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13

Properties of Matter

13-1 Internal Forces

When a system is subjected to external forces, it generally undergoes a
change in size or shape or both. We have thus far touched very lightly on
such changes; for example, we have considered the change in length of an
elastic spring and the change in volume of a gas when such systems were
subjected to varying pressures. The changes produced in a system by the
action of external forces depend upon the physical properties of the material
of which the system is composed. A study of the properties of matter leads
to information which is of practical value to both the physicist and the
engineer, and also gives us some information about the internal forces
which act between the constituent parts of the substance. In the final
analysis these physical properties must be explicable in terms of the forces
between the molecules of the substance and, in some cases, between the
atoms of the substance.

We have so far discussed only one type of force which exists between
particles-the gravitational attraction of two particles because of their
masses. However, gravitational forces are much too small to account for
the observed properties of substances. Furthermore we frequently en­
counter cases in which a force of repulsion is needed to explain the phenom­
ena, whereas gravitational forces are always forces of attraction. One other
fact worth noting here is that the forces which act between molecules pro­
duce their effect only over very short distances, that is, distances of the
order of molecular diameters. These are called short-range forces. These
short-range forces are undoubtedly of electrical origin. As we proceed
with our study of physics, we shall study the forces between electrically
charged particles and show how these are thought to be related to the
structure of matter.

At present, there are 102 different elements known. A chemical
analysis of any substance will show that it is composed of one or more of
these elements. If the substance is a chemical compound, the elements
244
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Fig. 13-1 Photograph of a
large quartz crystal grown at
the Bell Telephone Labora­
tories. (Courtesy of Bell
Telephone Laboratories.)

composing it always occur in a definite ratio of their weights. More com­
plex substances consist of several or many compounds. The smallest
constituent of a chemical compound is the molecule; it is the fundamental
structural unit of the compound. A molecule is composed of one or more
atoms held together by the short-range forces due to their electrical charges.
As we shall show, an atom of an element consists of a very small but mas­
sive nucleus surrounded by a suitable number of electrons. The nucleus
consists of two kinds of particles: neutrons, which are neutral particles,
and protons, which are positively charged electrically. Every atom of any
one element has exactly the same number of protons in its nucleus. This
number is the atomic number of the element and can have one of the values
from 1 to 102, inclusive. In the normal state of the atom, the atomic
number also represents the number of electrons
outside the nucleus. Most of the chemical
properties of an element can be explained in
terms of the arrangement and behavior of the
electrons in the atoms. The electrons exert
forces of repulsion on each other and forces of
attraction on positively charged nuclei. When
a molecule is formed with two or more atoms,
there is a change in the electronic arrangement,
and a new arrangement of charges is produced.
This rearrangement is brought about by the
short-range forces which act between the atoms.

When the substance is in the solid phase,
the forces which exist between atoms and
molecules cause them to form definite geomet­
rical patterns; these show up as the crystalline
structure. Sometimes these crystals grow to
a fairly large size, as in the case of rock salt or
quartz (see Figure 13-1). Sometimes the crys­
tals are very small and can be seen only with the
aid of a microscope. Most metals consist of such microcrystals. Even in
the liquid phase, there is a definite grouping of the atoms and molecules,
although individual atoms and molecules often change places. The ar­
rangement of the atoms and molecules of a substance can be determined by
means of x-ray analysis (see Chapter 44).

In the gaseous phase, the molecules are comparatively far apart, so
that the forces they exert on each other are extremely small. It is this
aspect of the structure of gases which makes it possible to analyze the
behavior of gases almost without regard to their chemical nature, although
it is not possible to neglect the chemical differences in either the liquid or the
solid phase.
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13-2 Elasticity

The subject of elasticity has already been introduced in connection with
our discussion of periodic motion. In order to treat the elastic properties
of matter more quantitatively, and in a manner which is not dependent on
the configuration or shape of the body being studied, we find it convenient
to introduce two new terms: these are (a) stress and (b) strain.

Stress is defined as the internal force F, brought into play whcn the sub­
stance is distorted in any way, divided by the area A over which it acts.

Thus
F

Stress = - .
A

(13-1)

(13-2)

The stress is therefore the force per unit area. Clearly, the stress
indicated in Equation (13-1) is an average stress, for the stress in a mem­
ber may vary from point to point within that member, as in the case of a
bent beam, where one surface of the beam is in tension, while the other
surface of the beam is in compression. We shall restrict this discussion to
the simplest case, where the stress is uniform, and shall not attempt to treat
cases of variable stress for which the stress at a point would be defined
through a limiting process.

In the cgs system the stress is expressed in dynes per square centi­
meter; in the British gravitational system, in pounds per square foot; in the
mks system, in newtons per square meter.. In most engineering practice
the stress is expressed in pounds per square inch.

Strain is defined as the ratio of the change in size or shape to the original
size or shape. As a ratio, strain has no physical dimensions; that is, it has
numerical value only. Methods of expressing the strain will be given in the
discussion of the various cases.

The relationship between stress and strain was first given by Robert
Hooke (1635-1703) and is known as Hooke's law. This states that for an
elastic body the stress divided by the strain is a constant, or,

Stress = K
Strain '

where K is called the modulus of elasticity. The units for K are the same
as those for stress, since strain is expressed as a pure number.

13-3 Tensile Stress and Strain

As an example of the stress set up inside a substance, let us consider the
increase in the length of a rod produced by the action of two forces, each
equal to F, applied at the ends of the rod, as shown in Figure 13-2(a).
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These forces are applied by means of clamps C1 and C2 attached to the ends
of the rod.

If L is the original length of the rod, and if I:1l is the increase in length
produced by the application of the forces F, then the strain produced is

S
. increase in length I:1l

tram = = - . (13-3)
original length L

(b)

Tensile stress in a rod.

(a)

L

Fig. 13-2

To determine the stress in the rod,
let us take any cross-sectional area A
through the rod and consider the forces
which act on it, as in Figure 13-2(b).
The entire rod is in equilibrium under
the action of the two external forces,
each of magnitude F but acting in oppo­
site directions, so as to extend the rod.
These forces produce a tension in the
rod. Let us consider an area A near the
clamp C2 ; it is acted on by the external
force F downward, and, since it is in equi-
librium, it must also be acted upon by a
force F upward exerted by that part of
the rod which is immediately above this
area. If we take any other parallel
cross-sectional area A, it will be acted
upon by a force downward equal to F ex­
erted by that part of the rod below it, and
another force equal to F exerted by that
part of the rod above it. The effect of
these two forces is to tend to separate the
rod across this section; it is opposed by
the forces of attraction between the molecules on the two sides of this sec­
tion. The stress in the rod is the quotient of one of these forces F by the
cross-sectional area A, or

F
Stress = -.

A

This type of stress is called a tensile stress.
If the material of the rod is elastic, then we know, from Hooke's

law, that

Stress = K
Strain .

Putting in the values of stress and strain found above, and replacing the
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(13-4)

letter j{ by Y, we get

FIA = y
till J.1 •

Y is called Young's modulus after Thomas Young (1773-1829), an
eminent British physician, physicist, and linguist who made significant
contributions to the study of vision and the theory of light, and who
deciphered Egyptian hieroglyphics, in addition to his studies in elasticity.
The values of Y for several substances are listed in Table 13-1.

TABLE 13-1 ELASTIC CONSTANTS OF SOME SOLIDS

Young's Modulus Shear Modulus Bulk Modulus

Material In In In In In m
dynes/cm 2 lb/in. 2 dynes/cm 2 Ib/in. 2 dynes/cm 2 lb/in. 2

X10 11 , XlO" X10 11 X 10" X10 11 X10"

,\luminum,
rolled 6.96 10.1 2.37 3.44 7. 10.

Brass 9.02 13.1 3.53 5.12 6.1 8.5
Copper,

rolled 12.1 -12.9 17.5 -18.6 4.24 6.14 14 21
Duralumin 6.89 10.0 2.75 3.98
Iron, cast 8.4 - 9.8 12-14 ... . .. 9.6 14
Glass, crown 6.5 - 7.8 9.5 -11.3 2.6 -3.2 3.8 - 4.7
Lead 1.47- 1.67 2.13- 2.42 0.54 0.78 0.8 1.1
l'\ickel 20.0 -21.4 29.0 -31.0 7.06-7.55 10.24-10.95
Platinum 16.67 24.18 6.42 9.32
Silver, hard

drawn 7.75 I 11.24 2.00 3.77
Steel,

annealed 20.0 29.0 8.11 11.76 16 23
Tin 3.92- 5.39 5.69- 7.82 1.67 2.42
Tungsten,

drawn 35.5 51.5 14.8 21.5

The extent to which a substance remains elastic as the tensile stress
is increased can be determined only by experiment. Figure 13-3 shows the
results of a typical experiment on a metallic rod. In this figure the stress
is plotted as ordinate and the strain as abscissa. The curve is obtained by
exerting a force, measuring the strain, increasing the force, measuring the
new strain, and so on. The straight-line portion of this curve, from 0 to
E, represents the values of the stress and the strain for which the rod is
elastic. If a stress of value CD is applied to the rod and then removed, the
rod will no longer return to its original length. It is said to have a per-



§13-3 TEXSIU: STRESS AND STRAIN 249

manent set. The point E is called the elastic limit of the material. At
point B the stress was great enough to break the rod. This value of the
stress is known as the ultimate stress or the breaking stress of the material.

B

Fig. 13 -3 Stress-strain curve
for a ductile material.

Illustrative Example. A piece of copper wire 0.0508 in. in diameter and 3 it
long is suspended from a rigid support and supports a load of 8 lb. Determine
(a) the stress in the wire, (b) the increase in length produced by the 8-lb load, and
(c) the strain produced.

(a) The wire has a cross-sectional area of 0.00203 in. 2• The stress in this
wIre IS

Stress = Ji'... = Hlb = 3 950~ .
A 0.00203 in. 2 ' in. 2

(b) The increase in length can be found from Equation (13-4), provided that
Y is known. From Table 13-1 the value of Young's modulus for copper is given

as 17.5 X 106 ~. Since both Y and the stress are expressed in the same units,
In. 2

there is no need to convert either quantity into units appropriate to the British
gravitational system, and we write

Y = F/A.
/:"l/L'

hence
F L

/:"l = - X-,
A Y

/:"l = 3 950~ 36 in. ,
, in.2 X lb

17.5 X 106 =----2
Ill.

/:"l = 0.008 in.

(c) The strain produced in the wire is

Strain = /:"l = O.OOK in. = 0.00022
f, ;~(j in. '

Strain = 2.2 X 10·.

The strain, 01' the fractional change in length, is about 2 parts in 10,000.
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13-4 Compressive Stress and Strain

If the ends of a rod of some material are subjected to the action of two
forces, each of magnitude F but directed so as to diminish its length, the
rod is said to be under compression, and the stress inside the rod is a com­
pressive stress, as illustrated in Figure 13-4(a). If we consider the forces
which act across any cross-sectional area A, that part of the rod to the right

~L -7-IA'----- ----.Jf-E--
(a) I

I

~,-- -!.A:>-'f'(~

F .f'i'-'rA'-'--------J)-L

(b)

Fig. 13-4 (a) Rod put under compression by action of two external forces each equal
to F. (b) Any cross section A is acted upon by an internal force F to the left due to
the section of the rod on the right, and by an internal force F to the right due to the
section of the rod on the left.

of this area exerts a force F to the left, while that part to the left of this
area exerts a force to the right, as shown in Figure 13-4(b). The compres­
sive stress in the rod is the quotient of one of these forces divided by the
area over which the force acts, exactly as in the case of the tensile stress.
The molecular forces brought into play by the action of the external forces
must be forces of repulsion. The strain produced by the compressive stress
is the ratio of the decrease in length ill to the original length, again exactly
as in the case of tensile strain. If the material of which the rod is made is
elastic, then experiment shows that, within the elastic limit, the compressive
stress divided by the compressive strain, or Young's modulus for compres­
sion, is identical with Young's modulus for tension for the same material.
In consequence, no distinction is made in tables between Young's modulus
for tension or for compression, and tabular values of Young's modulus are
intended for use in both types of stress.

13-5 Compressibility of Gases: Boyle's Law

The compressibility of gases was first studied by Robert Boyle (1627-1691).
Suppose we have a mass of gas in a cylinder with a tight-fitting piston,
on which a force F is exerted producing a pressure P = F / A, where A is
the area of the piston, as shown in Figure 13-5. The gas will be subject
to this pressure and will occupy a volume V determined by the distance of
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the piston from the end of the cylinder. By increasing the force on the
piston to a new value F l , the pressure on the gas will be increased to a new
value Pl. If the process takes place slowly, so that the gas remains at
constant room temperature, it is found that

or, stated in words, at constant temperature the volume of a gas varies
inversely as the pressure. A more convenient way to express the same
result is

PIVI = PV = a constant; (13-5)

F

that is, the product of the pressure and volume
of an enclosed gas remains constant if the tem­
perature is constant. This statement is known
as Boyle's law.

Since the mass of gas within an enclosed
system remains constant, we can determine the
manner in which the density of a gas varies
with pressure by dividing both sides of Equa­
tion (13-5) by the mass M of the gas within
the cylinder. We obtain

p

v

or

PI

MIV I

P

Jl/V'

PI= -,
P

(13-6)

Fig. 13-5 Gas in a cylinder
is compressed by increasing
the force on the piston; that
is, by increasing the pressure
of the gas.

in which P is the density of the gas at pressure P, and PI is the density of
the gas at pressure Pl.

Illustrative Example. A steel tank contains 2 ft 3 of oXYlI;en at a gauge pres­
sure of 200 Ibjin. 2. What volume will this gas occupy at the same temperature at
atmospheric pressure?

The gaulI;e pressure is the difference between the pressure of the gas in the
cylinder and the pressure of the atmosphere. Hence, the pressure PI of the
oXYlI;en in the cylinder is 214.71b jin. 2; the pressure P of the atmosphere is taken
as 14.7 Ibjin. 2• Using Boyle's law in the form of Equation (13-5) and substitut­
ing values, we get

Ib Ib
214.7- X 2ft 3 = 14.7- X V,

in. 2 in. 2
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13-6 Volume Change: Bulk Modulus

In both compressive and tensile stresses, the stress acts along one direc­
tion in the body and produces a change in only one dimension. The
change produced in the cross-sectional area of a rod under compression
or tension is practically negligible. To produce equal strains in all three
dimensions of a homogeneous solid, it is necessary to have equal stresses
along these three directions. The simplest method of doing this is to subject
the solid to a uniform hydrostatic pressure. Since the dimensions of the
solid are normally measured at some pressure Po which is generally the
atmospheric pressure, we are usually interested in the change in the dimen­
sions of the solid when it is subjected to a change in pressure from Po to a
different pressure Po + t:,.P. If we call V the volume of the solid and t:,.V
the change in volume produced by the change in pressure t:,.P, then, from
Hooke's law,

Stress t:,.p
--=--=K
Strain t:,.V IV .

Since an increase in pressure always produces a decrease in volume,
the modulus K for volume change will always be a negative number. To
avoid having a negative number, let us define the bulk modulus B = -K,
so that

R=
t:,.p

---.
t:,.VIV

( 13-7)

Not only solids but liquids and gases undergo volume changes when
subjected to changing pressures, and Equation (13-7) can be applied to
fluids as well as to solids. Since the denominator of Equation (13-7) is a
ratio of the change in volume to the volume, it is a pure number; hence the
bulk modulus is expressed in units of pressure, or force per unit area.

TABLE 13-2 BULK MODULUS OF LIQUIDS

Material

Carbon disulphide
Ethyl alcohol
Glycerin
Mercury
Nitric acid
Water

in dynes/cm 2 X 1011

0.15
0.09
0.45
2.6
0.03
0.23

The bulk modulus of a gas which obeys Boyle's law at constant tem­
perature is given by the pressure of the gas, for we may state Boyle's
law as

PV = constant,
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and, taking differentials of this equation, we find

PdV + V dP = 0,

and, solving for P, we find

P=
dP

---.
dV/V

If we replace the differentials by small increments so that the differential
dP is replaced by /1P and the differential dV is replaced by /1V, we have

/1P
P=-/1V/V=B.

From the above analysis it can be seen that, if the pressure of a gas is
changed by any amount while the temperature is kept constant, the bulk
modulus will vary and, at any stage of the process, will be equal to the
pressure of the gas at that stage. This is the reason that tires or basketballs
inflated to high pressures seem hard, or difficult to deform, while the same
object inflated to low pressure is easy to deform, or soft.

13-7 Shearing Stress and Strain

It is possible to produce a change in the shape of a solid without changing
its volume. Such a distortion is called a shear. A simple method of pro­
ducing a shear is illustrated in Figure 13-6(a). If we take a rectangular
solid and apply a force F along its top surface, and an equal force F acting
in the opposite direction along its bottom surface, the rectangular surfaces
such as BCDE at right angles to the top and bottom surfaces will be dis­
torted into parallelograms such as B'C'DE, whose angles are not right
angles. If we imagine the solid as made up of a series of layers parallel to
the top and bottom surfaces, each of area A, then the effect of the shear is
to cause one layer to slide with respect to another layer, much as in a deck
of cards.

The shearing stress set up on the solid is the force F divided by the
area A of the surface over which it acts. Each layer parallel to the top and
bottom surfaces is acted upon by two forces, as shown in Figure 13-6(b),
the layer above it exerting a force to the right, and the layer below it exert­
ing a force to the left. These forces between the molecules of the layers
oppose the sliding of one layer with respect to another. If the applied
force becomes too great, the solid will be sheared; that is, it will be separated
into two parts, with the surfaces of separation parallel to the direction of
the applied force.

The shearing strain produced is measured by the ratio of the distance
.:lx through which the top surface has been moved relative to the bottom
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surface, to the height h, that is, the distance between the two surfaces.
Thus

~x
Shearing strain = - .

h

It will be noted that the tangent of the angle B'EB is ~x/h.

A

A

/,
~ ,

/ ,
I,, ~

B ,/ C cr//
f--'T'----+-+-------~---'?

/ L1x/

/ / A
: I

E"-----+-----------"

G G'

(a)

E F

L1x B' ie'I ,r---------------,

hi / :
I / /
I : ===0

F

El

1

,/ /

- tD

(b)

Fig. 13-6 (a) Shearing stress set up in a solid by parallel forces F acting on top and
bottom surfaces each of area A. Rectangle BCDE is distorted into parallelogram
B'C'DE. There is no change in the volume of the solid. (b) Shaded area is section
of layer in the solid parallel to top and bottom surfaces. Shearing strain is t:>x/h.

(13-8)

Applying Hooke's law, we get for the shear modulus M,

F/A
M = ~x/h'

and once again we note that the units of the shear modulus are the units of
force per unit area.

When a thin-walled tube or a rod is twisted, its deformation depends
on the shear modulus. The force constant of a helical spring may be com­
puted from the dimensions of the spring and the shear modulus of the wire
from which it is made. When a spring is elongated or compressed, the wire
from which it is made does not stretch, but rather, any short length of the
wire acts like a rod which is being twisted.
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While we have defined three constants of elasticity as though they
were completely independent, it may be shown that, for a homogeneous
material in which the elastic properties are the same in every direction,
only two of these constants are independent, and the third may be ex­
pressed in terms of the other two.

While all three of the elastic constants are meaningful for solids, only
the bulk modulus has meaning for fluids. This is because neither a liquid
nor a gas is capable of supporting a tensile or a compressive stress, nor can
either of these fluids support a shearing stress under ordinary conditions.
When a fluid is subjected to a shearing stress, the upper surface acquires
a uniform velocity with respect to the lower surface of Figure 13-6, as we
have seen in the discussion of viscosity. Only the bulk modulus is appro­
priate to a liquid or gas, for these are capable of withstanding only hydro­
static pressures.

Illustrative Example. Two clamps are fastened near the ends of a rectan­
gular steel rod 5 in. long. The rectangular cross section of the rod has an area of
2.5 in. 2

• A force of 800 lb is exerted on each of these clamps parallel to this area
but in opposite directions. Determine (a) the shearing stress, (b) the shearing
strain, and (c) the relative displacement of the top surface with respect to the
bottom surface.

(a) The shearing stress is

!... = 800 lb = 320~ .
A 2.5 in. 2 in. 2

(b) The shearing strain can be found by solving Equation (13-8) for t::..xjh,
obtaining

t::..x 320 -6- = ---- = 27.2 X 10 .
h 11.8 X 106

(c) Since h = 5 in.,

so that

t::..x = 5 in. X 27.2 X 10-6•

t::..x = 1.36 X 10-4 in.

for the relative displacement of the two surfaces.

13-8 Cohesion and Adhesion

The fact that molecular forces have a short range would lead us to expect
some distinctive types of phenomena to be observable at the surfaces of
substances. Conversely, the appearance of these surface phenomena
should lead to information about these molecular forces. For example, if
we take two pieces of metal, each with an accurately plane surface, and
bring them together, there will be no observable force between them until
the two surfaces are placed in contact. Once they are placed in contact,
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a very great force will be required to pull them apart. This experiment,
which can readily be performed with two pieces of steel or two pieces of
lead, shows that the forces between the molecules in the two surfaces have
a very short range of effectiveness. It is for this reason that a bearing in
which a shaft rotates is never made of the same material as the shaft
itself. The force of attraction between molecules of the same substance
is sometimes called cohesion.

mi~---~~~.··'
-----~---------_.------_.----
~-=--=----=-==._-~=-- -- ----=--:-=

Fig. 13-7 Free surface of water in
a glass jar is level (horizontal) except
near the glass.

Fig. 13-8 Level of water in a cap­
illary tube is at a height h above
level in the large vessel.

If some water is poured into a glass vessel, the free surface of the water
will be a level surface, except at the region of contact with the glass; at
this region, the water will be seen to cling to the glass for a short distance
above the level surface, as shown in Figure 13-7. This phenomenon can be
accentuated by immersing a glass tube with a narrow bore, a capillary tube,

(0) (b)

Fig. 13-9 Level of mercury in a
glass capillary tube is at a level h
below that in a large vessel.

Fig.13-10 (a) U tube containing
mercury. (b) U tube containing
water.

into the water, as in Figure 13-8. The level of the water inside the capillary
tube will be found to be considerably higher than the level inside the larger
jar, and an examination of the surface of the water in the capillary tube
shows that it is not plane but is concave, and spherical in shape. Not all
liquids behave like water. For example, if a glass capillary tube is im­
mersed in mercury contained in a larger dish, as in Figure 13-9, the level
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of the mercury will be lower in the capillary tube than in the dish. If a
glass U tube is constructed with one arm about 1 cm in diameter and the
other about 0.2 cm in diameter, and mercury is poured into the tube, the
level in the narrower tube will be lower than in the wider tube, while if
water is poured into such a U tube, the level of the water will be higher in
the narrower tube, as shown in Figure 13-10.

One method of accounting for the behavior of liquids in capillary tubes
is to assume that there are forces of attraction, also of short range, between
the molecules of the liquid and the molecules of the solid at the surfaces

Air
Glass --

Woter:o

(a) (b)

Air

(e)

Fig. 13-11 Angles of contact. (a) 0° between water and glass; (b) angle of contact
o < 90° between a liquid and glass; (c) angle of contact 0 > 90° between mercury and
glass.

of contact. This type of attractive force between molecules in the surface
of one substance for those in the surface of another substance is sometimes
called adhesion, to distinguish it from the force of cohesion between like
molecules. If the force of adhesion is greater than the force of cohesion,
the liquid will cling to the solid surface; that is, it will wet the solid. If the
force of cohesion is greater than the force of adhesion, the liquid will cling
to itself; that is, it will tend to form droplets when placed on a smooth sur­
face, rather than spreading out to wet the surface.

The angle between the liquid surface and the solid surface at the region
of contact is an indication of the relative values of the forces of adhesion and
cohesion. This angle is known as the angle of contact. For water and glass
the angle of contact is practically 0°, while for some other liquid, the angle
of contact will have some value 8, as shown in Figure 13-11. If the force of
cohesion is much greater than the force of adhesion, as in the case of
mercury and glass, the angle of contact 8 is greater than 90°. For mercury
and glass, 8 = 139°. Values of some contact angles are given in Table 13-3.

13-9 Surface Tension

We have seen that the liquid inside a capillary tube has a curved surface,
and, if the tube is cvlindrical, the surface of the liquid may he nearly
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TABLE 13-3 CONTACT ANGLES

Liquid Tube Angle, Degrees

Alcohol Glass 0
Ether Glass 0
Glycerin Glass 0
Mercury Glass 139
Water Glass 0
Water Paraffin 107

spherical. The interesting phenomena associated with liquid surfaces
can be most easily explained by introducing the concept of surface tension.

That a liquid surface behaves as though it is under tension can be
demonstrated in a variety of experiments. Let us construct a rectangular
wire frame having one side movable; this can be done by curving the ends
of a wire AB so that it slides easily on two legs of the frame, as in Figure

c

A

-L--.f-
;/;/

,:':/!;

B
(0)

Fig. 13-12 (a) Wire frame with mova­
ble slide AB used to measure the surface
tension of a film in the frame ABCD.
(b) Shows the thickness of the film.

o A
~.

C B

(b)

13-12. We can pick up a film on this frame by dipping it in a soap solution.
This film will have two rectangular surfaces. The film will tend to con­
tract, and, since AB is movable, the film will pull this wire toward CD with
some force F.

To keep the wire AB in equilibrium, a force F to the right has to be
applied to it. This force can be used to measure the surface tension. The
force exerted on the wire depends on the length of the wire. We define
the surface tension S as the force exerted by a .single ElI1:face on a section of
unit length. In this example the force exerted by eaeh surfaee is F /2. If
1 is the length of the wire, the surface tension is therefore

F
S =-.

2l

If the surface area is increased by moving the wire AB through a
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distance x, the work done is

and, since

therefore

)f/ = Fx,

P = 2l8,

;f/ = 8 X 2lx.
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Now 2lx is the increase in surface area of the film; setting 2lx = A,
we find

)f/
8=-·

A
(13.9)

The surface tension thus represents the work done per unit area in increas­
ing the area of a film. From mechanics we know that the most stable
configuration of a mechanical system is the position of lowest potential
energy. Thus a soap bubble or a water droplet assumes a spherical shape,
for the spherical surface contains the greatest volume per unit of surface
area of any three-dimensional figure and is therefore the surface of lowest
energy.

The surface tension of a liquid depends on the nature of the liquid and
the nature of the substance outside the liquid surface, that is, whether it is
air or the vapor of the liquid itself. The values of the sunace tensions of
liquids are given in Table 13-4. The sunace tension also depends on the
temperature of the system, decreasing as the temperature rises.

TABLE 13·4 SURFACE TENSION

Liquid in Contact
with Ail'

Ethyl alcohol
Water

Mercury
Olive oil
Glycerin
Soap solution

Temperature
in °C

20
o

20
60

100
25
20
20

Surface Tension in
dynes/cm

22.3
75.6
72.8
66.2
58.9

473
32
63.1
26

Soap films provide an analogue solution to many engineering problems.
The soap film has the property that the surface tension at every point in
the surface is a constant. In an ideal engineering structure every element
might well be stressed to the same tensile or compressive stress, to gain the
maximum strength per unit weight of the total structure. Suppose one
wished to design a Plexiglas dome for a pressurized vessel in which the
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opening was to be of irregular shape. One way to find the best shape for
the dome is to build a model vessel with the desired opening, cover the
opening with a soap film, and blow a bubble. The soap bubble automati­
cally will come to the best design shape for the desired pressure differential.
If proper scaling factors are known, the design of the desired dome may be
determined from this experiment.

13-10 Pressure and Curved Surfaces

Let us consider the forces holding a spherical surface together. Suppose a
sphere of radius R is imagined to be parted by a plane diaphragm, as shown
in Figure 13-13. Let us imagine that the upper (dotted) part of the sphere

Fig. 13-13

R
e

------
//--

//
/

/
/

I
/

I
I
I
I
I
I
I
I
\
\
\
\

\.~~~+==~

(13-10)or

has been removed. The interior of the cap contains fluid at pressure PI
which is greater than the pressure Po outside the volume bounded by the
cap and diaphragm. The force which tends to blow the diaphragm off the
spherical cap is given by the difference in pressure PI - Po multiplied by
the area of the diaphragm 1r(R cos 8)2. The only force which tends to hold
the spherical cap to the diaphragm is the surface tension 8, whose com­
ponent perpendicular to the diaphragm is 8 cos 8. The total force exerted
by the surface tension is the product of the perpendicular component by
the perimeter of the circle which bounds the diaphragm and the spherical
cap, for, by definition, the surface tension is a force per unit length of
surface. The spherical cap will be in equilibrium on the diaphragm when
these two forces are equal. Thus

(PI - Po) X (1rR 2 cos2 8) = (8 cos 8) X (21rR cos 8),

'28
PI -- Po = -- .

H
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Equation (13-10) has been deduced by replacing the upper (dotted) portion
of the sphere by an imaginary diaphragm. We may now imagine the dotted
portion of the sphere to be replaced over the lower spherical cap, and the
diaphragm removed. The equation now describes the relationship between
the gauge pressure within the sphere PI - Po, the surface tension 8, and
the radius R of the sphere.

Thus the difference in pressure on the two sides of a spherical surface
due to the surface tension depends inversely on the radius of the sphere.
Po is the pressure on the convex side of the surface and PI is the pressure
on the concave side. The above result is not dependent on the angle (J and
is therefore independent of the size of the spherical cap analyzed. It applies

Fig. 13-14 A soap bubble has two
spherical surfaces whose radii R 1 and R 2

differ very slightly.

to a whole sphere or any part of it. Thus the pressure inside a water
droplet is greater than the atmospheric pressure, and the pressure inside
a small droplet is greater than the pressure inside a large droplet. When
two water droplets are placed in contact, the water tends to move from a
region of high pressure into a region of low pressure, and the large droplet
swallows the small one. From yet another point of view, Equation (13-10)
shows why water droplets at rest are spherical rather than, say, pear­
shaped, for the water within the smaller end would be at higher pressure
than the water at the large end of a pear-shaped droplet. Equation (13-10)
is applicable to the determination of the stress in any spherical shell. In a
metallic shell of a given thickness, the stress must be multiplied by the
thickness of the shell to give a quantity whose dimensions are force per
unit length. In this way we can determine the pressure differential a
spherical shell can withstand, or the breaking strength of a spherical
diaphragm.

In the case of a soap bubble blown in air, the pressure difference is
practically twice as great as given by Equation (13-10), that is, 48/R, since
a soap bubble has two spherical surfaces of radius R I and R2 , as in Figure
13-14. Since the thickness of the soap film is very smaIl, the difference
between the two radii may be neglected, and in the equation for the pres­
sure differential between the inside and the outside of the bubble we simply
write the average radius R for the radius of the bubble.

Illustrative Example. Determine the gauge pressure inside a small raindrop
3 mm in diameter.
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The gauge pressure is Pi - po. for the pressure Pi is the pressure inside the
spherical surface, and the outside pressure Po is the atmospheric pressure. Sub­
stituting 8 = 73 dynes/em for the surface tension of water, and R = 0.15 em
in Equation (13-10), we find

PI _ Po = 2 X 73 dynes/em,
0.15 em

PI - Po = 973 dynes/em 2•

13-11 Capillarity

We have already seen that, if a capillary tube is inserted into a liquid, the
levels inside and outside the tube will differ by an amount h. In some cases
the liquid will be higher in the capillary tube; in other cases it will be lower,
depending upon the relative values of the forces of adhesion and cohesion.
Furthermore, the surface of the liquid in the capillary tube, sometimes
called the meniscus, may be approximated as spherical, if the bore is
cylindrical and of sufficiently small diameter.

The concept of surface tension, and the pressure differences associated
with curved surfaces discussed in the preceding paragraphs, enables us to
obtain a simple relationship between the difference in levels h inside and
outside a capillary tube and the radius r of this tube. Let us suppose that
the angle of contact between the liquid and the material of the capillary
tube is e. The meniscus is of spherical shape of radius R such that

R cos e = r.

If, as in Figure 13-15(a), we complete the spherical surface generated
by the meniscus in dotted lines, we see that the atmosphere is inside the
sphere and that the liquid in the capillary tube is outside the sphere. Thus
the pressure in the liquid just outside the meniscus must be below atmos­
pheric pressure by an amount given by Equation (13-10).

28
PI - Po =-,

R

28
P atm - Pliquid = -/e'r cos

28 cos e
P atm - Pliquid = --­

r

The pressure at the free surface of the liquid outside the capillary tube is the
atmospheric pressure, and at the same level inside the capillary tube the
pressure must also be atmospheric. But the pressure beneath the meniscus
has been reduced by an amount given by the formula above, so that the
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meniscus must rise until the hydrostatic pressure generated by the column
of liquid is equal to the reduction in pressure generated by the curvature
of the meniscus, and we have

28 cos e
hpg = ,

r

28 cos e
h = ,

rpg

where p is the density of the liquid.

(13.11 )

.----..- '/' ....
/ ,

I \

f It \I I
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.... rcL.. /

(a) (b)
Fig. 13-15 Surface-tension forces in capillary tubes (a) when contact angle 0 is less
than 90°; (b) when contact angle 0 is greater than 90 0

•

The same analysis will hold if the surface in the capillary tube is de­
pressed by an amount h, as in Figure 13-15(b). Here the liquid may be
thought of as being inside the sphere and at a higher pressure than the
atmospheric pressure. In Equation (13-11), when the angle of contact is
greater than 90°, the value of its cOi3ine is a negative number, hence h will
be negative, indicating that the level is depressed in the capillary tube.

From Equation (13-11) we see that a liquid will rise higher in a capillary
tube of small bore than in a tube of large diameter. Capillary action is the
basis of operation of mops, of sponges, of lampwicks, and of many other
devices, where the fine spaces between the threads act as capillary tubes.
In reading a mercury barometer, correction must be made for the effect
of surface tension upon the height of the mercury column in order to obtain
accurate measurements of the atmospheric pressure, for the height of the
column is depressed from its true height by capillary action, which depends
upon the diameter of the tube.
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(13-11)

Illustrative Example. Two glass capillary tubes, each 1 mm in radius, are
put into two different liquids, one in water and the other in mercury. Compare
the liquid levels in the two tubes.

Let us take the level of the liquid outside each capillary tube as the zero
reference level. From Equation (13-11) the level of the liquid inside the capillary
will differ from that outside by an amount

h = 28 cosf}.
rpg

For the case of water, f} = 0°, hence cos f} = 1; S = 73 dynes/em, r = 0.1 em,
p = 1 gm/cm 3, and g = 980 cm/sec 2• Letting h = hI for water, we get

hI = 2 X 73 dynes/em ,
0.1 em X 1 gm/cm 3 X 980 cm/sec 2

from which
146

hI = - em = 1.5 em.
98

For the case of mercury, f} = 139°, hence cos f} = cos 139° = - cos 41 ° = -0.755;
8 = 473 dynes/em, r = 0.1 em, p = 13.6 gm/cm3 , and g = 980 cm/sec 2

• Letting
h = h2 for mercury, we get

h 2 =

from which

2 X 473 dynes/em X 0.755
--------''-------'------- ,
0.1 em X 13.6 gm/cm 3 X 980 cm/sec 2

h2 = -0.536 em.

13-12 Phenomena Associated with Surface Tension

There are many phenomena associated with surface tension, a few of which
will be described here. For example, if a drop of oil is allowed to fall on a
large clean surface of water, the oil will spread out over this surface until it is
1 molecule thick; it forms a monomolecular layer. If the volume of the
original oil drop is known, and if the area of the monomolecular layer is
measured, its thickness can be computed. This thickness will then give us
one dimension of the oil molecule. Studies of the structure of oil molecules
by means of x-rays show that they are not spherical but have one long
dimension and two shorter dimensions. In a monomolecular layer, the
molecules stand on end, so that a measure of the thickness of the oil film
will yield the longest dimension.

If two small wooden matchsticks are floated near each other on the
surface of water, they will be pulled toward each other. The liquid be­
tween the matchsticks is raised to a level higher than the rest of the surface
by the surface tension; the pressure in the liquid between the sticks is thus
decreased to a value less than atmospheric pressure. If a drop of alcohol is
placed between them, the two matchsticks will be pulled apart. The effect
of the alcohol is to decrease the surface tension; that is, the surface tension
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of the solution of alcohol in water is less than that of pure water. The
difference in the surface tensions of the two sides of each stick supplies the
forces which pull them apart.

When small pieces of camphor are dropped onto a clean surface of
water, these pieces will perform very erratic motions. Although camphor
is soluble in water only to a very slight extent, wherever it is dissolved,
the surface tension is reduced. Each little piece of camphor will experience
forces caused by the different surface tensions around it, and these forces
set the particle in motion. The motion will cease when the surface tension
becomes uniform and equal to that of the solution of camphor in water.

Problems

13-1. A copper wire 80 cm long and 0.25 cm in diameter is suspended from a
rigid framework. A body whose mass is 5 kg is hung at the end of the wire.
Determine (a) the stress in the wire and (b) the strain produced.

13-2. A steel wire 1.5 m long and 0.04 cm in diameter supports a cylinder
whose mass is 4.0 kg. Determine (a) the stress in the wire, (b) the strain pro­
duced, and (c) the elongation of the wire.

13-3. A brass wire 3.0 ft long and 0.04 in. in diameter supports a body whose
weight is 3 lb. Determine (a) the stress in the wire, (b) the strain produced, and
(c) the increase in length of the wire.

13-4. A brass wire 4.0 m long and 2.0 mm in diameter is suspended from a
hook in a beam in the ceiling. A cylinder whose mass is 6.0 kg is hung from the
other end. Determine the increase in length of the brass wire.

13-5. An aluminum wire 200 cm long and 0.5 mm in diameter has a series of
cylinders hung from it in succession. Each cylinder has a mass of 10 gm. The
measured changes in length expressed in centimeters, as determined by a telescope
and scale method, are: 0.0014, 0.0029, 0.0042, 0.0056, and 0.0070. Plot a graph
with the stress as ordinate and the strain as abscissa; from the slope of this
graph, determine Young's modulus for this aluminum wire.

13-6. A steel rod 6.0 in. long and 0.5 in. in diameter is to be used as a piston
in a cylinder to produce a pressure of 2,000 Ib/in. 2• Determine the decrease in
length of the rod produced by this stress.

13-7. Glycerin is subjected to a pressure of 850 atm. Determine the per­
centage change in its volume.

13-8. Determine the bulk modulus of an oil if a volume of 1,000 cm" shows a
decrease in volume of 0.3 cm" when subjected to a pressure of 12 atm.

13-9. A cube of copper 5 cm on an edge is subjected to two oppositely
directed shearing forces along two of its faces. Each force is 900 nt. Determine
(a) the shearing stress, (b) the shearing strain, and (c) the angle, in degrees,
through which the cube has been sheared.

13-10. The maximum permissible design stress for an elevator cable is
10,000 Ib/in. 2• What diameter cable should be used for an elevator weighing 2
tons when fully loaded, if the acceleration is to be 10 ft/sec 2?

13-11. A brass rod and a copper rod, each 2 ft long and 1 in. in diameter, are
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joined at one end, and the eombined rod is subjected to a compressive foree of
10,000 lb. Find (a) the stress in eaeh rod and (b) the strain in each rod.

13-12. What is the density of water at a point where the pressure is 100 atm
if the density at sea level is 1 gmlem3?

13-13. Suppose that a square specimen of eross-sectional area A is placed in
tension by equal and opposite forees F applied to its ends. Caleulate the tensile
stress (stress component perpendieular to the face) and the shear stress (stress
component parallel to the face) aeross a plane faee inclined at an angle (J to the
normal cross section of the speeimen. (a) At what angle is the tensile stress a
maximum? (b) At what angle is the shear stress a maximum?

13-14. Three eapillary tubes of diameters 0.5 mm, 1.0 mm, and 1.5 mm,
respectively, are supported in a jar of water. Determine the height to which the
water will rise in each of these tubes.

13-15. Three holes of diameters 1.0 mm, 1.5 mm, and 2.0 mm, respectively,
are bored in a block of paraffin. The paraffin is partly immersed in water. Deter­
mine the level of the water in each hole.

13-16. A capillary tube 1.0 mm in diameter is placed in a soap solution of
density 1 gm/cm 3. The liquid in the tube rises to a height of 0,45 em above the
level of the rest of the surface. Determine the surface tension of this solution,
assuming the eontact angle to be zero.

13-17. A soap film is formed on a rectangular frame 2 em by 8 em, as in
Figure 13-12. (a) Determine the foree that the film exerts on the shorter wire.
<b) If this wire is moved through a distance of 5 em, determine the amount of
work done. Assume that the temperature remains constant in this process.

13-18. Calculate the gauge pressure inside a raindrop which is 4 mm in
diameter. Assume the temperature to be 20°C.

13-19. Calculate the gauge pressure inside a drop of mercury whose tem­
perature is 25°C and whose diameter is 4 mm.

13-20. Determine the gauge pressure inside a soap bubble which is 5 em in
diameter. Assume the temperature to be 20°C.

13-21. Two rectangular glass plates are spaced 1 mm apart. They are
partly immersed in a dish of water at 20°C, with the plates placed so that the air
space between them is in a vertical plane. Determine how high the water will rise
in this air space above the level of the water in the dish. [NOTE: Consider the
forces acting on a surface film 1 em wide in contact with each plate. Balance
these forces against the weight of water lifted through a height h.]

13-22. A hollow glass tube has a soap bubble of 5 em diameter formed on
one end and another soap bubble of 2 em diameter formed on the other end.
Determine the pressure difference at the ends of the tuhe. Explain what will
happen as a result of this pressure difference.

13-23. Two glass plates, each having a large surface, are clamped together
along one edge and separated by spacers a few millimeters thick along the oppo­
site edge to form a wedge-shaped air film. These plates are then placed vertically
in a dish of colored liquid. Calling x the horizontal distance measured from the
edge where the thickness of the air film is zero, show that the vertical distance y
through which the liquid rises in the air space varies inversely as x. [NOTE: The
thickness of the ail' film increases as the distance x increases.]


	Physics, Chapter 13: Properties of Matter
	

	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266

