell et al., 2004). HAART alone has also been shown to lead to a regression of 
PCNSL (McGowan and Shah, 1998). In spite of the effects of HAART on ARL, similar dramatic ef-
fects have not been observed with cervical and anal cancers, and the results have been controversial. 
A study by the Women’s Interagency HIV study group has shown an association between HAART 
and regression of cervical lesions (Minkoff et al., 2001), while other studies did not show such a cor-
relation (Lillo et al., 2001; Schuman et al., 2003). Even with the successes of HAART on a number of 
AIDS-associated cancers, with the increase of the longevity of treated individuals and the prolonged 
effects of immunosuppression, it is likely that AIDS-associated malignancies will continue to be a 
major clinical manifestation of HIV-infected individuals. There is still a lack of widespread antiret-
roviral therapy in many developing countries where AIDS is epidemic and HIV continues to spread. 
Better tools for detection and better regimens for management of these malignancies are necessary. 
Moreover, a better understanding of the biology and the pathogenesis of these cancers is needed.

The mechanisms by which malignancies are induced in HIV-1 infected individuals are not exactly 
known. It is likely to vary with different types, but a common underlying course is a lack of immu-
nological controls due to immunodeficiencies. In addition, several types of cancers have been linked 
to viral etiological agents. In fact, the three major types of cancers included as part of the AIDS-defin-
ing illnesses, such as KS, NHL, and cervical cancers, have been linked to infectious viral agents. KS 
primary effusion lymphomas (PEL) and Castleman’s disease have been linked to HHV-8 or KSHV. 
NHL, PCNSL, Hodgkin’s disease, and leiomyosarcoma were found to be associated with EBV. Cer-
vical carcinoma and squamous cell neoplasm were linked to HPV. Substantial information is known 
about these tumors and their potential etiological agents. A number of mechanisms and viral genes 
were found to have transforming activities, and they may play a direct and indirect role in tumori-
genesis. A better understanding on how infections by these viral agents can lead to tumors will lead 
to the development of methods to enhance the immune response to control these agents as well as 
development of therapeutic agents to treat these malignancies. The major focus of this chapter is to 
examine KSHV-, EBV-, and HPV-associated tumors and what is known about their potential mech-
anisms in cellular transformation and tumorigenesis.
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III. Kaposi’s Sarcoma

KS was originally described by Moritz Kaposi in 1872 as an idiopathic, multiply pigmented sarcoma 
of the skin (Kaposi, 1872). The initiation of a KS lesion is called the patch stage of KS, and this stage is 
characterized by bluish red, well-demarcated, painless maculae, most often unilateral on the lower 
extremities. The lesion is composed of irregularly shaped vascular spaces present around preexist-
ing vasculature. The lesion progresses into the plaque stage as these irregular spaces become lined 
with endothelial cells and proliferating spindle-shaped cells, presumed to be of endothelial origin. 
At this stage the lesion appears to be slightly elevated on the skin. The nodular stage can then de-
velop and is characterized by a hard and solid appearance, brownish in color, and can be hyperker-
atotic and ulcerative in nature. In advanced stages of KS, lesions are often bilateral and may involve 
the entire extremity as well as mucosal tissues and present with edema in the surrounding tissue. 
The nodular lesion is composed of bundles of proliferating spindle-shaped cells, extravasated lym-
phocytes and erythrocytes in an abundance of slit-like spaces. These lesions become raised on the 
skin and sometimes coalesce to form large nodular masses (Friedman-Kien and Saltzman, 1990; Is-
covich et al., 2000)

There are four epidemiological types of KS recognized: classic, endemic, iatrogenic, and HIV/ AIDS-
associated KS. Classic KS is the disease originally described by Kaposi (Kaposi, 1872). It predomi-
nantly occurs in elderly persons, aged 50-80 years, in the Mediterranean and Eastern European re-
gions or in persons of Jewish ancestry. It is seen primarily in men, with a male:female ratio of 10-15: 
1. It is infrequently detected in children and young adults (Friedman-Kien and Saltzman, 1990). En-
demic KS was first characterized in African populations from Southern and Central Africa in the 
early 1960s (Cook, 1962; Lothe and Murray, 1962; Oettle, 1962). Endemic KS was predominantly 
seen in men, with male:female ratio of 10-17: 1, a mean age of 40 years, and presented with multiple, 
nodular, and sometimes ulcerative lesions in a centrifugal distribution. Health was well maintained 
while the disease was indolent for several years and rapidly deteriorated as more aggressive lesion 
growth and dissemination occurred. Iatrogenic- or transplant-associated KS was first recognized in 
the 1960s and 1970s (Gange and Jones, 1978; Harwood et al., 1979; Kapadia and Krause, 1977; Klepp 
et al., 1978; Penn, 1979). It was associated with patients receiving immunosuppressive therapy, most 
often from organ transplant. KS lesions appeared from 2 months to 8 years after therapy. Iatrogenic 
KS had a male:female ratio of 2-3: 1. The lesions were mostly localized to the skin and infrequently 
involved the visceral organs and often regressed when therapy was discontinued.

The fourth type of KS is the AIDS-KS. In contrast to the slow development of classic KS, lesions de-
veloped rapidly and often disseminated to several locations in the body. AIDS-KS not only involves 
the lower extremities and skin, but also the upper body, the head regions, and the lymph nodes. It 
can also disseminate to other organs, such as the spleen, the lungs, the liver, and gastrointestinal 
track (Hengge et al., 2002). AIDS-KS, due to its rapid dissemination, multiple organ involvement, 
and difficulty with treatment, can be a painful and debilitating disease (Friedman-Kien and Saltz-
man, 1990). Since the HIV-1/AIDS epidemic, the patterns and clinical manifestations of KS have dra-
matically changed, especially in Africa. Prior to the early 1980s, Kaposi sarcoma was a rare and indo-
lent tumor of elderly adults, primarily men (Beral, 1991; Friedman-Kien and Saltzman, 1990; Kaposi, 
1872). It was extremely rare in children; but with the AIDS epidemic, KS are often seen in young chil-
dren, and when present, caused a rapidly disseminated disease that failed to respond to chemother-
apy and led to death within 1-3 years (Bayley, 1991; Friedman-Kien and Saltzman, 1990).
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A. Viral Etiology in KS

With the association of KS to AIDS, an infectious agent has been suspected in the development of 
KS, including HIV and cytomegalovirus (CMV). A report has shown that herpesvirus-like parti-
cles were found in short-term KS tissue culture, and were subsequently identified as CMV (Giraldo 
et al., 1980). However, the involvement of CMV in KS has never been confirmed. In 1994, herpesvi-
rus-like sequences were isolated from biopsy material from an AIDS-KS patient using a subtractive 
PCR technique called representational difference analysis (Chang et al., 1994). This technique allows 
the preferential amplification of DNA sequences representative of affected tissue, which is absent in 
normal tissue from the same individual. The sequence was found to be homologous but not identi-
cal to any known herpesviruses. Thus, the virus was named KSHV or HHV-8 since it is the eighth 
known HHV. KSHV DNA sequences were found only in the KS tissue but not in normal skin tissues. 
Soon after KSHV DNA sequences were identified, the viral DNA was detected in biopsies from all 
clinical forms of KS, but was absent in normal tissue (Chang and Moore, 1996; Memar et al., 1995). 
KSHV is found in all KS lesions, and is mainly located in the vascular endothelial cells and perivas-
cular spindle-shaped cells (Li et al., 1996).

To confirm the etiological role of KSHV in KS, the presence of the virus must be detected in patients 
prior to the appearance of the disease. Several studies have examined this by detecting viral DNA 
and seroconversion prior to KS development. In HIV-1-positive patients followed before and after 
onset of KS, it was observed that patients with KSHV viral DNA at study entry or any time prior to 
KS were significantly more likely to develop KS than those who were negative for viral DNA prior 
to KS (Moore et al., 1996c; Whitby et al., 1995). Similarly, in HIV-1-infected patients, those that de-
veloped KS were significantly more likely to be KSHV seropositive prior to the onset of KS than 
those that never developed KS (Gao et al., 1996a; Melbye et al., 1998). However, it is clear that not all 
KSHV-infected individuals will develop KS, thus KSHV infection plays a major role, but not suffi-
cient, for the development of KS. It is likely that other cofactors, such as immunosuppression, are re-
quired for KS development.

In addition to KS, KSHV was found to be associated with two other lymphoproliferative disorders, 
PEL and multicentric Castleman’s disease (MCD) (Cesarman et al., 1995; Soulier et al., 1995). PEL is 
a very rare subtype of NHL, predominantly associated with HIV-infected individuals. PEL was first 
identified as a subset of body cavity-based lymphomas (BCBL), which were subsequently called 
PELs (Cesarman et al., 1995). This type of lymphoma is distinguished from others as having a dis-
tinctive morphology, bridging large cell immunoblastic lymphoma and anaplastic large cell lym-
phoma. PELs are extremely rare tumors, and estimated to be about 0.13% of all AIDS-related malig-
nancies in AIDS patients in the United States (Mbulaiteye et al., 2002). PELs are unique as they were 
found to contain KSHV DNA and are most frequently found in male AIDS patients. Most PELs are 
coinfected with EBV and KSHV and lack c-myc gene rearrangements, and the role of EBV in this 
type of tumors will be described in a section. MCD, also known as multicentric angiofollicular lym-
phoid hyperplasia, is a very rare polyclonal B-cell lymphoproliferative disorder with vascular hy-
perplasia involving multiple lymphoid organs. This disease is both clinically and morphologically 
heterogeneous, and is defined using clinical and pathological characteristics (Soulier et al., 1995). 
Unlike KS, where KSHV sequences can be detected in almost all KS samples, the B cells in MCD are 
usually not infected. In situ hybridization studies showed that the KSHV-infected cells are mainly lo-
cated in the mantel zone of the follicle and high levels of the viral homologue of the cellular cytokine 
vIL-6 can be detected, suggesting that uninfected cells are recruited and stimulated to grow in the af-
fected areas (Katano et al., 2000). It is likely that KSHV may be playing an indirect role in the disease.
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B. KSHV Epidemiology

KSHV belongs to the γ-herpesvirus subfamily, which can be further subdivided into two subgroups, 
gamma-1 or lymphocrytovirus, and gamma-2 or rhadinovirus. EBV is the prototype gamma-1 virus 
and the simian herpesvirus saimiri is the prototype gamma-2 herpesvirus (Roizmann et al., 1992). 
KSHV is classified as a gamma-2 rhadinovirus and is the first human virus of this subfamily iden-
tified (Moore et al., 1996b). The genome of KSHV is about 165 kb in length, with ~140 kb of long 
unique DNA surrounded by two terminal repeat regions, 25-35 kb each (Russo et al., 1996). It en-
codes over 80-open reading frames and has significant homology to the Rhadinovirus genus of the 
γ-herpesvirus subfamily, all of which are known to infect lymphocytes (Moore et al., 1996c). KSHV 
is the only member of the rhadinovirus genus known to infect humans, but is closely related to 
another human γ-herpesvirus, EBV, which belongs to the lymphocryptovirus genus. A feature of 
γ-herpesviruses like KSHV is its ability to incorporate or pirate host genes such as cyclin D and 
growth factor IL-6 into their genome (Moore et al., 1996a), and these genes can then play a role in the 
replication, survival, and transformation function of the virus. Deciphering the functions of these vi-
ral genes will lead to a better understanding of viral pathogenesis and oncogenesis.

Unlike most other herpesviruses, KSHV infection does not seem to be widely distributed in most 
populations. The detection of KSHV infection relies on the presence of antibodies against either lytic 
and/or latent antigens and varies among the different tests that were used in different seropreva-
lence studies. There are several different methodologies for the detection of antibodies to KSHV. 
Most of these assays are based on immunofluorescence antigen (IFA), utilizing B-cell lymphoma cell 
lines known to be infected with KSHV as the antigen source or based on ELISA with recombinant 
immunogenic proteins or peptides of KSHV. The performance of these assays can be quite variable, 
and could account for the differences in seroprevalence reported in different studies (Pellett et al., 
2003; Rabkin et al., 1998; Tedeschi et al., 2002). In North America and Northern and Western Europe, 
KSHV seroprevalence in adult general population or blood donors ranges from 0% to 8% (Challine 
et al., 2001; de Sanjose et al., 2002; Gambus et al., 2001; Gao et al., 1996b; Goedert et al., 1998; Lennette et 
al., 1996; Simpson et al., 1996). In these countries, the seroprevalence of KSHV in different risk groups 
mirrors the incidence of AIDS-KS, with a seroprevalence rate of between 25% and 50% among homo-
sexual men. On the contrary, the reported seroprevalence of KSHV is high in the adult general popu-
lation in regions of Brazil, French Guiana, the Mediterranean basin, and Central and Southern Africa, 
where it ranges from 10% to over 80%; these regions are considered endemic for KSHV (Cunha et al., 
2005; Freitas et al., 2002; Kazanji et al., 2005; Klaskala et al., 2005; Mayama et al., 1998; Mbulaiteye et al., 
2003; Olsen et al., 1998; Plancoulaine et al., 2000, 2004; Wilkinson et al., 1999). Central African coun-
tries, like the Republic of Congo, Uganda, and Zambia, also have the highest KSHV infection rates in 
the world (Gao et al., 1996b). Therefore, KSHV seroprevalence tracks very closely with KS, with the 
highest infection rate in geographic areas where classic or endemic forms of KS are more common.

C. Viral Oncogenesis

A common property shared between KSHV and several other members of the γ-herpesviruses, such 
as EBV, is their ability to cause proliferation of infected host cells and lead to neoplasm in the in-
fected host. Infection of primary endothelial cells by KSHV has been shown to lead to morphologic 
and phenotypic changes of these cells that resemble the characteristics of KS spindle cells, suggest-
ing that KSHV can lead to malignant transformation and plays a role in the pathogenesis of KS (Flore 
et al., 1998; Foglieni et al., 2005; Moses et al., 1999). KSHV has been shown to encode for a number of 
viral genes that may contribute to tumorigenesis. These genes include both unique viral genes and 
gene homologues of cellular genes. Some of these viral genes have transformation potential, such as 
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the viral K1 gene kaposin and viral G protein-coupled receptor (vGPCR). Others are viral proteins 
that have homology to their cellular counterparts. These proteins may deregulate cell growth and 
lead to transformation. These genes include the viral IL-6, viral IL-10, viral cc-class chemokines, and 
viral FLICE-inhibitory protein (vFLIP). Yet there are other viral genes that are involved in maintain-
ing viral latency such as the latency-associated nuclear antigen (LANA) and K15. These genes are in-
volved in a number of strategies that the virus uses in sustaining viral infection in pathogenesis and 
in the development of malignancies. These mechanisms involved the stimulation of cell prolifera-
tion, activation of cellular gene expression, immune suppression, and modulation of immune sur-
veillance. These viral genes may also participate indirectly via upregulation of other viral genes. A 
summary of the viral genes involved is shown in Table I.

The KSHV K1 gene is the first open reading frame of the viral genome. It encodes a transmembrane 
protein with a cytoplasmic domain containing a functional immunoreceptor tyrosine-based activa-
tion motif (ITAM) (Lagunoff and Ganem, 1997; Lee et al., 2003). ITAM motifs are known to be in-
volved in signal transduction on ligand-receptor interaction. However, K1 signaling appears to be 
constitutive and may be responsible for the activation and proliferation of infected B lymphocytes 
by inducing phosphorylation of several cellular signal transduction proteins (Lagunoff et al., 1999; 
Lee et al., 1998a,b). The K1 gene was shown to have transforming activities; it transformed mouse 
cells in vitro and caused tumors in nude mice (Lee et al., 1998b). K1 was also found to be able to re-
place the transforming gene (STP) of the herpesvirus saimiri and caused immortalization of mar-
moset T lymphocytes (Lee et al., 1998b). Transgenic mice expressing K1 gene developed malignant 
plasmacytomas and these cells have elevated levels of NF-κB and other cellular transcription fac-
tors, further suggesting that deregulation of normal cellular functions by K1 may lead to the devel-
opment of B-cell lymphomas (Prakash et al., 2002).

The viral kaposin or open reading frame K-12 has also been found to play a role in transformation. 
The kaposin gene is expressed during latency but can also be induced on lytic replication (Muralid-
har et al., 1998,2000;Sadler et al., 1999;Wang and Boshoff, 2005). This gene is most abundantly ex-
pressed during latency and has a complex translational pattern resulting in three different forms 
of the kaposin proteins, known as A, B, and C (Sadler et al., 1999). Kaposin A is a type II membrane 
protein, and it was shown to have transforming activities and can transform cells in vitro; the trans-
formed cells caused tumors in nude mice (Kliche et al., 2001; Muralidhar et al., 1998,2000). Its trans-
forming activities were linked to its interaction with a guanine nucleotide exchange factor for ARF 
GTP ase known as cytokesin-1 and a domain known as the LXXLL motif on the protein seems to be 
important for transformation (Tomkowicz et al., 2005). Kaposin B appears to play a role in cytokine 
release; it binds to host cell protein kinase, such as mitogen-activated protein kinase (MAPK)-asso-
ciated protein kinase 2, which plays an important role in the proinflammatory p28 MAPK signaling 
pathway, resulting in an enhancement of inflammatory cytokine secretions to enhance the develop-
ment of KS (McCormick and Ganem, 2006). Currently, nothing is known about the function of Ka-
posin C.

The viral GPCR is a lytic viral gene and is a homologue of the cellular IL-8 receptor except that it is 
constitutively expressed. It binds to the CXC and CC families of chemokines (Arvanitakis et al., 1997; 
Cesarman et al., 1996; Gershengorn et al., 1998). KSHV GPCR has been shown to transform cell in 
vitro and promote immortalization of endothelial cells and tumor formation in the presence of KSHV 
latent genes, suggesting that both lytic and latent genes are important during the development of 
KS (Arvanitakis et al., 1997; Bais et al., 2003). The signal transduction property of GPCR is important 
for its transforming activities. It is known to stimulate the MAPK and PI3K pathways, leading to the 
stimulation of a large number of cellular genes that could enhance the proliferation of KSHV-infected 
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cells. Activation of vGPCR has been associated with an increase in the secretion of vascular endothe-
lial cell growth factors (VEGF) and VEGF receptors, which leads to an induction of the angiogenic re-
sponse, to enhance the growth of immortalized KSHV-infected cells both in vitro and in vivo through 
a paracrine pathway mediated by vGPCR (Montaner et al., 2003; Sodhi et al., 2000; Yang et al., 2000).

In addition of vGPCR, there are other viral genes that have homology to cellular homologue genes, 
such as the viral IL-6, viral cc-chemokines (vCCLs), and vFLIP. KSHV vIL-6 has both sequence and 
functional homology to the cellular IL-6, but they differ in their ability to bind to cellular receptors. 
Cellular IL-6 requires both the a and the pg130 subunits for binding and signaling, whereas vIL-6 re-
quires only the pg130 subunit (Molden et al., 1997). KSHV-infected PEL MCDD cells secrete vIL-6 to 
support the growth of the infected cells and also protect the cells from the antiviral effects mediated 
by the interferon pathway (Moore et al., 1996a; Nicholas et al., 1997). Thus, vIL-6 appears not only 
to have the ability to support the growth of infected cells, but also can protect infected cells from 
the effects of interferon. In addition to vIL-6, several viral genes, K4, K4.1, and K6, encode viral ho-
mologues of the cellular CC chemokines, such as RANTES and MIP-1a (Boshoff et al., 1997). These 
chemokines can induce signaling transduction, enhance angiogenesis, and contribute to the tumori-
genesis process (Nakano et al., 2003). The KSHV FLIP gene ORF71 is a latent viral gene which en-
codes the FLIP protein and is structurally most homologous to the cellular FLIP. It facilitates lym-
phoma cell growth by activating NF-κB expression and its signaling pathway, and by conferring the 
infected cells resistance to apoptosis (Djerbi et al., 1999; Guasparri et al., 2004; Thome et al., 1997). In 
addition, vFLIP was shown to induce morphological changes in primary endothelial cells to become 
spindle-like in shape, similar to KS tumor cells (Grossmann et al., 2006). These together with the an-
tiapoptotic functions of vFLIP reflect two features that are known to be the hallmark of KS.

Another KSHV latently expressed protein that may contribute to neoplasm is LANA. The KSHV 
LANA is a nuclear phosphoprotein that is important for the maintenance of viral latency (Dittmer et 
al., 1998). It has been shown to bind to the terminal repeat region of the viral genome and tethered 
the viral episome to the host chromosome so that it can be maintained during cellular mitotic repli-
cation and segregation (Ballestas et al., 1999; Cotter et al., 2001). LANA is a multifunctional viral pro-
tein and can bind to a number of cellular proteins. It can bind to tumor suppressors p53 and Rb and 
protect infected cells from apoptosis (Friborg et al., 1999; Radkov et al., 2000). This together with its 
ability to upregulate ß-catenin expression promotes S-phase entry, modulates cell cycle pathways, 
and contributes to the development of neoplasm (Fujimuro et al., 2003).

IV. AIDS-Associated Lymphomas

As persons with HIV infection survive longer despite significant immunosuppression, more cases 
of malignancy are likely to appear. Although HIV infects T lymphocytes, AIDS-associated lympho-
mas are of B lymphoid origin in at least 95% of all cases described. As with other lymphomas, AIDS-
associated lymphomas also fall into two broad categories: AIDS-associated Hodgkin’s disease and 
NHL. AIDS-associated NHLs are primarily encountered in patients with more advanced HIV infec-
tion, with a low CD4 count. Although Hodgkin’s disease is included in the HIV-associated lympho-
mas in the WHO classification, it will not be discussed in this chapter because the relation between 
HIV infection, AIDS, and Hodgkin’s disease is unclear (Carbone and Gloghini, 2005). Whether HIV 
infection promotes the development of Hodgkin’s disease or merely modifies its clinical progres-
sion is not yet known

Mechanistic studies have revealed that potential factors contributing to lymphoma development. 
Three major factors promoting the development of lymphoma are HIV-induced immunosuppres-
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sion, chronic antigenic stimulation, and cytokine overproduction. These alterations are associated 
with the development of oligoclonal B-cell expansions. The appearance of lymphomas is character-
ized by the presence of a monoclonal B-cell population displaying a variety of genetic lesions, includ-
ing EBV infection, c-myc gene rearrangement, bcl-6 gene rearrangement, ras gene mutations, and 
p53 mutations/deletions. The number and type of genetic lesions varies according to the anatomic 
site and histopathology. Thus, it is apparent that more than one pathogenic mechanism is opera-
tional in the development and progression of AIDS-associated lymphomas (Carbone and Gloghini, 
2005; Epeldegui et al., 2006). This chapter attempts to summarize the potential role of viral etiologi-
cal factors, especially EBV, on the development of the malignancies.

A. EBV, Its Latency, and Its Role in AIDS-Associated Lymphomas

EBV is a ubiquitous human-herpesvirus that infects about 95% of the adult population worldwide. 
The majority of primary infections occur in early childhood and are generally asymptomatic. How-
ever, when primary infection is delayed until adolescence or adulthood, as often occurs in devel-
oped countries, it may cause infectious mononucleosis (IM), which is a self-limiting lymphoprolifer-
ative disorder characterized by increased numbers of EBV-infected B cells in peripheral blood and 
massive oligoclonal expansion of EBV-specific CD8 + T cells. The biologic hallmark of the EBV-cell 
interaction is latency. EBV establishes several latencies on infection of target cells. Three types of la-
tency have been described, each having its own distinct pattern of EBV gene expression. Type I la-
tency is exemplified by Burkitt’s lymphoma (BL) tumors in vivo and earlier passages of cultured cell 
lines derived from BL biopsies. Epstein-Barr Nuclear Antigen 1 (EBNA-1) and small EBV-encoded, 
nonpolyadenylated nuclear RNAs (EBER-1 and -2) are expressed in this form of latency. Type II la-
tency is exemplified by NPC and Hodgkin’s disease. EBNA-1, latent membrane protein 1 (LMP-1), 
LMP2A, and LMP2B proteins, as well as EBERs, are expressed in type II latency. EBV transforms 
adult primary B cells into continually growing lymphoblastoid cell lines (LCLs) and concomitantly 
establishes type III latency in vitro. Nine viral proteins are expressed, including six nuclear pro-
teins (EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C, and EBNA-LP) and three integral mem-
brane proteins (LMP-1, LMP-2A, and LMP-2B) plus EBERs (Kieff, 1996; Rickinson and Kieff, 1996). 
Extensive mechanistic studies on EBV transformation have identified several key viral genes that 
contribute to the viral transformation processes. They are LMP-1, LMP-2, EBNA-1, and EBNA-2.

B. Latent Membrane Protein 1 (LMP-1)

The role of LMP-1 in EBV transformation of primary B lymphocytes is well established. LMP-1 was 
initially identified as a viral oncoprotein on the basis of its ability to transform rodent cells. Fibro-
blasts constitutively expressing LMP-1 demonstrate reduced serum requirements, increased growth 
in soft agar, loss of contact inhibition, and tumorigenic potential in nude mice (Dawson et al., 1990; 
Fahraeus et al., 1990; Wang et al., 1985). Moreover, expression of LMP-1 as a transgene in mice under 
the control of the immunoglobulin promoter/enhancer results in increased frequency of B-cell lym-
phomas, indicating that this viral protein has oncogenic properties in vivo (Kulwichit Raab-Traub). 
In viral transformation assays with primary B cells, deletion of LMP-1 prevents the transformation 
of primary B cells (Izumi et al., 1997; Kaye et al., 1993), and inhibition of LMP-1 expression in EBV-
transformed cells reverts the transformed phenotypes (Kilger et al., 1998). Thus, LMP-1 is required 
for EBV transformation of primary B cells in vitro in tissue culture system.

LMP-1 expression alone modulates cellular gene expression that is responsible for phenotypic and 
functional changes associated with EBV latency. These changes include the upregulation of adhe-
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sion molecules (LFA-1, ICAM-1, LFA-3), B-cell activation markers (CD23, CD30, CD40, CD71), tran-
scriptional factors [signal transducer and activator of transcription 1 (STAT-1), -2, IRF-7], and anti-
apoptotic genes (Bcl-2, BclxL, Mcl1, A20). Thus, LMP-1 appears to be a central effector of altered cell 
growth, survival, adhesive, invasive, and even antiviral potential in EBV-infected cells (Fries et al., 
1996; Miller et al., 1995; Wang et al., 1985, 1990; Yoshizaki et al., 1998).

Extensive studies have led to some insight into the molecular mechanisms underlying the function 
of LMP-1. LMP-1 is an integral membrane protein with six transmembrane-spanning domains and 
a long C-terminal domain located in the cytoplasm (Kieff, 1996; Liebowitz et al., 1986). LMP-1 acts as 
a constitutively active, receptor-like molecule that does not need the binding of a ligand (Gires et al., 
1997). The six transmembrane domains mediate oligomerization of LMP-1 molecules in the plasma 
membrane, a prerequisite for LMP-1 function (Floettmann and Rowe, 1997; Gires et al., 1997). Two 
regions in the C-terminus of LMP-1 have been shown to initiate signaling processes, the C-termi-
nal activator regions 1 (CTAR-1, amino acids 194-231) and 2 (CTAR-2, amino acids 332-386) (Huen 
et al., 1995; Mitchell and Sugden, 1995). In a more refined analysis, several kinds of functional do-
mains have been identified. The PXQXT domain is located within the CTAR-1 and is involved in the 
interaction with tumor necrosis factor receptor (TNFR)-associated factors (TRAFs), and the binding 
of TRAFs to LMP-1 results in the induction of the NF-κB and AP-1 transcription factors. It is thus 
apparent that LMP-1 shares functional properties with members of the TNF-receptor superfamily, 
particularly CD40. Moreover, LMP-1 can partially restore the wildtype phenotype of mice deficient 
in CD40 (Devergne et al., 1996, 1998; Miller et al., 1997, 1998; Sandberg et al., 1997). LMP-1 also inter-
acts with TNFR-associated death domain protein (TRADD) and receptor-interacting protein (RIP) 
at the C terminal (Devergne et al., 1998; Floettmann and Rowe, 1997; Izumi et al., 1997, 1999; Izumi 
and Kieff, 1997; Kaye et al., 1996). Interaction with these two molecules contributes the majority of 
the NF-κB activity induced by LMP-1. Also, c-Jun N-terminal kinase (JNK) is activated by CTAR-2. 
The domain for activation is mapped to most C-terminal amino acids and apparently overlaps the 
TRADD interaction domain. However, whether TRADD and TRAF2 are involved in the activation 
of JNK is disputed (Eliopoulos and Young, 1998; Eliopoulos et al., 1999; Kilger et al., 1998). In ad-
dition, two janus kinase 3 (JAK3) binding sites have been identified between CTAR-1 and CTAR-
2. JAK3 binding to the sites is responsible for the activation of STAT-1(Gires et al., 1999). However, 
some other experimental evidence suggests an alternative mechanism (Brennan et al., 2001; Higuchi 
et al., 2002; Zhang et al., 2004b). In summary, the hijacking of these cellular signaling pathways by 
LMP-1 is likely to contribute to the pathogenesis of most EBV-associated disorders through the si-
multaneous or sequential activation of signals involved in the promotion of cell activation, growth, 
and survival.

C. Latent Membrane Protein 2

The LMP-2 protein contains multiple membrane spanning domains and cytoplasmic N- and C-ter-
minal domains and forms aggregates in the membrane of EBV-infected B cells. The N-terminal do-
main can bind to the tyrosine kinases Lyn and Syk through their SH2 domains (Longnecker et al., 
2000). These kinases are recruited to the BCR following antigen cross-linking, and their subsequent 
activation stimulates downstream events resulting in B-cell differentiation and proliferation. LMP-
2A may work as a decoy protein sequestering Lyn and Syk to inhibit BCR signaling, which make 
LMP-2 an inhibitor of EBV lytic replication induced by BCR ligation (Longnecker, 2000; Longnecker 
et al., 2000). The property of LMP-2 may play a major role in mediating EBV persistence in vivo.

Unlike LMP-1 and EBNA-2, the LMP-2 protein is not essential for B-cell transformation in vitro. Nev-
ertheless, the constant expression of LMP-2 in EBV-carrying memory B cells from healthy individu-
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als suggests that LMP-2 probably plays an important role in viral persistence. LMP-2 in transgenic 
mice model has shown that LMP-2 provides survival signals that allow immature B cells to prog-
ress through developmental checkpoints and prevent cell death. This property may be related to the 
ability of LMP-2A to activate the serine-threonine kinase Akt. Akt is a multifunctional mediator of 
phosphatidylinositol 3-kinase (PI3-K) activity. Activation of the pathway results in the constitutive 
delivery of an antiapoptotic signal. Akt is also involved in the control of B-cell proliferation because 
chemical inhibition of PI3-K induced growth arrest of EBV-transformed B cells (Brennan et al., 2002).

D. Epstein-Barr Nuclear Antigen

The EBNA-1 protein is expressed in all EBV latency states and all EBV-associated tumors. The only 
exception is that EBNA-1 is hardly detectable in the circulating EBV-infected memory B cells. This 
alone suggests that the biologic properties of this protein are critical for EBV-mediated transforma-
tion (Kieff, 1996). EBV establishes itself efficiently in infected B lymphocytes, where it exists as 165 
kb, circular episome which is duplicated once per cell cycle. Remarkably only EBNA-1 protein is re-
quired for the synthesis and partitioning of the viral episomes. EBNA-1 binds to two regions of the 
viral origin of replication (OriP), referred to as the family of repeats (FR) and the dyad symmetry 
(DS) element. FR is essential for episome maintenance, while DS is required for initiation of OriP-de-
pendent DNA replication. EBNA-1 is also a transcriptional regulator that modulates the activity of 
the viral promoters: Wp and Cp and its own latent promoter Qp. Moreover, EBNA-1 is essential to 
drive transcription of EBV’s transforming genes after infection of primary B lymphocytes (Altmann 
et al., 2006). In addition, EBNA-1 can inhibit apoptosis in B cells that likely contributes to the persis-
tence of EBV-infected cells and survival of EBV-transformed cells in vivo.

E. EBNA-2

The EBNA-2 protein is localized in the nucleus and is one of the first viral proteins expressed dur-
ing EBV infection of primary B lymphocytes. In cooperation with EBNA-LP (also known as EBNA-
5), EBNA-2 induces the transition of resting B cells from G0 to G1. EBNA-2 is a key regulator of vi-
ral gene expression, being able to stimulate transcription from the major latency BamHI-C promoter, 
which directs expression of all the EBNA genes, and the promoters of LMP-1 and LMP-2. In addi-
tion, EBNA-2 modulates the transcriptional activity of some cellular genes. Cellular C-fgr, c-myc, 
CD21, CD23, and EBI1/BLR2 are upregulated whereas the immunoglobulin heavy chain genes are 
repressed in lymphocytes. There is no evidence that EBNA-2 binds to DNA directly. Rather, its tran-
scriptional activity is mainly mediated by its interaction with the DNA-binding cellular protein RBP-
Jk (also called RBP-J, CBF1, KBF2, or CSL). EBNA-2 is essential for EBV-induced immortalization of 
B lymphocytes and complex formation with RBP-Jk is crucial for such activity. RBP-Jk is expressed 
ubiquitously and is an important component of the Notch signaling pathway that is involved in 
the regulation of lymphoid development. Notch proteins are a family of transmembrane receptors 
that on ligand binding undergo proteolytic cleavage of their intracellular domain (Notch1 IC). The 
cleaved and released Notch1 IC fragment is transported to the nucleus where it interacts with RBP-
Jk and modulates the activity of target promoters. Although Notch1 IC and ENBA-2 share the abil-
ity to transactivate genes by interacting with RBP-Jk, the set of promoters regulated by Notch1 IC 
and EBNA-2 is overlapping but not identical.

Generally, transformation of a cell requires multiple molecular events (Cole and McMahon, 1999; 
Kelekar and Cole, 1986; Kohl and Ruley, 1987; Ralston, 1991; Shalloway et al., 1987; Weinberg, 1985, 
1989). Several viral genes, such as LMP-1 and EBNA-2, are required for the transformation of pri-
mary B cells in vitro and are believed to drive EBV transformation process in vivo. EBV contributes to 
the cellular transformation processes through the activity of viral proteins that act cooperatively to 



The Viral Etiology of AIDS-Associated Malignancies    519

modify cellular gene expression that involved in cell proliferation, apoptosis, angiogenesis, immune 
regulation, and signal transduction (Cahir-McFarland et al., 2000; Chen et al., 2003; Fries et al., 1996; 
Henderson et al., 1991; Miller et al., 1995; Wang et al., 1985, 1990; Yoshizaki et al., 1998; Zhang and Pa-
gano, 1999; Zhang et al., 2004a,c).

V. AIDS-Associated NHL

AIDS-associated NHL is generally divided into three subtypes: PCNSL, PEL (“body cavity”), and 
systemic NHL (Knowles, 2003). The vast majority of AIDS-associated NHL is clinically aggressive B-
cell-derived neoplasms. Approximately 80% arise systemically (nodal and/or extranodal), and the 
remaining 15-20% arise as PCNSL. A small proportion is BCBLs (Knowles, 2003). EBV apparently 
contributes to the development of these tumors in various fashions.

A. Primary Central Nervous System Lymphoma

PCNSL is a form of NHL arising within and confined to the CNS. It was first described by Bailey in 
1929 as a perithelial sarcoma (Bailey, 1929). Subsequent classifications have included reticulum cell 
sarcoma and microglioma. Improvements in histopathology and immunohistochemical techniques 
definitively established the lymphoid nature of PCNSL. PCNSL accounts for up to 15% of NHLs in 
HIV-infected patients compared to only 1% of NHLs in the general population. The reported inci-
dence of PCNSL in HIV-infected patients is 2-6% (at least 1000 times higher than in the general pop-
ulation) and has been as high as 10% in autopsy series. Although CNS involvement also occurs in 
AIDS-associated systemic lymphoma in the form of secondary spread of the tumor to the meninges, 
the disease is limited to the CNS in PCNSL (Cheung, 2004; Cingolani et al., 2005; Eichler and Batche-
lor, 2006; Gates and Kaplan, 2002; Sparano, 2003). Prior to the introduction of HAART, the incidence 
of PCNSL in the HIV-infected population was continuing to rise. However, the impact of these new 
drug regimens on the CD4 count may result in a decline in PCNSL, as the susceptibility to PCNSL is 
inversely proportional to the CD4 count (Sparano et al., 1999). In normal individuals, a small num-
ber of circulating B cells enter the CNS, and may do so in increased numbers as HIV infection ad-
vances (Cingolani et al., 2005; Ivers et al., 2004). EBV establishes latent, life-long infection in over 90% 
of adults. During the course of HIV infection, EBV-specific T cells progressively lose the capacity to 
produce interferon-gamma in response to EBV peptides. In addition, EBV-positive B lymphocytes 
occur more frequently in the CNS of HIV-infected individuals than in normal brains, which may set 
up a stage for EBV transformation of these infected cells.

EBV appears to play a major pathogenetic role in AIDS-associated PCNSL: (1) EBV genome within 
tumors is present in more than 95% of AIDS patients, but in only 0-20% (probably <5%) of immuno-
competent patients. (2) More than half of AIDS PCNSL examined so far expressed at least EBNA-2, 
LMPs, and EBERs, a pattern referred to as type III latency and closely resembling that seen in trans-
formation of primary B lymphocytes in vitro EBV (Cingolani et al., 2005; Ivers et al., 2004). Expression 
of type III latency genes leads to a variety of cellular effects, including upregulation of the genes that 
are involved in transformation, such Bcl-2 and IRF-7, and inactivation of the p53 and Rb tumor sup-
pressor gene products. It is believed that the EBV triggers certain PCNSL in vivo in a process similar 
to transformation processes of primary B cells in vitro (Pagano, 1999).

B. Primary Effusion Lymphoma

PELs, also known as BCBL, are B-cell NHLs and most frequently occur in AIDS patients as lym-
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phomatous effusions in the serous cavities without a detectable solid tumor mass. In the setting of 
AIDS, the clinical course for most of these lymphomas is extremely aggressive, with a mean survival 
from diagnosis of 5-7 months (Nador et al., 1996). While PELs are almost universally KSHV positive, 
the majority of PELs have concomitant EBV infection (reviewed in Dourmishev et al., 2003; Drexler 
et al., 1998; Moore and Chang, 2001). EBV apparently establishes levels type II latency in PELs with 
low of LMP-1 expression (Callahan et al., 1999; Fassone et al., 2000; Horenstein et al., 1997; Lacoste et 
al., 2000).

Both KSHV and EBV are oncogenic herpesviruses. It is thus interesting to examine if there are any 
interactions between the two viruses in PELs. Comparing to KSHV-only PELs, coinfection with EBV 
enhances the tumorigenecity of the dually infected PELs in severe combined immunodeficiency 
(SCID) mice model (Trivedi et al., 2004). The mechanism of the enhancement is currently unknown. 
However, LMP-1 might be involved in the enhancement because LMP-1 is expressed and its expres-
sion may be enhanced by both KSHV latent gene (LANA) and lytic gene (K-RTA). Although expres-
sion of LMP-1 at least in some of the PEL specimens strongly suggests the contribution of EBV to the 
development of the tumor, this enhancement was not apparent in clinical settings, possibly due to 
the fact that patients with PEL are usually at advanced HIV-infection stage.

At molecular levels, unique sets of cellular genes are expressed in dually infected, but not singly 
KSHV-infected PELs (Fan et al., 2005). KSHV reduces the expression of EBV EBNA-1 and represses 
EBV EBNA-2 activation (Krithivas et al., 2000). EBV inhibits KSHV lytic replication, in part, because 
of a regulatory loop in which KSHV lytic gene induces EBV LMP-1, and LMP-1, in turn, inhibits the 
lytic gene expression programs of KSHV (Xu et al., 2007). Like EBV EBNA-2, KSHV replication and 
transcriptional activator (K-RTA) bind to RBP-Jk (Liang et al., 2002), a key cellular target of the EBV 
latent transforming program (Zimber-Strobl and Strobl, 2001). Also, KSHV induces the expression 
of CD21, the cellular receptor for EBV, and thus facilitates EBV infection (Chang et al., 2005). All this 
data suggests that coordinated cellular transformation by the two viruses is a possibility. However, 
how these two viruses interact and affect each other and the pathobiology of PELs remains to be de-
termined.

C. Systemic AIDS-Associated NHL

Systemic AIDS-associated NHLs are aggressive B-cell lymphomas of high or intermediate grade and 
heterogeneous in nature. Approximately one-third can be classified as small noncleaved cell lym-
phomas, which are Burkitt or Burkitt-like lymphomas. The remaining two-thirds of the lymphomas 
are diffuse large cell lymphomas, which are immunoblastic lymphomas or large noncleaved cell 
lymphomas (Brockmeyer and Barthel, 1998). EBV infection and c-myc oncogene rearrangements 
are the two well-established factors in the pathogenesis of the systemic NHL. The diffuse large cell 
lymphomas frequently express EBV latency type III antigens including EBNA-2 and LMP-1 and 
-2, which have transforming activity in vitro are well established. EBV establishes type I latency ex-
pressing only EBNA-1 in BLs. However, the EBV genome can be detected in only 60% of the dif-
fuse large cell lymphomas, and in around 30% of the AIDS-associated BLs. Because EBV is less fre-
quently detected in systemic and lymphomas, and the increasing incidence type of this of cancer in 
HIV-infected patients, some additional common latent or chronic viral infections may be involved 
in the development of these tumors (Mueller, 1999; Shibata et al., 1993). In the setting of underlying 
HIV infection, systemic NHL truly behaves as an opportunistic neoplasm, overwhelming those im-
mune mechanisms that may normally attempt to keep the cancer in check.
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VI. HPV-Associated Cancers

A. Types of HPV-Induced Cancers

HPVs infect the stratified epithelia of skin or mucosa, where they cause benign warts. Of the 200 
different types of HPVs (Cates and Dallabetta, 1999), the most common HPVs (types 2 and 4) are 
those that cause warts on the hands and feet of affected individuals (Howley, 1996). Anogenital tract 
HPVs, of which ~40 have been identified, are divided into those which confer a “low risk” (types 
6, 11, 42) or a “high risk” (types 16, 18, 31) for cervical cancer (Howley, 1996; Sakai et al., 1996; zur 
Hausen, 1999, 2000). Studies performed by Harold Zur Hausen’s laboratory provided the first defin-
itive evidence that HPVs were present in genital cancers (Bosch et al., 1991; Durst et al., 1983; Giss-
mann et al., 1984; Schwarz et al., 1985; zur Hausen, 1999, 2000; zur Hausen et al., 1975, 1981). After 
more than 20 years of work, HPVs are now recognized as a necessary cause in 95% of invasive cer-
vical cancers worldwide (Walboomers et al., 1999). Approximately 20 million US adults are infected 
with genital HPVs and there are 5.5 million new infections each year, representing a major pub-
lic health concern (Cates and Dallabetta, 1999). In human cervical cancer cells, high-risk papilloma-
virus DNA is most often found integrated into the host chromosomes (Londesborough et al., 1996; 
Schwarz et al., 1985; Yee et al., 1985b).

HPVs are most commonly associated with cervical cancer, although, it is now known that many can-
cers are induced by HPV, including penile, anal, oral, and conjunctival cancers (Durst et al., 1983; 
Koutsky, 1997; Newton et al., 2002; Syrjanen, 2003; Waddell et al., 1996). High-risk HPVs have also 
been implicated recently in ~30% of oral cancers (Gillison et al., 2000). In fact, HPVs are responsible 
for cancers in the tonsils, the palate, gums, tongue, and the larynx (Aaltonen et al., 2005; de Villiers 
et al., 1986; El-Mofty and Lu, 2003; Lopez Amado et al., 1996; Milde-Langosch et al., 1989; Mineta et 
al., 1998; Sinclair et al., 2005; Syrjanen, 2005; Yoshpe, 1995). High-risk HPVs have been further impli-
cated in upper respiratory tract and lung cancers (Cheah and Looi, 1998; Clarke et al., 1991; de Vil-
liers et al., 1986). Furthermore, evidence suggests that some digestive cancers are also HPV positive 
(Milde-Langosch et al., 1989; Nakano, 1994). HPVs are some of the most ubiquitous and stable viruses 
in nature, thus, it is not surprising that multiple tissues are targets of HPV-induced tumorigenesis.

Penile cancers are much less common than cancers of the cervix, for reasons that are not entirely 
clear (Gloeckler Ries et al., 2003). Despite the fact that men seldom show clinical signs, it is likely that 
many could be persistently infected and that the progression to penile cancer occurs under immuno-
suppressive conditions. Cancers of the vulva and vagina are also relatively rare compared to cervical 
cancers. The reason for these differences in incidence of cancers in different tissues is related to the 
cell-type infected. The cells of the cervical transformation zone at the squamous and columnar cell 
junction are the most susceptible to HPV-induced cell transformation (Jastreboff and Cymet, 2002; Jor-
dan and Monaghan, 2004; Ponten and Guo, 1998). An analogous cell type apparently does not exist in 
men. However, despite lack of studies on the subject, it would be assumed that men are transmitters 
of HPVs (Baldwin et al., 2003; Dunne et al., 2006; Giuliano et al., 1999). Predictably, the incidence of pe-
nile cancers increases dramatically in individuals who are HIV positive (Aboulafia and Gibbons, 2001; 
Arany and Tyring, 1998; Laurence, 2003; Palefsky and Barrasso, 1996; Sirera et al., 2006; von Krogh et 
al., 1995), which likely reflects the overall increase incidence of HPV infections detected in women.

Anal cancer is a relatively rare disease, ~80% of which are HPV positive (Gloeckler Ries et al., 2003; 
Hankey et al., 1999; Zippin and Lum, 1993). Anal cancer amounts to about 4% of all digestive tract 
cancers. The incidence of anal cancers in women is slightly higher than in men (Gloeckler Ries et 
al., 2003; Hankey et al., 1999; Zippin and Lum, 1993), which could be indicative of the overall higher 
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rate of HPV infection among women. It appears that the incidence of anal cancers are rising in the 
past 10 years, reflecting changes in sexual behavior (http://seer.cancer.gov/) (Gloeckler Ries et al., 
2003). The highest level of risk for anal cancer caused by HPV is associated with MSM (Piketty et al., 
2004). The rate of anal cancer among HIV-negative heterosexual men is ~1.3/100,000, while the rate 
of anal cancers in HIV-negative MSM is 35/100,000. Among MSM who are HIV positive, the rate of 
anal cancer is twofold higher than HIV-negative MSM (Fakhry and Gillison, 2006).

HPV infections of the conjunctiva of the eye are more common than previously appreciated, although 
resulting HPV-induced tumors of the conjunctiva are very rare (Mincione et al., 1992, 2006; Reszec 
and Sulkowski, 2005;Tabrizi et al., 1997;Waddell et al., 2003). Though the incidence of eye or eye-or-
bit tumors in the United States is extremely low (<1/100,000) (Gloeckler Ries et al., 2003), in African 
countries, conjunctival tumors are more common and are undoubtedly influenced by nutrition, ad-
ditional disease burdens, but most obviously by the relatively high impact of HIV in Africa (Atee-
nyi-Agaba et al., 2006; Frisch et al., 2000; Goedert, 2000; Newton et al., 2002; Waddell et al., 1996, 2003).

Given the wide range of cancers caused by HPV, the recent development of an HPV vaccine pro-
vides some hope for providing protection against many of the cancers described earlier. However, 
vaccine efforts have concentrated on only two high-risk strains (HPV16 and HPV18) (Mao et al., 
2006; Villa et al., 2005), while there are at least 15 known high-risk strains. We also have evidence that 
multiple regional HPV variants exist, particularly in Africa, for which, the extent of protection by the 
current vaccine is unknown (Calleja-Macias et al., 2004; Chan et al., 1992; Ong et al., 1993; Touze et 
al., 1998; Williamson et al., 1994; Xi et al., 1998). Furthermore, the distribution of high-risk HPVs var-
ies from country to country (Calleja-Macias et al., 2004; Chan et al., 1992; De Vuyst et al., 2003; Mu-
noz et al., 2004; Ong et al., 1993; Williamson et al., 1994; Xi et al., 1998). Therefore, it is important to 
take a long-range view of prevention of HPV-induced cancers by use of vaccination strategies that 
take into account variants.

VII. HPV—The Causative Agent

A. Papillomavirus Genome Structure

HPVs are a family of small, nonenveloped, double-strand DNA viruses that establish a persistent 
infection, which may remain subclinical in the skin or genital tract for up to 10-20 years, but can of-
ten cause acute warts. Papillomavirus genomes are small circular DNA of 8 kb, which encodes eight 
major proteins. As is typical for DNA viruses, the immediate early genes (E6 and E7) are involved 
with taking over the cell cycle (Fig. 1) (Howley, 1996;Howley et al., 1989; zur Hausen, 1999,2000). 
Unlike more complex viruses like herpesviruses, HPVs use the strategy of replicating at low copy, 
and thus, do not carry their own polymerase gene. Instead, gene products encoded by E1 and E2 re-
cruit cellular polymerase a to the viral origin (Frattini and Laimins, 1994;Howley, 1996;Howley et al., 
1989;Sedman and Stenlund, 1995). The genome is simply organized into early and late genes, with 
only two capsid genes, L1 and L2.

The functions of the viral proteins are well established and are summarized below (Table II).

B. The HPV Life Cycle

HPVs initiate their life cycle by gaining access to basal keratinocytes of the stratified epithelium; ei-
ther skin or mucosa through a site of wounding (Fig. 2). Papillomavirus DNA replication is closely 
coupled to the process of keratinocyte differentiation in infected squamous epithelium (reviewed in 
Chow and Broker, 1994). In the basal and parabasal epithelial cells, HPV is maintained as a low-copy 
number episome (5-50 copies per cell) that under-goes regulated DNA replication under the con-
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trol of viral and host proteins. As infected keratinocytes differentiate and enter the stratum spino-
sum layer of the epithelium, there is a coincident increase in concentration of E1 and E2 proteins (for 
review, see Shaw and Howley, 2001). Induction of vegetative replication is consistent with a mode 
switch from theta to rolling-circle replication mechanisms (Flores and Lambert, 1997). As a conse-
quence of this rolling-circle DNA replication mechanism, multiple rounds of viral DNA synthesis 
occurs in a given S-phase of the host keratinocyte (Hoffmann et al., 2006), and an increase in copy 
number up to between 100 and 1,000 copies per cell. Vegetative HPV DNA replication requires the 
virus-encoded E1 (a DNA helicase per ATPase) and E2 (a transcriptional trans-modulator) proteins, 
and initiates at the E1 binding site palindrome near the 5' end of the viral long control region (Kuo 
et al., 1994).

C. The HPV Capsid and the Vaccine

Capsid assembly of HPVs occurs in the more terminally differentiated layers of the stratified epi-
thelium (Fig. 2). HPVs have icosahedral capsids arranged in a T = 7d lattice (Baker et al., 1991). The 
capsids are made up of 360 L1 molecules organized into 72 pentamers. Disulfide bond interactions 
between L1 molecules are important in particle assembly and disassembly (Li et al., 1998). There are 
12 L2 minor capsid proteins that are associated with the inner surface of the L1 pentamers (Belnap et 
al., 1996). High resolution cryoelectron microscopic structures of bovine papillomavirus (BPV) have 
been achieved (Baker et al., 1991); less is known about HPV structure, assembly, and uncoating. L1 
expression is sufficient to allow self-assembly of virus-like particles (VLPs) in the absence of other 
viral components (Casini et al., 2004). However, L2, when coexpressed with L1, intercalates into 
L1 VLPs and appears to be required for virion infectivity (Kawana et al., 2001;Stauffer et al., 1998). 
Though the precise role of L2 during infection is not clear, it may nucleate L1-pentamer formation. 
The simple, nonenveloped icosahedral HPV virions lend themselves to vaccine development. The 
recently developed quadrivalent vaccine targets two high-risk HPVs (16 and 18) and two low-risk 
HPVs (6 and 11). However, there is little evidence of significant cross-protection against the other 
14 oncogenic HPVs. Furthermore, there are at least 40 genital HPVs. Thus, the development of vac-
cines that have a wider cross-protection or tailoring HPV vaccines for different regions of the world 
will become necessary.

D. Epidemiology of HPV and HIV/AIDS

Epidemiological evidence gathered over several years has determined that 15-20 of the 40 of the mu-
cosal HPV types are associated with a higher risk of progression to cervical cancer (24, 29). The fre-
quency of individual high-risk HPV types worldwide has been shown to vary in respect to major 
global regions such as Asia, Europe, North America, South America, and sub-Saharan Africa (5, 14, 
23). The rate of genital HPVs in the United States, as detected by PCR of the L1 region, is ~39.2% (Pey-
ton et al., 2001). Estimates of the rates of HPV in Africa vary from 14% to 60% depending on the coun-
try, the coincident STDs, and the methods of detection (Czegledy et al., 1992; Gravitt et al., 2002; Has-
sen et al., 2003; Langley et al., 1996; Mayaud et al., 2001; Motti et al., 1996; Nzila et al., 1991; O’Farrell et 
al., 1989; Ong et al., 1993; Serwadda et al., 1999; St. Louis et al., 1993; Thomas et al., 2004; Waddell et al., 
1996; Williamson et al., 2002). The rate of HPV infections in HIV-positive patients in Zambia are very 
high, though rather little data is available (Mosunjac et al., 2003; Patil et al., 1995). As a whole, sub-Sa-
haran Africa has the among the highest rates of cervical cancer in the world (Bailie et al., 1996; Clarke 
and Chetty, 2002; Langley et al., 1996; ter Meulen et al., 1992; Williamson et al., 2002). The distribution 
of oncogenic HPVs in Africa differs from the United States and Europe. For example, studies done 
by Nubia Munoz have pointed out that in Nigeria, the most prevalent oncogenic HPV is HPV35, 
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not HPV16, which is the most common in the United States and Europe (Thomas et al., 2004). Sev-
eral studies have described HPV variants unique to Africa (Calleja-Macias et al., 2004; Chan et al., 
1992; Ong et al., 1993; Williamson et al., 1994). This points to a need to further investigate HPV vari-
ants in terms of HPV pathogenesis and a potential need to expand the selection of vaccine targets. 

The rates of HIV infection in urban area along a contiguous stretch from Uganda to Botswana and 
South Africa have continued to climb in recent years (Morison, 2001). Several studies have addressed 
HIV-related malignancies associated with HHV-8 (KSHV) and EBV, which are associated with in-
creased morbidity (Ablashi et al., 1999; Contreras et al., 1997; Lazzi et al., 1998; Parkin et al., 2000; Sapp 
et al., 2001). Despite frequency variation, HPV16 infection has been shown to be more prevalent than 
any other high-risk HPV type in most regions of the world. However, HIV-positive populations 
have a much higher rate of HPV16 positive tumors than most HIV-negative populations (1, 2, 9, 18, 
28). Thus, the incidence of high-risk HPV-malignancies is amplified by HIV immune suppression. 

It is clear that impaired cell-mediated and humoral immunity influences the advancement of high-
risk HPVs in HIV-positive individuals. Since the pool of memory and effector T cells can be dramat-
ically shifted in HIV-positive individuals (even those who do not have AIDS), it would be expected 
that a certain degree of derepression of HPV replication would occur as well as a lack of adequate 
surveillance preneoplastic lesions. Several studies have shown a strong and consistent association 
between HIV and HPV coinfection and the development of cervical intraepithelial neoplasia (CIN) 
and genital cancer (7, 11, 13, 15). There is evidence to show that HIV-positive women have a signif-
icantly higher rate of CIN than their counterparts and are more likely to progress to invasive carci-
noma than HIV-negative women (4, 12, 20). A recent study in Brazil has shown that a very high pro-
portion of HIV-infected women is infected with HPV and often carries multiple HPV genotypes (15). 

A relationship between the HIV and HPV pathogenesis has been investigated by several studies 
(Durante et al., 2003; Heard et al., 2004; Klencke and Palefsky, 2003; Massad et al., 2004; Palefsky, 
1991, 2003; Piketty et al., 2003, 2004; Silverberg et al., 2002; Strickler et al., 2003; Williams et al., 1994). 
For example, a study by Silverberg et al. (2002) found that HIV-seropositive women were 3.2-fold 
more likely to present with genital warts than HIV-seronegative women. Malignancies as compli-
cations are an increasing cause of morbidity of HIV-infected individuals (Patil et al., 1995; Thomas, 
2001). The EBV-induced malignancy, NHL, occurs at a rate of 2.9% in AIDS patients, ~60 times the 
average in non-AIDS patients (Beral et al., 1991). Occurrences of AIDS-related KS still occur at el-
evated levels, but recent advances in detection and stage analysis has improved the prognosis for 
HIV-positive patients (Quinlivan et al., 2002). Likewise, an improved understanding of the HPV dis-
ease process, as it relates to HIV, is essential, since antiretroviral therapy in HIV-positive individu-
als has not been shown to effectively reverse HPV-related disease. 

The association of malignancies, such as NHL and KS, has been recognized since the beginning 
of the HIV epidemic, and KS is the neoplasm most commonly found in people infected with HIV. 
These neoplasms are responsible for extensive morbidity and mortality. In Zambia and other sub-
Saharan nations, cervical cancer is the most common cancer (Baay et al., 2004; Hawes et al., 2003; Xi et 
al., 1998, 2003). Although in Africa, public education campaigns about STDs and condoms have been 
instituted in urban areas, there has been little success in poorer rural areas (Agha and Kusanthan, 
2003). Thus, combined with endemic HIV, a high prevalence of high-risk HPVs presents a great risk 
for progression of dysplasias to cancer. 

Infection by high-risk HPVs, especially HPV16, can induce warts; low-grade dysplasias, CIN, CIN 1 
and CIN 2 designations are reversible forms of precancerous lesions (Fig. 3). Integration of the HPV 
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genome can lead to an increase of expression of E6 and E7 resulting in progression to CIN 3, which is 
irreversible. Accumulation of mutations in cellular genes results in permanent changes in cell char-
acter leading to invasive carcinoma in situ. Progression from a benign cervical lesion to invasive cer-
vical cancer usually occurs years after infection.

Cervical cancer and precancerous lesions (CIN) are now the most common cancer-related affliction 
affecting women in sub-Saharan Africa and other developing countries in the world. The rates of 
cervical cancer in Africa are fourfold higher in than in North America and Europe.

E. The Mechanism of HPV-Induced Transformation and Cancer Progression

High-risk HPVs (types 16, 18, and 31 for example) are often found integrated into the host genome 
(Yee et al., 1985a). The integrated state of the viral genome is not supportive of the viral life cycle, but 
can confer a growth advantage to cells due to increased expression of E6 and E7 (Jeon et al., 1995). The 
common feature in cancers is the expression of E6 and E7 genes which functionally inactivate p53 
and Rb, respectively (Durst et al., 1987; Howley et al., 1989; Munger et al., 1989) (Fig. 4). In oncogenic 
HPV strains, E6 and E7 oncoproteins can block the negative growth signaling pathways of the cell via 
interactions with p53 and pRB tumor suppressor proteins. As a result, high-risk HPV-infected cells 
proliferation become disregulated and then, transformation develops. The full-length HPV E6 genes 
encode a 160amino acids protein, which contains two domains including zinc binding Cys-X-X-Cys 
motifs. High-risk HPV E6 proteins both have antiapoptotic activities and can interfere with the anti-
proliferative functions of p53, the cellular tumor suppressor. For this to occur, E6 first forms a com-
plex with a cellular ubiquitin-protein ligase E6AP, the E6/E6AP complex then acts as a p53-specific 
ubiquitin-protein ligase to accelerate degradation of p53. E6 is also known to induce expression of 
human telomerase (htert), leading to the functional outcome of increased life span of infected kerati-
nocytes. Upregulation of htert is also hallmark of a number of human cancers. Although the mecha-
nism by which E6 suppresses cell death is established, relatively little is known about the localization 
of E6 proteins and its related splice products and how this relates to these functional interactions. Fur-
thermore, the localization of E6AP in normal and E6-expressing cells is essentially unknown. Also, 
unknown is whether interactions and localization changes between E6 and htert alter E6 function. 

E7 binds Rb family member proteins resulting in their displacement from E2F and eventual degradation. 
Release of E2F allows it to freely activate S-phase related genes responsible for the G1 to S transition. 
Just as E6 causes inactivation of p53, allowing unchecked DNA synthesis, E7, by releasing E2F, activates 
the expression of genes required for cellular DNA synthesis. Even if the cellular DNA is damaged, the 
lack of p53 allows the cell to survive through an E7-induced S-phase and replicate the viral genome. 

The rate of advancement of HPV lesions, from benign hyperplasia to carcinoma in situ, is affected by 
additional factors, which includes immunocompetence. HIV status, directly affects immune status 
which determines susceptibility to secondary infections, including HPV. In addition, progression of 
HPV tumors are affected by HIV status since surveillance of cancer cells is impaired. It is well estab-
lished that cofactors in addition to immune status, such as alcohol, drugs, smoking, oral contracep-
tives, and hormone levels influence HPV infection and progression of HPV-induced cancers (Fig. 
5). The ability of E6 and E7 of high-risk HPVs to inactivate p53 and pRb directly correlates with the 
probability to develop tumors. HPV coinfection, variants, genome integration, as well as other STDs 
affect the propensity for HPV-induced cancer to occur and progress. 

HPV-related diseases are common causes of morbidity and mortality, both in the United States and 
worldwide. During the year of 2006, the American Cancer Society (ACS) estimated that there were 
9,710 new cases of cervical carcinoma and 3,700 cervical cancer deaths in the United States. The ACS 
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estimates that there were 4,660 new anal cancers with 660 deaths and 1,470 new penile cancers with 
280 deaths (ACS, 2006). There were ~6,000 new cases of oral and pharyngeal cancers with 1,400 
deaths are attributable to HPV infection. In developing countries, the second greatest cancer cause 
of death among women is cervical cancer. Still, there are few effective antiviral therapies for preven-
tion or treatment of HPV-related diseases. Furthermore, while the quadrivalent VLP HPV vaccine 
has the longterm potential to reduce HPV-induced cancers by 70%, population-based studies indi-
cate that, until all girls are immunized prior to the onset of sexual activity, the vaccine will prevent 
only 30-50% of cervical malignancies. More of a concern is the lack of availability of the prophylac-
tic vaccine in countries which are afflicted with high rates of cervical cancer. Thus, we will continue 
to face a great deal of cervical cancer morbidity and mortality in the years to come. We are far from 
eliminating the need for treatments for HPV infection and HPV-induced anogenital dysplasias and 
cancers. Hence, the continuing need for research into papillomavirus pathogenesis especially in the 
context of the ongoing HIV crisis.

VIII. Conclusions

AIDS malignancies have been a major complication of the HIV disease course, and this is likely to 
continue in HIV-infected individuals. In the era of HAART therapy, the survival rate of the HIV-in-
fected individuals has increased dramatically mainly because of the suppression of HIV viral load 
and the restoration of the immune response. However, even though HAART appears to be effective, 
still only leads to partial immune reconstitution. Prolonged immunosuppression will likely lead to a 
resurgence of AIDS-associated cancers. This coupled with the fact that there are still over 40 million 
individuals living with HIV today, many of whom are located in regions of the world where HAART 
is still not widely available, such as the African continent. It is expected that AIDS-associated can-
cers will continue to pose a major challenge globally for many years to come. As described earlier 
in this chapter, many of the cancers associated with immunosuppressed individuals are those that 
were found to have viral etiology. Other than the development and refinement of effective vaccines 
against these viruses, as in the case of HPV, there is a need for a better understanding on the role of 
oncogenic viral cofactor in the disease, the potential mechanisms, the viral genes and the host im-
mune response that are involved. This knowledge will lead to the development of better strategies 
that could prevent infection and the malignant transformation by these potentially oncogenic viruses. 
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Figure 1.
The HPV genome is a 7.9 kb double-stranded circular genome. The genome is controlled by a single 
keratin-dependent promoter element; the long control region (LCR; in blue). At the 3'end of the LCR is 
the origin of replication (nucleotide position 1). E6, E7 (red), and E5 are viral oncogenes; E1 and E2 early 
genes encode replication proteins. The E4 ORF is actually expressed early and late in the viral life cycle. 
The late genes, L1 and L2, are the major and minor capsid genes, respectively. The viral protein func-
tions are detailed in Table I.
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Figure 2.
The HPV life cycle. Virions enter the stratified epithelium through a site of wounding, where they gain 
access to the mitotically active basal-layer keratinocytes. During the maintenance phase, expression 
of E6, E7, and E5 induces cell proliferation, and the viral genome is replicated extrachromosomally at 
low-copy number (5-50 copies per cell). As the cells differentiate, the expression level of E1, E2, and E4 
increases in the spinous layer. A transition from theta to rolling-circle replication results in an increase 
in copy number up to 100-1000 copies per cell. Postamplification, high levels of L1 and L2 capsid genes 
are expressed and capsid assembly occurs in the granular and squamous layers of the stratified epithe-
lium. Progeny virus is released by desquamation.



546    An g e l e t t i ,  Zh a n g a n d Wo o d i n Ad v a n c e s i n Ph a r a m c o l o g y  56 (2008) 

Figure 3.
Progression from a benign cervical lesion to invasive cervical cancer. In the diagram, HPV-positive 
cells are depicted by yellow nuclei. Infection by oncogenic HPV types, especially HPV16, can cause for-
mation of a benign wart, low or high-grade dysplasia- r. CIN 1 and CIN 2 designations are reversible 
forms of precancerous lesions and CIN 3 is irreversible. Carcinoma in situ occurs many years after an 
infection. This results from the effects of HPV genes, particularly those encoding E6 and E7, which are 
the two viral oncoproteins that are preferentially retained and expressed in cervical cancers by integra-
tion of the viral DNA into the host genome.
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Figure 4.
Diagram of the role of E6 and E7 in disregulation of the cell cycle. Expression of E6 leads to recruitment 
of E6AP (a ubiquitin ligase). This complex causes degradation of p53, which then inhibits the p21-de-
pendent block of the G1 to S transition. Similarly, E7 binding to Rb displaces E2F, resulting in Rb’s deg-
radation. E2F can then activate expression of cyclin E and other S-phase related gene products.
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Figure 5.
The rate of advancement of HPV lesions, from benign hyperplasia to carcinoma in situ, is affected by 
additional factors, which includes immunocompetence. HIV status, alcohol, drugs, smoking, oral con-
traceptives, and hormone levels influence HPV infection and progression of HPV-induced cancers. 
High-risk HPVs, HPV coinfection, variants, genome integration, and infection of other STDs affect the 
propensity for HPV-induced cancer to occur and progress.
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