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[1] Process-based vadose zone models are becoming common tools for evaluating spatial
distributions of groundwater recharge (GR), but their applications are restricted by
complicated parameterizations, especially because of the need for highly nonlinear and
spatially variable soil hydraulic characteristics (SHCs). In an attempt to address the
scarcity of field SHC data, pedotransfer functions (PTF) were introduced in earlier
attempts to estimate SHCs. However, the accuracy of this method is rarely questioned in
spite of significant uncertainties of PTF-estimated SHCs. In this study, we investigated the
applicability of coupling vadose zone models and PTFs for evaluating GR in sand and
loamy sand soils in a semiarid region and also their sensitivity to lower boundary
conditions. First, a data set containing measured SHCs was used in the simulations. A
second data set contained correlated SHCs drawn from the covariance matrix of the first
data set. The third SHC data set used was derived from a widely used PTF. Although
standard deviations for individual parameters were known for this PTF, no covariance
matrix was available. Hence, we assumed that the parameters of this PTF were
uncorrelated, thereby potentially overestimating the volume of the parameter space.
Results were summarized using histograms of GR for various sets of input parameters.
Under the unit gradient flow lower boundary condition, the distributions of GR for sand
and loamy sand significantly overlap. Values of GR based on mean SHCs (or GR*)
generally lie off the mode of the GR distribution. This indicates that the routinely used
method of taking GR* as a regional representation may not be viable. More importantly,
the computed GR largely depends in a nonlinear fashion on the shape factor n in the
van Genuchten model. Under the same meteorological conditions, a coarser soil with a
larger n generally produces a higher GR. Therefore, the uncertainty in computed GR
is largely determined by the uncertainty in estimated n by PTFs (e.g., mean and standard
deviation). Under the constant head lower boundary condition, upward soil moisture
flux may exist from the lower boundary. Especially for regions with shallow water tables
where upward flux exists, choosing an appropriate lower boundary condition is more
important than selecting SHC values for calculating GR. The results show that the
distribution of GR is less scattered and GR is more intense if the constant head lower
boundary is located at deeper depths.

Citation: Wang, T., V. A. Zlotnik, J. Šimunek, and M. G. Schaap (2009), Using pedotransfer functions in vadose zone models for

estimating groundwater recharge in semiarid regions, Water Resour. Res., 45, W04412, doi:10.1029/2008WR006903.

1. Introduction

[2] Analysis of groundwater sustainability in semiarid
areas relies on the knowledge of spatial distributions of
groundwater recharge (GR) [Scanlon et al., 2006]. Although
various approaches have been developed on the basis of

different physical, chemical, mathematical, and isotopic
techniques [Lerner et al., 1990; Hendrickx and Walker,
1997; Scanlon et al., 2002], estimation of GR still remains
one of the most difficult tasks in hydrology [National
Research Council, 2004], as GR may substantially vary
across landscapes because of spatial variations in soil texture,
vegetation, climate forcing, and hydrologic boundary con-
ditions. Compared to methods that yield an areal-averaged
GR (e.g., catchment water balance method), hydrodynamic
process-based vadose zone models are becoming common
tools for evaluating GR and its spatial distribution [Keese et
al., 2005; Small, 2005; Nolan et al., 2007]. However, the use
of vadose zone models is usually restricted by complicated
parameterizations, especially because of lack of in situ soil
hydraulic characteristics (SHCs). Instead of measuring in situ
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SHCs, estimation techniques have been developed such as
pedotransfer functions (PTF) [Wösten et al., 2001]. On the
basis of regression analysis of existing soil databases, PTFs
convert easily measurable soil properties (e.g., soil texture,
porosity, and bulk density) to SHCs. With the help of PTFs,
vadose zone models have been used for evaluating spatial
distributions of GR at large scales [Nolan et al., 2003, 2007;
Keese et al., 2005; Small, 2005; Anuraga et al., 2006].
[3] Using class-averaged SHCs for different soil textures

[Schaap et al., 2001] and a vadose zone model, Small
[2005] analyzed impacts of soil texture and climatic forcing
on GR in the southwestern United States. The study showed
that GR can occur from infrequent storms in coarser soils
when the ratio of precipitation (P) to potential evapotrans-
piration (ETp) exceeds 0.4, but cannot occur in finer soils
when P/ETp < 0.8. Keese et al. [2005] also used mean SHCs
estimated by the Rosetta program [Schaap et al., 2001] to
evaluate GR in Texas and assessed impacts of climate,
vegetation, and soil texture on GR. The study showed that
GR is higher in bare and homogeneous sand and can be
reduced by factors of 2–11 for soils whose textures vary
with depth. On the basis of a similar method [Keese et al.,
2005; Small, 2005], Anuraga et al. [2006] found that GR in
south India is more affected by soil texture than by land use.
[4] Previous studies that coupled vadose zone models and

PTFs have shown the significant impact of SHCs on eval-
uating GR under varying vegetation and climatic conditions.
However, the use of mean SHCs for evaluating GR, which is
then routinely taken as a regional representation, might be
questionable because of significant uncertainties associated
with PTF-estimated SHCs [Schaap and Leij, 1998; Schaap
et al., 2001]. Nolan et al. [2007] estimated GR in the eastern
United States using both the unit gradient Darcian method
with mean SHCs taken from PTFs and a chloride mass
balance method. The study showed that the GR estimated by
the Darcian method exhibits higher spatial variability be-
cause of the uncertainty in estimated SHCs [Nolan et al.,
2007]. Faust et al. [2006] also pointed out that GR estimated
at basin scales depends on the choice of PTFs. It is thus
imperative to assess the impact of the uncertainty of PTF-

estimated SHCs on GR, especially when using only mean
SHCs for GR evaluations [Keese et al., 2005; Small, 2005].
[5] In most studies, the unit gradient flow condition is

generally assumed at the lower boundary of the vadose zone
[Nolan et al., 2003, 2007; Keese et al., 2005; Small, 2005].
This boundary implies that water that passes downward
across the boundary does not return to the simulated
domain. However, such an assumption may not hold in
regions of shallow water tables, as studies [Gillham, 1984;
Wu et al., 1996; Batelaan et al., 2003] have shown
significant impacts of water table on GR through processes
such as capillary rise or groundwater evapotranspiration.
[6] This study investigates the impact of the uncertainty of

PTF-estimated SHCs on computingGRby varying soil texture
and lower boundary condition. To be consistent with previous
studies, groundwater recharge (GR) is defined here as the
amount of water leaving the simulated domain (i.e., lower
boundary). A commonly used vadose zonemodel, Hydrus-1D
[Simunek et al., 2005] was chosen because its accuracy has
been verified by analytical techniques [Zlotnik et al., 2007].
Soil types of sand and loamy sand were selected. For each soil
type, three data sets with the van Genuchten parameters were
used. The first data set contained measured SHCs and is
referred to as the measured data set. The second data set
contained correlated SHCs that were drawn from the covari-
ance matrix of the first data set. The third data set was derived
from a widely used PTF [e.g., Schaap et al., 2001]. Although
standard deviations for individual parameters were known for
this PTF, no covariancematrix was available, and therefore the
parameters of the generated SHCs were assumed to be
uncorrelated in this study. The hydrometeorological and
phenomenological data needed for the simulations were mea-
sured at the University of Nebraska’s Barta Brothers Ranch
Site (BBRS) in the eastern Nebraska Sand Hills.

2. Materials and Methods

2.1. Study Area

[7] This study was performed as a part of the Grassland
Destabilization Experiment (GDEX) at the Barta Brothers

Figure 1. Location of the Barta Brothers Ranch Site (BBRS) in the Nebraska Sand Hills (contoured
area indicates the Sand Hills).
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Ranch Site (BBRS) (Figure 1), which investigates the
ecological and geomorphic stability of the Nebraska Sand
Hills from an interdisciplinary perspective [Wang et al.,
2008]. The 58,000 km2 Nebraska Sand Hills is the largest
native grassland-stabilized sand dune field in the Western
Hemisphere [Loope and Swinehart, 2000]. The high infil-
tration capacity of sandy soils makes this area an important
groundwater recharge source for the Ogallala aquifer. The
mean annual temperature at the site is 8.1�C and the mean
annual P is 57.6 cm; the mean annual ETp is 136.0 cm
[Szilagyi et al., 2005] and the mean annual humidity index
(e.g., P/ETp) is 0.42. About 90% of the landscape at the
BBRS is composed of upland dunes and dry interdunal areas
covered by native grasslands, while the remaining 10%
consists of wet meadows. Ten circular plots, each 120 m in
diameter, were constructed at the site, five of which were
equipped with meteorological instruments for evaluating
water and energy balances. Surface soils (top 10 cm) are
sandy on ridges (average 94.4% sand) and only slightly less
sandy in swales (average 91.2% sand). Beneath the 10 cm
depth, contents of sand range from 95% to 97% regardless of
topographic positions [Wang et al., 2008].

2.2. Flow Model Description

[8] The 1-D Richards equation, describing water flow in
saturated and unsaturated porous media, can be formulated as

@q
@t

¼ @

@x
KðhÞ @h

@x

� �
� KðhÞ

� �
� S ð1Þ

where q is volumetric water content; t is time; x is a spatial
coordinate; h is water pressure head; S is root water uptake;
and K is unsaturated hydraulic conductivity. A commonly
used model, Hydrus-1D [Simunek et al., 2005] was utilized
for solving equation (1) and computing GR.
[9] The Mualem–van Genuchten model [van Genuchten,

1980; Mualem, 1976], which analytically describes the
relations among q, h, and K was used:

qðhÞ ¼ qr þ ðqs � qrÞ=½ð1þ jahjnÞm�; h < 0

qðhÞ ¼ qs; h 	 0 ð2Þ

KðhÞ ¼ KS 
 Sle 
 ½1� ð1� S1=me Þm�2 ð3Þ

where qr is residual soil moisture content; qs is saturated soil
moisture content; a, n, and l are shape factors: a is inversely
related to the air entry pressure, n is a measure of pore size
distribution, and lumped parameter l accounts for pore
tortuosity and connectivity; m = 1 � 1/n; KS is saturated
hydraulic conductivity; and Se = (q � qr)/(qs � qr). The
details of the three data sets used in this study are given in
Section 3.
[10] The atmospheric upper boundary condition for vadose

zone is standard [Neuman et al., 1974]. This boundary
condition depends on climatic conditions (i.e., P and
potential evaporation Ep) and can switch from a prescribed
flux to a prescribed head when limiting pressure heads are
exceeded. Surface runoff occurs when P exceeds soil
infiltration capacity or soil becomes saturated. Two types
of lower boundary conditions were included: unit hydraulic
gradient flow condition and constant head condition. For the
unit gradient flow boundary, the soil profile depth was 5 m
with 201 nodes between the surface and bottom. For the
constant head boundary, the soil profile depth was 10 m
with 500 nodes between the surface and bottom. Constant
heads were set to be 0, 5, and 7 m at the lower boundary,
which correspond to zero constant heads at depths of 10, 5,
and 3 m below the surface, respectively. To minimize the
effect of initial conditions, the simulations were repeated at
least 10 times until the soil moisture profiles were equili-
brated with climatic forcings [Keese et al., 2005; Small,
2005].
[11] The root water uptake was simulated according to the

method of Feddes et al. [1978], which distributes potential
transpiration (Tp) over the root zone on the basis of root
density distribution and reduces Tp to actual transpiration on
the basis of soil matric potential. The root parameters on
pasture were used to determine the Feddes function
[Wesseling, 1991]. Potential evapotranspiration ETp was
calculated using the Penman-Monteith equation [Allen et
al., 1998] and then partitioned into Tp and Ep on the basis of
Beer’s law [Ritchie, 1972]:

Ep ¼ ETp 
 e�k
LAI ð4Þ

Tp ¼ ETp � Ep ð5Þ

where k is an extinction coefficient set to be 0.5 and LAI is
leaf area index.
[12] Hydrometeorological data for the year 2004 at the

GDEX site were utilized, including P, air temperature,
humidity, solar radiation, soil heat flux, and wind speed.
P was 49.3 cm/a or 85.6% of the annual mean and ETp was
160.6 cm/a or 118% of the annual mean. The 2004 humidity
index was 0.31, which was lower than the annual mean of
0.42 in this area. The daily P, Tp, and Ep are plotted in
Figure 2. Note that low Tp rate is due to the low LAI in the
study area. In 3 m deep soil cores analyzed for root biomass,
60–70% of the total root mass occurred in the top 20 cm
and 85–90% occurred in the top 50 cm. On the basis of the
field observations [Wang et al., 2008], an exponential
distribution was fitted to describe the root density distribu-
tion, which is consistent with recent literature reviews on the
occurrence of root biomass in native grasslands [Jackson

Figure 2. Daily precipitation (P), potential evaporation
(Ep), and potential transpiration (Tp) at the GDEX site for
the year 2004.
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et al., 1996; Schenk and Jackson, 2002]. LAI was mea-
sured at the site for partitioning ETp.

3. Data Sets on Soil Hydraulic Characteristics

[13] In this study, three SHC data sets for sand and loamy
sand were used. The first data set included measured SHCs
and is referred to as the measured data set. In comparison,
the other two were generated, with one containing correlated
SHCs randomly generated from the measured SHC data set
and the other one containing uncorrelated SHCs derived
from the database of Schaap et al. [2001].
[14] The first data set with measured SHCs was derived

from the UNSODA database (see details in work by Nemes
et al. [2001]) and was previously used by Schaap and Leij
[2000] and Schaap and van Genuchten [2005]. From this
database, we derived 51 samples for sand and 19 samples
for loamy sand with all samples having a complete set of
measured hydraulic parameters (e.g., qr, qs, a, n, KS, and l)
that are needed to compute GR.
[15] The second data set with correlated SHCs was

derived from the measured data set by computing the class
average values for qr, qs, log10 a, log10 n, log10 KS, and l for
sand and loamy sand. A covariance matrix for these
parameters was computed for each of the classes (Table 1),
which allows us to account for parameter uncertainty as
well as correlations among the parameters. Under the
assumption that the means and covariance matrix for qr,
qs, log10 a, log10 n, log10 KS, and l are an adequate statistical
description of the parameter distribution for underlying
classes of sand and loamy sand, new samples can be drawn
with a Monte Carlo procedure to obtain a more complete
distribution of parameter combinations. To this end we
followed the procedure by Carsel and Parrish [1988]. We
generated 200 random samples with correlated parameters
by multiplying the upper triangular (Choleski) decomposi-
tion [Press et al., 1988] of the covariance matrix with
vectors containing six N(0,1) randomly distributed numb-
ers. The result was then added to the mean parameters of
each class. Means and standard deviations of the generated
parameters as well as a visual inspection of all bivariate
distributions showed that the generated distributions over-
lapped the distributions of the measured data set. However,
this exercise led to some l with ‘‘very’’ negative values,
which can lead to unreasonable K(�) relationships that may
show increasing conductivities with decreasing water con-
tents [Durner et al., 1999; Schaap and Leij, 2000]. Rather
than constraining l to yield monotonic K(�) relations, we set
l to be 0.5 [Mualem, 1976] for simplicity because the

numerical experiment showed less sensitivity to l in our
analyses.
[16] With the above Monte Carlo procedure, the notion of

PTF is extended from the traditional class mean parameters
to a procedure that also includes parameter uncertainty and
correlations with the objective to yield (correlated) distri-
butions of parameters as a prediction [Carsel and Parrish,
1988]. To compare with a more traditional approach, class
means and standard deviations (s) published by Schaap et
al. [2001] (Table 2) were also used in this study. Another
reason for picking the database of Schaap et al. [2001] is
because it has been widely used in various modeling
purposes related to vadose zones, such as soil moisture
movement and groundwater recharge [Keese et al., 2005;
Small, 2005; Miller et al., 2007], contaminant transport
[Dann et al., 2006], and root water uptake [Demirkanli et
al., 2008; Segal et al., 2008], etc. Given the enormous
volume of data used, the database of Schaap et al. [2001]
gives reasonable ranges of variability in SHC parameters.
No complete covariance matrix exists for this PTF and for
this reason we assume that the parameters are uncorrelated.
GR was then calculated on the basis of combinations of
(mean � s), mean, and (mean + s) for five selected
parameters (i.e., qs, log10 KS, log10 a, log10 n, and l), which
leads to total 35 = 243 simulations. In order to reduce the
number of simulations, qr = 0.01 was set as it is unimportant
in the GR analysis (see Figures 5a and 6a). Although some
of the combinations might not occur in natural conditions,
the shape of GR distributions largely depends on mean
and s of the factor n instead of how the SHC data set is
formulated as shown in the following section, which does
not affect our conclusions.
[17] Table 2 shows mean values and standard deviations

of the SHCs for each of the three data sets. Differences are
small among those three data sets, especially for the
measured and the correlated data sets, which confirms that
the distributions of measured and generated parameters are
similar. The difference between the uncorrelated data set
and the other two data sets is relatively higher because the
different data sources they are based on [see Schaap and
Leij, 1998; Schaap et al., 2001]. The largest differences
are found for log10 Ks of sand, and for log10 n and log10 Ks of
loamy sand.
[18] It should be noted that the convergence of simula-

tions with higher n values is slow (e.g., n > 3). This is
because the water content decreases dramatically within a
relatively narrow pressure head interval from 0 cm to about
�500 cm, and then stays close to the residual water content
for lower pressure heads. Consequently, the hydraulic

Table 1. Pearson Correlation and Covariance Matrices for the Measured Data Seta

Sand Loamy Sand

qr qs log10 a log10 n log10 KS l qr qs log10 a log10 n log10 KS l

qr - 0.238 0.037 0.215 0.064 �0.097 - 0.299 �0.5106 0.761 0.533 0.030
qs 0.000 - 0.338 �0.0249 0.173 �0.068 0.001 - 0.434 �0.1664 0.690 �0.330
log10 a 0.000 0.005 - 0.105 0.652 0.121 �0.007 0.010 - �0.6960 0.159 �0.123
log10 n 0.002 �0.0003 0.007 - 0.506 0.230 0.005 �0.002 �0.042 - 0.175 �0.052
log10 KS 0.002 0.006 0.144 0.081 - 0.409 0.013 0.028 0.034 0.018 - 0.056
l �0.005 �0.005 0.056 0.077 0.450 - 0.004 �0.068 �0.134 �0.027 0.103 -

aNumbers in bold are the Pearson correlation.
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capacity has a narrow peak within this pressure head
interval and is more or less zero below it. The hydraulic
conductivity also decreases dramatically within this interval
and is almost zero below it. The combination of these three
soil hydraulic functions often causes problems with conver-
gence of the numerical solution for a dry condition where a
large change in pressure heads is accompanied by a minimal
change in water contents. Certain numerical measures (e.g.,
reduce the maximum pressure head at the surface) were
taken for overcoming this problem.

4. Results and Discussions

[19] These simulations yielded important conclusions on
using process-based vadose models for evaluating GR. In
the following sections, histograms are systematically used

to summarize numerous simulations of GR and to illustrate
effects of various parameters and processes on GR.

4.1. Groundwater Recharge Under Unit Gradient Flow
Lower Boundary Condition

4.1.1. Impact of Soil Texture on Groundwater
Recharge
[20] Under the unit gradient flow condition, the distribu-

tions of computed GR and ETa from the measured SHC data
set are plotted in Figure 3. Because of the high infiltration
capacity of sand and loamy sand and the use of a spin-up
method (e.g., repetition of the climatic data), surface runoff
and change in soil moisture storage are usually negligible in
the water balance (e.g., <1%), and thus are not analyzed
here. Also note that three simulations for both sand and
loamy sand are removed from Figure 3 because of low

Table 2. Average Values of Soil Hydraulic Parameters for the Three Data Setsa

Sand Loamy Sand

N qr qs log10 a log10 n log10 KS l N qr qs log10 a log10 n log10 KS l

Measured data set 51 0.048
(0.036)

0.379
(0.046)

�1.512
(0.308)

0.464
(0.223)

2.544
(0.732)

�0.149
(1.532)

19 0.061
(0.041)

0.418
(0.069)

�1.493
(0.364)

0.308
(0.174)

2.275
(0.619)

�0.680
(3.146)

Correlated data set 200 0.056
(0.032)

0.383
(0.042)

�1.517
(0.305)

0.498
(0.220)

2.599
(0.719)

�0.174
(1.42)

200 0.065
(0.036)

0.417
(0.070)

�1.518
(0.340)

0.309
(0.156)

2.405
(0.598)

0.216
(2.838)

Uncorrelated data set 308 0.053
(0.029)

0.375
(0.055)

�1.450
(0.250)

0.500
(0.180)

2.810
(0.590)

�0.903
(0.486)

201 0.049
(0.042)

0.390
(0.070)

�1.460
(0.470)

0.240
(0.160)

2.020
(0.640)

�0.874
(0.594)

aStandard deviations are given in parenthesis; N is the number of samples in each data set.

Figure 3. Distributions of groundwater recharge (GR) for (a) sand and (b) loamy sand and actual
evapotranspiration (ETa) for (c) sand and (d) loamy sand based on the measured data set under the unit
gradient flow boundary condition. The asterisk represents the results based onmean SHCs. Bin size is 5 cm/a.
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negative l values, which led to errors of mass balance
exceeding 10%, compared to the rest with errors less than
<0.5%.
[21] GR for sand (GRS) ranges from 0.06 to 32.8 cm/a

(e.g., <0.01% and 66.5% of the total P, respectively) and
ETa for sand (ETaS) ranges from 16.4 to 49.3 cm/a (e.g.,
33.3% and >99.9%, respectively). GR for loamy sand
(GRLS) ranges from 0.02 to 25.7 cm/a (e.g., <0.01% and
52.1%, respectively) and ETa for loamy sand (ETaLS) ranges
from 28.4 to 48.9 cm/a (e.g., 57.6% and 99.4%, respectively).
Although GR in coarser soils (e.g., GRS) is generally
believed to be higher [Keese et al., 2005; Small, 2005],
Figure 3 clearly shows that the distributions of GR and ETa
overlap for sand and loamy sand. This is because soil
texture is solely defined by particle size distribution; other
factors (e.g., bulk density, particle arrangement, and organic
matter) that determine SHCs also influence GR. Therefore,
the practice of using estimated mean SHCs would not be
sufficient to embody the whole range of GR, and so caution
is needed when computing GR on large scales with
estimated mean SHCs [Keese et al., 2005; Small, 2005].
Additionally, the distributions of corresponding GR and
ETa look more or less symmetric because of negligible
surface runoff and change in soil moisture storage.
[22] GR estimated from mean SHCs (denoted as GR*) is

usually used as a regional estimate of GR [e.g., Nolan et al.,
2003, 2007; Keese et al., 2005; Small, 2005]. On the basis

of mean SHCs of the measured data set, GR* and ET*a, also
from mean SHCs, are given in Figure 3. GR*S and GR*LS
are 22.4 and 10.2 cm/a or 45.4% and 20.7% of the total P,
respectively. ET*aS and ET*aLS are 26.8 and 39.0 cm/a or
54.4% and 79.1% of the total P, respectively. On the basis of
the results, GR*LS is lower than GR*S, which is consistent
with the results from Keese et al. [2005] and Small [2005].
However, Figure 3 also reveals that both GR*S and GR*LS lie off
from the peaks on the histograms (Figure 3), which corre-
spond to the highest frequency of the computed GR. Partic-
ularly, GR*S occurs in neither of the two peaks (Figure 3a).
To further illustrate this, the averages of GR were calculated
from the distributions in Figure 3, with averages of 13.8 cm/a
for sand and 9.5 cm/a for loamy sand. It is obvious that the
difference between the average GR and GR*S for sand is
larger than that for loamy sand, and GR*S is thus less
representative in a relative sense. This is due to the larger
standard deviation of the parameter n for sand (Table 2),
the reason of which will be explained in the following
section. In general, mean SHCs possess higher occurrence
probabilities; however, from Figure 3, using mean SHCs
does not imply that GR* also corresponds to the mode of
the GR distribution, which is due to the nonlinear relation-
ships between GR and SHCs.
[23] Results from the PTF-generated correlated and un-

correlated SHC data sets are plotted in Figure 4. Because
the distributions of corresponding GR and ETa look also
symmetric for the correlated and uncorrelated SHC data

Figure 4. Distributions of groundwater recharge (GR) under the unit gradient flow lower boundary
condition: (a) sand and (b) loamy sand from the correlated data set and (c) sand and (d) loamy sand from
the uncorrelated data set. The asterisk represents the results based on mean SHCs. Bin size is 5 cm/a.
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sets, the results of ETa are thus not presented. For the
correlated data set, GRS ranges from 0.3 to 30.7 cm/a
(e.g., <0.01% and 62.3% of the total P, respectively), and
GRLS ranges from 0.2 to 27.5 cm/a (e.g., <0.01% and
55.8%, respectively). For the uncorrelated data set, GRS

ranges from 2.5 to 33.4 cm/a (e.g., 5.1% and 67.7%,
respectively), and GRLS ranges from 0.07 to 19.1 cm/a
(e.g., 0.14% and 38.7%, respectively). In general, results
from the measured and generated data sets exhibit similar
ranges and patterns of GR. GR*S and GR*LS are 21.5 and
10.7 cm/a (e.g., 43.6% and 21.7% of the total P, respec-
tively) for the correlated data set and 20.3 and 2.2 cm/a
(e.g., 41.2% and 4.5%, respectively) for the uncorrelated
data set. In comparison to GR*S, GR*LS from the PTF-
generated data sets are very different. Furthermore, both
GR*S correspond to one of the two peaks in the histograms,
whereas GR*LS of the uncorrelated data set is in the clustered
peak and lower than that of the correlated data set that lies
off from the peak (Figure 4). The difference between GR*LS
values is due to different soil databases used to generate
mean SHCs [Schaap and Leij, 1998; Schaap et al., 2001],
which is also supported by the conclusion of Faust et al.
[2006] that estimated GR depends on the choice of PTFs.
The simulation results strongly suggest that the method of
using PTF-estimated mean SHCs to calculate GR* as a
regional representative may be inappropriate, particularly
for sand, as estimated GR* depends on the choice of PTFs
and original soil databases used to generate mean SHCs
as well.
[24] On the basis of a water balance method, the

Nebraska Natural Resources Commission [1986] estimated
that GR accounted for 20 to 30% of annual precipitations in
the Sand Hills. Chen and Hu [2004] used inverse vadose
zone modeling and found that GR ranged from 18% to 30%
of annual precipitations at a site similar to the GDEX site in
the Sand Hills. Also using a water balance method, Szilagyi
et al. [2005] estimated that mean GR was about 10% of
annual precipitations in the region surrounding the GDEX
site. In comparison, given that sand is prevalent at the
GDEX site [Wang et al., 2008], all calculated GR*S (>40%
of the total P) are higher than the above results, even though
the humidity index of 0.31 in 2004 was already lower than
the annual mean of 0.42 in this area. Interestingly, the GR rate
that accounts for 10% of the mean annual precipitation
[Szilagyi et al., 2005] is closer to the left peak on the
histograms (Figures 3a, 4a, and 4c), whereas GR*S is closer
to the right one. This also demonstrates that the practice of
using mean SHCs to estimate GR is not appropriate, at least
in the study area.
4.1.2. Sensitivity Analysis of Groundwater Recharge to
Soil Hydraulic Characteristics
[25] Figures 3 and 4 show that the shape of GR distribu-

tions varies significantly for different soil textures. In
general, the distribution of GRS exhibits a bimodal pattern,
whereas the one of GRLS exhibits a unimodal pattern. The
standard deviations of GR from each data set are given in
Table 3, which also reveals that the distributions of GRS are
more variable than those of GRLS. To investigate the soil
parameters that mostly control the shape of GR distribution,
relationships between GR and SHCs (e.g., qr, qs, a, n, KS,
and l) derived from the measured data set are plotted in
Figures 5 and 6. Note that the results from the PTF-

generated data sets exhibit a similar pattern in Figures 5
and 6 and therefore are not analyzed here.
[26] Of the van Genuchten parameters, qr, qs, and KS have

physical meanings, whereas the other three parameters are
shape factors: a is inversely related to air entry pressure, n
is a measure of pore size distribution, and lumped parameter
l accounts for pore tortuosity and connectivity. Strikingly,
compared to the shape factors, the distribution of GR is not
very sensitive to qr, qs, and KS for both sand and loamy sand
(Figures 5a, 5b, 5e, 6a, 6b, and 6e), even though those three
parameters vary significantly in the measured data set. The
results indicate that qr, qs, and KS are relatively unimportant
for determining GR in semiarid regions, possibly because of
low soil moisture content in these regions. This conclusion,
however, may not hold in humid regions.
[27] The shape of GR distribution is instead mostly

controlled by the factor n (Figures 5d and 6d). Figures 5d
and 6d show that GR increases with increasing n values. In
general, a coarser soil with larger pore sizes possesses a
higher n value, which leads to a higher GR. Physically and
mathematically, the factor n controls GR mainly through
affecting soil surface evaporation. As n becomes larger, the
decrease in hydraulic conductivity with decreasing soil
moisture becomes stronger (equation (3)), which prevents
upward capillary flow of soil moisture toward the evapo-
rating surface because of low hydraulic conductivity in the
surface layer. Soil moisture only a few centimeters below
the surface becomes unavailable for evaporation when the
surface layer is dry and n is large, which reduces evapora-
tion and therefore increases GR. Additionally, the factor
l has a similar effect as the factor n has on soil moisture flux
(equation (3)), but to a much lesser degree. On the basis of
inverse modeling and Monte Carlo simulations, Pollacco et
al. [2008] also found that the factor n is crucial for
estimating GR under the unit gradient flow condition as
well as qs. However, we found that qs is unimportant for
determining GR in our study.
[28] It is important to note that the relationship between

GR and n is highly nonlinear (Figures 5d and 6d). When n
is approximately less than 4, GR increases rapidly with
increasing n, then GR starts to level off when n becomes
greater than 4, mostly because of limited precipitations
(Figures 5d and 6d). The nonlinearity between GR and n
reveals the reason why GR* is different from the GR with
the maximum occurrence in the GR distribution (Figure 3),
as soil samples with larger n values have more weights for
determining GR*. This also causes the tendency of GR* to
be higher than the most frequent GR (Figure 3). In conclu-
sion, the spatial variability in n is extremely important for
determining an areal-averaged GR and its spatial distribu-
tion in semiarid regions. The high uncertainty in n estimated
by PTFs, particularly for sand [Schaap et al., 1998], makes
the use of PTF-estimated mean SHCs in vadose zone
models less reliable.

4.2. Groundwater Recharge Under Constant Head
Condition

[29] Most studies that used vadose zone models to
estimate GR assumed the unit gradient flow at the lower
boundary of the vadose zone [Nolan et al., 2003, 2007;
Keese et al., 2005; Small, 2005]. However, this boundary
condition may not be valid for regions where water tables
are shallow because groundwater may return to the atmo-
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sphere through either capillary rise or groundwater evapo-
transpiration [Gillham, 1984; Wu et al., 1996; Batelaan et
al., 2003]. Chen and Hu [2004] used a vadose zone model
to study the impact of groundwater on evapotranspiration at
a similar site in the NSH. The authors found that the annual
evapotranspiration from 1998 to 2000 is 7–21% higher
when the groundwater table is included in the model.
Therefore, to study the impact of lower boundary conditions
on GR, the measured and uncorrelated data sets were used
to compute GR. This task was not performed for the
correlated data set because previous simulation results
showed similar patterns of the GR distributions for the
measured and correlated data sets. Constant heads were
set to be 0, 5, and 7 m at the lower boundary, which
correspond to zero constant heads at depths of 10, 5, and 3

m below the surface, respectively. The simulation results are
summarized in Figure 7.
[30] Figure 7 shows that a significant fraction of GR is

negative, which implies an upward soil moisture flux from
the lower boundary. This obviously differs from the results
based on the unit gradient flow lower boundary condition
that enforces positive GR values. As explained previously,
the factor l has a similar effect on GR as the factor n has.
Additional simulations show that if the negative l values in
both measured and uncorrelated data sets are replaced by
0.5 as Mualem [1976] suggested, the negative GR values
would become ‘‘less’’ negative or positive. Schaap and Leij
[2000] noted the enormously wide range of l values in the
literature, and if l becomes more negative, hydraulic con-
ductivity may start increasing with decreasing soil moisture

Figure 5. Sensitivity analysis of groundwater recharge (GRS) and actual evapotranspiration (ETaS) of
sand to the van Genuchten parameters: (a) qr, (b) qs, (c) a, (d) n, (e) Ks, and (f) l. Pluses represent results
from mean SHCs.
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content, which is physically unrealistic and can cause
unacceptable errors in mass balance as explained previously.
If a water table is present, selection of l value may become
another important issue. However, because of the wide
range of l values [Schaap and Leij, 2000], there is still no
consensus in the literature on how to select l. Hence, this
aspect requires additional study.
[31] Figure 7 also shows that GR with zero constant head

at 10 m is higher and its distribution is less scattered than
those with zero constant heads at 3 and 5 m depths.
Mathematically, a deeper constant head has less influence
on the upper atmospheric boundary and simulated domain,
allowing more soil moisture to pass downward across the
root zone. Table 4 shows GR* under different lower
boundary conditions. GR*S and GR*LS generally are more

intense under deeper constant head conditions. By varying
the lower boundary conditions, the variability in GR*S is
smaller than the one in GR*LS. Therefore, the degree of the
impact of the lower boundary on the GR distribution
depends on soil texture as well. For regions with shallow

Figure 6. Sensitivity analysis of groundwater recharge (GRLS) and actual evapotranspiration (ETaLS) of
loamy sand to the van Genuchten parameters: (a) qr, (b) qs, (c) a, (d) n, (e) Ks, and (f) l. Pluses represent
results from mean SHCs.

Table 3. Standard Deviations of Calculated Groundwater

Recharge for Different SHC Data Sets Under the Unit Gradient

Flow Boundary Condition

SHC Data Set Sand (cm/a) Loamy Sand (cm/a)

Measured 9.15 8.31
Uncorrelated 9.38 4.90
Correlated 8.68 5.28
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water depths, as mimicked by the constant head condition in
this study, choosing an appropriate lower boundary condi-
tion is more important than selecting values of SHCs to
estimate GR.

5. Conclusions

[32] In this study, we assessed the applicability of cou-
pling process-based vadose zone models and pedotransfer
functions for soil hydraulic characteristics to estimate
groundwater recharge in a semiarid region, especially the
viability of using PTF-estimated mean SHCs (e.g., soil
hydraulic characteristics) to estimate GR [Nolan et al.,
2003, 2007; Keese et al., 2005; Small, 2005]. Field hydro-
meteorological and physiological data sets collected in the
Nebraska Sand Hills were used to drive the vadose zone
model. Three SHC data sets containing the van Genuchten
parameters for both sand and loamy sand were used,
including a measured, a PTF-generated correlated, and a
PTF-generated uncorrelated data set.
[33] Under the unit gradient flow lower boundary condi-

tion, the simulation results show that there is a significant
overlap in the GR distributions for sand and loamy sand.
More importantly, GR* that is estimated from mean SHCs
generally lies off from the most frequent range of GR.
Therefore, the practice of using mean SHCs to estimate GR
is not sufficient, particularly for evaluating GR on large
scales [Nolan et al., 2003, 2007; Keese et al., 2005; Small,

2005]. It is also found that GR mostly depends on the shape
factor n. Coarser soils with larger n values produce higher
GR; however, this relationship is highly nonlinear. Because
of this nonlinear relationship, GR* tends to be higher than
most simulated GR and therefore does not correspond to
GR distribution peaks. The spatial variability in n is
important for determining an areal-averaged GR and its
spatial distribution in semiarid regions. The high uncertainty
in estimated n by PTFs, particularly for sand [Schaap et al.,
1998], makes the use of PTF-estimated mean SHCs in
vadose zone models less reliable. When water tables are
present as represented by the constant head conditions in
this study, choosing an appropriate lower boundary condi-
tion is more important than selecting values of SHCs to
estimate GR. Upward soil moisture fluxes may exist from

Figure 7. Distributions of groundwater recharge (GR) under the constant head conditions: (a) sand and
(b) loamy sand from the measured data set and (c) sand and (d) loamy sand from the uncorrelated data
set. Bin size is 5 cm/a.

Table 4. Groundwater Recharge Rate for Different Lower

Boundary Conditionsa

Lower Boundary
Condition

Sand (cm/a) Loamy Sand (cm/a)

Measured Uncorrelated Measured Uncorrelated

Unit gradient flow 22.4 20.3 10.2 2.2
Constant head at 3 m 22.6 15.6 7.1 �9.6
Constant head at 5 m 22.6 20.0 10.1 0.3
Constant head at 10 m 22.4 20.6 10.2 2.1

aThe results are based on mean SHCs of the measured and uncorrelated
data sets.
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water tables, which is largely controlled by the factor n as
well as by the factor l. However, further studies are needed
on the criteria for selecting l values. In general, GR is higher
and its distribution is less scattered under deeper constant
head boundary conditions, the degree of which also depends
on soil texture.
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