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ATOMIC PHOTOIONIZATION

Anthony F. Starace

Behlen Laboratory of Physics
The University of Nebraska
Lincoln, Nebraska 68588-0111, U.S.A.

INTRODUCTION

We present here a brief overview of the theory of atomic photo-
jonization. The main aim is to describe current theoretical under-
standing of the dynamics of the photon-atom collision process. In
particular the discussion focuses on those kinds of electron corre-
lation that have been found to be most important for photoionization
processes. The general theoretical formulation of the interaction
between an incident photon and an N-electron atom is presented
first. This is followed by a description of those guantitative and
qualitative features of the photoionization cross section that can
be understood within a central potential model. The particle-hole
type of electron correlations are then discussed in detail, as they
are by far the most important for describing the single photoioniza-
tion of closed-shell atoms near ionization thresholds. Among recent
developments, we discuss in some detail the hyperspherical coordi-
nate method for obtaining correlated two-electron wavefunctions.

Not only has the method provided a novel means for classifying whole
series of doubly excited states, but it has also provided a new
interpretation of the process of photoionization accompanied by
excitation. More detailed presentations of the theory of atomic
photoionization have been given by the author elsewhere.l”3

GENERAL CONSIDERATIONS

The Interaction Hamiltonian

Consider an N-electron atom with nuclear charge Z. In non-
relativistic approximation it is described by the Hamiltonian
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In Eq. (1) the one-electron terms in brackets describe the kinetic
and potential energy of each electron in the Coulomb field of the
nucleus; the second set of terms describe the repulsive electro-
static potential energy between electron pairs. The interaction
of this atom with external electromagnetic radiation is described

by the additional terms obtained upon replacing 31 by'51 +

=
Ie! A(r » t), where A(?i, t) is the vector potential for the

rad1at1on The interaction Hamiltonian is thus

N
= tlel T > L
H.int - izl { 2mc (p.i A(r'i,t) + A(r.i ,t) p_i)
2, (2)
+ . 2 | A (r-at)|2 }
2me 1

Under the most common circumstance of single-photon ionization
of an outer-subshell electron, the interaction Hamiltonian in (2)
may be simplified considerably. Firstly we note that the third
term in (2) may be dropped, as it introduces two-photon processes
-5

since it is of second order in A. 1In any case it is small compared
to single photon processes since it is of second order in the
—coup11ng constant |e|/c. Second]y we choose the Cou1omb gauge for

A ‘which fixes the divergence of A as V A 0. A thus describes a

transverse radiation field. Furthermore p and A now commute and
hence the first and second terms in (2) may be combined. Thirdly,

>
we introduce the following form for A:

2 1F (k- -wt)
Alryot) = [%—ﬁ] e Y (3)

-5
This classical expression for A may be shown" to give photoabsorp-
tion transition rates that are in agreement with those obtained

using the quantum theory of radiation. Here k and w are the wave
vector and angular frequency of the incident radiation, £ is its
polarization unit vector, and V is the spatial volume. Fourthly,
we note that the electric dipole approximation, in which

>
exp Z(k * ?1) is replaced by unity, is usually appropriate. The
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radius r of the atom1c electrons is usua]]y of order 1 A Thus

for A >> 100 A |k- r | <<'1. Now x >> 100 A corresponds to photon

energies “huw << 124 eV For outer atomic subshells, the bulk of
the photoabsorption occurs for much smaller photon energies thus
validating the use of the electric dipole approximation. This
approximation cannot be used uncritically, however, as we shall
discuss later. Use of all of the above conventions and approxima-
tions allows us to reduce H. in Eq. (2) to the following simpli-

fied form: int

£ -31 exp (- iwt) (4)

Lo tlel | 2
int mc wV

[ty
fH~~122

i=1

Hint thus has the form of a harmonically time-dependent perturba-
tion. According to time-dependent perturbation theory the photo-
ionization cross section is proportional to the matrix element of
(4) between the initial and final electronic states described by
the atomic Hamiltonian in (1), as we shall see below. In what
To}]ows wgﬁ§ha11 for simplicity adopt atomic units in which

el =m=MH=1.

Alternative Forms for the Transition Matrix Element

One sees that the matrix element of (4) is proportional to the
matrix element of the momentum operator Z P Alternative expres-
i
sions for this matrix element may be obtained from the following
operator equations involving commutators of the exact atomic
Hamiltonian in (1):

N -y -
.Z Bi=-t | ] ?1, H (5a)
L i=1 i}
~ N 3 N T»
Z p'i’ H = =1 Z (5b)
i=1 _ i=1 1

Matrix elements of (5) between energy eigenstates < w0| and
wa > of the Hamiltonian (1) having energies E0 and Ef respectively
give:

N
<wol L Byilwe > = - w<yyl DS Folug > (6a)
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N _: N ZF
<ugl 1Py lwe>=T7<yl I —3 lve> (6b)
i=1 i=1 r;
where
w = Ef - E0 . (6¢)
. NN N Ir,
Matrix elements of z Pis z ri, and Z —g are known simply
i=1 i=1 i=l r

i
as the "velocity," "length," and "acceleration" forms of the elec-
tric dipole matrix element.

As emphasized by Chandrasekhar,> equality of the matrix ele-
ments in (6) does not hold when approximate eigenstates of the N-
electron Hamiltonian in (1) are used. In such a case qualitative
considerations may help to determine which matrix elements are
most reliable. One may note, for example, that the length form
tends to emphasize the large r part of the approximate wavefunc-
tions, that the acceleration form tends to emphasize the small r
part of the wavefunctions, and that the velocity form tends to
emphasize intermediate values of r.

If instead of employing approximate eigenstates of the exact
N-electron Hamiltonian one employs exact eigenstates of an approxi-
mate N-electron Hamiltonian, then one may show that inequality of
the matrix elements in (6) is a measure of the non-locality of the
potential in the approximate Hamiltonian.® The exchange part of
the Hartree-Fock potential is an example of such a non-local poten-
tial. Non-local potentials are also implicitly introduced in con-
figuration interaction calculations employing a finite number of
configurations.® One may eliminate the ambiguity of which form of
the electric dipole transition operator to use by requiring that
the Schridinger equation for the atom described by an approximate
non-local potential be gauge invariant. Only the length form of
the electric dipole transition operator is consistent with gauge
invariance of the approximate Schrddinger Equation.®

Two further points regarding the alternative forms of the
electric dipole transition operator should be noted. Firstly,
when one uses an approximate local potential to describe the N-
electroniatom, as in a central potential model, then matrix ele-
ments of the three alternative forms for the electric dipole
operator are strictly equal. Since central potential model cross
sections may differ from experiment by a factor of two or more
near outer shell ionization thresholds, one sees that equality of
the alternative forms for the transition matrix element should not
in itself be taken to indicate the accuracy of the calculated
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results. Secondly, one can show that in the random phase approxi-
mation, which does generally give accurate cross sections for
single photoionization of closed shell atoms, the length and
velocity matrix elements are strictly equal.” No general prescrip-
tion exists, however, for ensuring that the length and velocity
matrix elements are equal at each level of approximation to the
exact N-electron Hamiltonian.

Selection Rules

If one ignores relativistic interactions for simplicity, then
a general atomic photoionization process may be described in LS-
coupling as follows:

A(L,S ML MS,'ITA) + Y(NY,,QY,mY) —>

A+(E§'ITA+) el (LI, SI, ML" MSQ) (7)

Here the atom A is ionized by the photon y to produce a photoelec-
tron with kinetic energy e and orb1ta1 angular momentum £. The
photoelectron is coupled to the ion A* with total orbital and spin
angular momenta L' and S'. In the electric dipole approximation
the photon may be regarded as having odd parity, i.e., WY = -1, and

unit angular momentum, i.e., zY = 1. This is obvious from Eq. (6),

where the electric dipole operator is seen to be a vector operator.
The component m, of the photon in the electric dipole approximation

is #1 for right or left circularly polarized Tight and 0 for linearly
polarized 1ight. Angular momentum and parity selection rules for the
electric dipole transition in (7) imply the following relations
between the initial and final state quantum numbers:

L' =L®a=1L®2 (8a)
Moo= M + m, = My +m, (8b)
st =s=SaY (8c)
Mg, = Mg = Mz +m (8d)
My Myt = (-1 (8e)

Note that in Eq. (8e) we have used the fact that the parity of the

photoelectron is (-1)2. Note also that the direct sum symbol ®
implies that two vectors A and B are added together vectorially,
ie., A®B=A+B,A+B-1, -+, |A-B|.
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An important theoretical concept is that of the channel., In
the process indicated in (7) the quantum numbers o = L, S, Tats &

L*, s', MLI and MS' (plus any other quantum numbers needed to

uniquely specify the state of the ion A+) define a final state chan-
nel. Note that all final states that differ only in the photoelec-
tron energy e belong to the same channel. Note also that the quan-

tum numbers L', S', ML" MS" and TIOTAL = (-l)gwA+ are the only

good quantum numbers for final states described by the N-electron
Hamiltonian in (1). This Hamiltonian thus mixes final state chan-
nels having the same angular momentum and parity quantum numbers
but differing quantum numbers for the ion and the photoelectron,
i.e., differing L, S, and & but the same L', S', ML" MS' and

(-1)2ﬂA+.

Boundary Conditions on the Final State Wavefunction

Theoretical photoionization calculations obtain final state
wavefunctions satisfying the asymptotic boundary condition that the
photoelectron is ionized in channel o. Mathematically this bound-
ary condition is expressed as follows:

- > - > > > A 1 1 .
Vop(rysy s sy ——>8, (s RSy ——=— - explid,)
ry” 2(27k ) N
[0
~ 1 1 . +
- 6, (T8, ,0c P 8y) ——=—5 = exp(-id ) S_. (9a)
O.Zl Ctl 1 1 N N 7:(27Tka|)12 Y‘N o a o
where the phase appropriate for a Coulomb field is:

A =kor, - 1 TR +-—l-1og 2k ry + o (9b)
o~ o N 2 Tu koa o N SLOL

o
The minus superscript on the wavefunction in (9a) indicates the
so-called "incoming wave" normalization: 1i.e., asymptotically

W&E has outgoing spherical Coulomb waves only in channel o whereas
there are incoming spherical Coulomb waves in all channels. Sl.a

is the Hermitian conjugate of the S-matrix of scattering theory,
6y indicates the coupled wavefunction of the ion and the angular

and spin parts of the photoelectron's wavefunction. ka is the
photoelectron's momentum in channel « and L, is its orbital angular

momentum. 9, in (9b) is the Coulomb phase shift.
ol
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While theoretically one calculates channel functions w;E’ ex-
perimentally one measures photoelectrons which asymptotically have
well defined Tinear momentum Eu and well-defined spin state my_ and
ions in well-defined states @ = L S M]: Mg: The wavefunction

appropriate for this experimental measurement is related to the
theoretical channel functions by uncoupling the ionic and electronic
orbital and spin angular momenta and projecting the photoelectron's

angular momentum states za, m, onto the direction ka by means of the
* bey
spherical harmonic Yo (ka). One may show that this relation is!

OLmOL

.2'0. .

7 exp(-i o, )
- x ~
Vo (B e R = T ot
ak_("1°1 LS % o, Ko

o o ol (10)
x 7 <IMeaom [WM > 7 ey -z L E2
L, Lt LT g <M 2y [SMg> Y p(ryS e Sy)

In Eq. (10) the coefficients in brackets are Clebsch-Gordan coeffi-
cients. The wavefunction in (10) is also normalized to a delta
function in momentum space, i.e.,

- - )
J‘(wa]: )-I- IJJ-O-“TQ - dB? = § 1 d(k(x-ka') (11)
o o
K

%
The factors 7 “exp(-io ensure that for large ry Eq. (10) rep-

L
o

>
resents a Coulomb wave with momentum ka times the ionic wavefunction

for the state @ plus a sum of terms representing incoming spherical
waves. Thus only the jonic term & has an outgoing wave. One uses
the wavefunction in (10) to calculate the angular distribution

of photoelectrons.

The Photoionization Cross Section

If one writes the interaction Hamiltonian in (4) as Hint(t) =
Hint(O)'zwt, then standard procedures of first order time-dependent
perturbation theory show that the transition rate for transition
from an initial atomic state with energy E0 and wavefunction wo to

a final state described by the wavefunction uf&; with total energy
E- is: o
f



A. F. STARACE, Atomic Photoionization (1983) 76

- 2 2 ~
dw;a = 2m | < ¥glH;, (0)] wﬂiaﬂ §(Eg- Eg-w)k dk dalk )  (12)

Here the delta function expresses energy conservation and the Tast
factors on the right are the phase space factors for the photoelec-
tron. Dividing the transition rate by the incident photon current
density c/V, integrating over dka, and writing out Hint(o) explic-

itly, we obtain the differential photoionization cross section as

do 2

= am
C

k N
j;a‘l?—'<lb0| Z Pilwa‘|:>|
i=1 o

2 (13)

Implicit in Eqs. (12) and (13) is an average over initial magnetic

quantum numbers ML MS and a sum over final magnetic quantum numbers
0 "0

ME+L§m%. The length form of Eq. (13) is obtained by replacing each

$1 by m?i (cf. Eq. (6a)).

Substitution of the final state wavefunction (10) in Eq. (13)
permits one to carry out the numerous summations over magnetic
quantum numbers and obtain the following form for the differential
cross section:® .

do

a,
7R?~=‘z%-[1 + B8P, (cos 8)] (14)

Here 0y is the partial cross section for leaving the ion in the
state ©, B is the asymmetry parameter, Pz(cos 9)=3, cosze-%, and

6 indicates the direction of the outgoing photoelectron with respect
to the polarization vector € of the incident light. The form of
(14) follows in the electric dipole approximation from general sym-
metry principles provided that the target atom is unpolarized.?®

The partial cross section is given in terms of reduced electric
dipole matrix elements involving the theoretical channel functions
in (9a) as follows:

N
-1 [1], - 2
= - L <yl . I > 15)
a. w [ 0] JLELI IPO 'izl r1 IPOLE l (

The B parameter has a much more complicated expression involving
interference between different reduced dipole amplitudes. Thus
measurement of B provides information on the relative phases of
the alternative final state channel wavefunctions, whereas the

partial cross-section in Eq. (15) obviously does not. From the



A. F. STARACE, Atomic Photoionization (1983) 77

requirement that the differential cross section in (14) be positive,
one easily sees that -1 < B < +2.

The cross section and angular distribution asymmetry parameter
8 thus depend on the reduced dipole amplitudes shown in (15). In
most theoretical formulations, both wo and waE are represented in

terms of a basis of single particle radial wavefunctions. Thus,

the dynamical part of the reduced matrix elements is represented

by the one-electron radial matrix element of r between initial and™
final radial wavefunctions. In the next section we examine the
behavior of such radial matrix elements within the central potential
model.

CENTRAL POTENTIAL MODEL PREDICTIONS

Central Potential Model

In the central potential (CP) model the exact atomic Hamil-
tonian in (1) is approximated by a sum of single-particle terms
describing the independent motion of each of the atom's electrons
in a central potential V(r):

~1Z

Hep = ) { o+ V(r)) (16)

The potential V(r) must describe the nuclear attraction and the
electron-electron repulsion as well as possible and in particular
must satisfy the following boundary conditions at small and large
r in the case of a neutral atom:

Vr) —> £ and  v(r) —>3t (17)

r-0 r r— o

The Hamiltonian in (16) is separable in spherical coordinates and
its eigenstates can be written as Slater determinants of one-
electron orbitals of the form r’anz Yo (@) for bound orbitals
and of the form r~} sz(r) Yzm(Q) for continuum orbitals. The
one-electron radial wave functions are obtained as solutions of

2 2r

d°P_(
€_5Lr)+2 I:E_v(r) -2—(~H—§1l:| ng(r) =0 (18)
dr
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A similar equation holds for discrete orbitals Png(r). A1l of the
radial wave functions satisfy the boundary condition ng(o) = 0.

High Energy Behavior of the Photoionization Cross Section

The hydrogen atom cross section, which is non-zero at threshold
and decreases monotonically with increasing photon energy, serves
as a model for inner-shell photoionization cross sections in the
x-ray photon energy range. Motivation for a hydrogenic treatment at
high energies stems from the fact that sharp onsets at threshold
followed by monotonic decreases above threshold are precisely the
behavior seen in x-ray photoabsorption measurements. A simple
hydrogenic approximation at high energies may be justified theoret-
ically as follows: (1) Since a free electron cannot be photoionized
due to kinematical considerations, at high photon energies one
expects the more strongly bound inner electrons to be preferentially
jonized as compared to the outer electrons. (2) Since the wave
function Pnl(r) for an inner electron is concentrated in a very

small range of r one expects the integrand of the radial dipole
matrix element to be negligible except for those r where Pnl(r) is

greatest. (3) Thus it is only necessary to approximate the atomic
potential Tocally, e.g., by means of a screened Coulomb potential

appropriate for the nliﬂ orbital:

Z~-5s
Vo (r) = - [ r"“] +v 0 (19)

Here s, is the "inner-screening" parameter, which accounts for the

screening of the nuclear charge by the other atomic electrons, and
0

anL

lowering of the nf electrons’ binding energy due to repulsion be-

tween the outer electrons and the photoelectron as the latter

leaves the atom. The potential in (19) predicts hydrogen-1ike

photoionization cross sections for inner-shell electrons with onsets

is the "outer-screening" parameter, which accounts for the

determined by the outer-screening parameters Vngo. These predic-

tions of the simple hydrogenic model are clearly confirmed by the
more accurate numerical calculations of Botto et al.l? for the K-
shell photoionization cross sections of Fe, Fe+16, Fe+18, Fe+20
and Fe+23 shown in Fig. 1. One sees that changes in the outer

screening only affect the binding energy of the 1ls electron and
hence the onset of photoionization. The value of the photoioniza-

tion cross section at a given photon energy w is nearly independent

of changes in ano, as predicted by Eq. (19).

9
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Fig. 2. Theoretical photoionization cross section for the 4d sub-
shell in Xe vs. photoelectron energy. (Hartree-Fock
length results from Ref. 16).

threshold). Then it decreases to a minimum (the so-called Cooper
minimum!7218) and rises to a second maximum. Finally the cross
section decreases monotonically at high energies in accordance with.
hydrogenic behavior. The non-hydrogenic behavior in Fig. 2 may be
interpreted as due either to an effective potential barrier or to

a zero in the radial dipole matrix element. We examine each of
these effects in turn.

Potential Barrier Effects. The excited electron wavefunction
obeys the radial equation (18), which contains the effective
potential

V() = v(r) + L (21)
2r

When V(r) is a Coulomb potential, Veff(r) is always a single well

potential having a repulsive barrier near r = 0 and an attractive
long-range Coulomb tail. Realistic atomic potentials V(r), however,
are quite non-Coulombic for values of r near the radii of outer
atomic subshells. In many cases for £ = 2, Veff(r) becomes positive
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Fig. 3. Effective potential Veff(r) vs. coordinate r for 2=2
and % =3 electrons. (From Ref. 20).

at these radii resulting in a two-well potential, i.e., Veff(r) has

a potential barrier at intermediate values of r.1° Fig. 3 shows
Veff(r) for £=2 and £ =3 calculated?® using the Herman-Skillman2l

atomic potentials V(r). Note in particular that for 2=3 xenon
(Z=54) has a potential barrier for 1 € r € 4 a.u. If we note that
the 4d-subshell cross section in Fig. 2 results primarily from the
4d + <f one-electron transition, then the potential barrier for

2 =3 explains the delayed onset of the cross section maximum.

Consideration of the xenon 4d and ef wavefunctions calculated
according to Eq. (18) shows even more clearly the effect of the
2 =3 potential barrier. One sees in Fig. 4 that at threshold the
e = 0.0 f-wave is kept out of the inner well region by the potential
barrier so that there is hardly any overlap with the bound 4d
orbital. Only for a kinetic energy € = 0.3 a.u. above the barrier
can the continuum wavefunction move in toward smaller r, resulting
in a large overlap with the 4d wavefunction and hence a cross
section maximum.

Effects of zeros in the dipole matrix element. The existence
of a minimum in the cross section for photoionization of the outer
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Fig. 3. Effective potential Veff(r) vs. coordinate r for £=2
and £=3 electrons. (From Ref. 20).

at these radii resulting in a two-well potential, i.e., Veff(r) has

a potential barrier at intermediate values of r.19 Fig. 3 shows
Veff(r) for £=2 and £ =3 calculated?® using the Herman-Skillman2!

atomic potentials V(r). Note in particular that for %=3 xenon
(Z=54) has a potential barrier for 1 < r € 4 a.u. If we note that
the 4d-subshell cross section in Fig. 2 results primarily from the
4d ~ ef one-electron transition, then the potential barrier for

2 =3 explains the delayed onset of the cross section maximum.

Consideration of the xenon 4d and ef wavefunctions calculated
according to Eq. (18) shows even more clearly the effect of the
% =3 potential barrier. One sees in Fig. 4 that at threshold the
e = 0.0 f-wave is kept out of the inner well region by the potential
barrier so that there is hardly any overlap with the bound 4d
orbital. Only for a kinetic energy € = 0.3 a.u. above the barrier
can the continuum wavefunction move in toward smaller r, resulting
in a large overlap with the 4d wavefunction and hence a cross
section maximum.

Effects of zeros in the dipole matrix element. The existence
of a minimum in the cross section for photoionization of the outer
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Fig. 4. Xenon £=3 orbitals; 4f (energy normalized), € = 0.0 a.u.,
and € = 0.3 a.u. radial wavefunctions computed using the
Herman-Skillman atomic potential. The xenon 4d orbital,

normalized to unity, is also shown.

s electron in the alkalis has long been known to be due to a change
in sign of the dipole integral with increasing photoelectron kinetic
energy.22223  Cooperl? and Fano and Cooperl® formulated the following
general rule for the occurrence of such sign changes: The radial
dipole matrix element for the transition nf + n'L' (where n' extends
over all discrete excited states n' > n as well as the continuum)
will change sign as a function of n' when L' states with n' = n
exist but are not occupied in the ground state of the atom. Note
that this rule excludes ng = 1s, 2p, 3d, and 4f, all of which have
positive (nodeless) radial wavefunctions, as well as the transitions
n% >~ n'%-1, which are always weaker than n2 - n'g+l. The rule
amounts in principle to a prediction of the occurrence of a negative
radial dipole integral for low-energy final-state wavefunctions.

The physical basis for this rule comes partly from known results

for atomic hydrogen and partly from calculational evidence based on
the central potential model. Thus, it is known that for hydrogen
wavefunctions the radial dipole matrix element is always positive
except when n' = n.18 Furthermore, at high energies the radial
dipole integral becomes hydrogenic and hence positive. On the other
hand, central potential model calculations for atomic ground states
show that the radial dipole matrix element for a particular
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Fig. 5. Photoionization cross section for the excited 5d orbital
of Cs. Inset shows the high-energy behavior of the
cross section (From Ref. 24).

transition changes sign either once or not at all. Putting these
three facts together, one observes that "Cooper minima" will occur
for those transitions having a negative radial dipole matrix
element at threshold.

The minimum at £ % 10 Ry in the Xe 4d-subshell photoionization
cross section shown in Fig. 2 may thus be interpreted as due to a
sign change in the radial dipole matrix element for the transition
4d » ef. As shown in Fig. 4, the overlap of the 4d wavefunction
and the final f-wavefunction is negative at the threshold energy
e = 0.0 a.u. At e = 0.3 a.u. one observes cancellation between
positive and negative components of this overlap. At higher ¢ the
f-wave moves in further toward lower r increasing the cancellation
until the radial matrix element passes through zero and becomes
positive.

The above rules no longer hold for photoionization from excited-
state orbitals, which are very diffuse. Fig. 5 shows the cross
section for photoionization of the excited 5d orbital in Cs.2* The
gross shape of the cross section is due to the 5d + f transition,
whose radial dipole matrix element is positive at threshold and
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undergoes two changes in sign as & increases in energy, one at

e ¥ 0.17 Ry and another at € &% 7.0 Ry shown in the inset. It was
further found that the radial dipole integral for the weak transi-
tion 5d +~ ep also has a zero near ¢ & 0.07 Ry, although this minimum
is not noticeable on the scale used in Fig. 5. Fig. 5 illustrates
the utility of a central potential model calculation for distin-
guishing between cross section minima and window resonance

features.

Recently, several new theoretical studies on the systematics
of cross section minima have been carried out. Kim et al.2% have
shown that in relativistic central potential model calculations the
minima occur at much higher energies than in non-relativistic cal-
culations. Furthermore the energy difference between the minima in
channels differing only by fine-structure quantum numbers is an
order of magnitude greater than the fine structure splitting of
the ionic energy levels.25 In another study, Kim et al.2® have
identified excited states in high Z elements in which the cross
section minimum moves in toward threshold in the region of the
delayed maximum above threshold. The cross section thus has two
maxima of comparable height. Lastly, Msezane and Manson27 have
shown that, in photoionization of excited states, cross section
minima occur when the phase shift difference between the initial
and final states is about m degrees. This may be understood by
recalling that in atomic hydrogen there are no cross section minima.
The excited states of other atoms, however, are essentially hydro-
genic except for a phase shift due to the non-Coulombic fonic
core. (The initial discrete orbital "phase shift" is taken to be
the quantum defect multiplied by 7, in accordance with quantum
defect theory.28) When the initial and final states have a phase
difference of m, then, they are out-of-phase with each other rela-
tive to the hydrogenic case and hence the radial dipole matrix
element is zero.

The importance of cross section minima to theory is often that
within such minima one can observe effects of weak interactions
that are otherwise obscured. Relativistic and weak correlation
effects on the photoelectron angular distribution asymmetry param-
eter B for s-subshells is a notable example that has been discussed
in detail elsewhere.29 Wang et al.3% have also emphasized that in
such minima in the electric dipole amplitudes one cannot ignore the
effects of quadrupole and higher corrections to the photoelectron's
differential cross section. Central potential model calculations3?
show that quadrupole corrections can be as large as 10% of the
electric dipole cross section in such cross section minima even
for Tow photon energies.
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Fig. 6. MBPT diagrams (left) and scattering pictures (right) for
three kinds of particle-hole interaction: (a) intrachannel
scattering following photoabsorption; (b) photoabsorption
by a virtual doubly-excited state; (c) interchannel
scattering following photoabsorption.
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THE PARTICLE-HOLE INTERACTIONS

A Targe number of calculations of the single-photoionization
cross section of closed-shell atoms using alternative theoretical
formulations have shown that of the many kinds of electron correla-
tion it is the particle-hole interactions which are most important
for photoionization. They may be described as interactions in
which two electrons either excite or de-excite each other out of
or into their initial subshell locations in the unexcited atom.
(When an electron is excited out of a subshell it is said to Teave
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behind a vacancy or hole.) To analyze the effects of these inter-
actions on the cross sections it is convenient to classify them in
three categories: intrachannel, virtual double excitation, and
interchannel. These alternative kinds of particle-hole interactions
are illustrated in Fig. 6 using both many-body perturbation theory
(MBPT) diagrams and more "physical" scattering pictures. We discuss
each of these types of interaction in turn.

Intrachannel Interactions

The many-body perturbation theory (MBPT) diagram for this in-
teraction is shown on the left in Fig. 6(a); on the right a slightly
more pictorial description of this interaction is shown. The wiggly
line indicates a photon, which is absorbed by the atom in such a way
that an electron is excited out of the n2th “subshell. During the
escape of this excited electron, however, it collides or interacts
with another electron from the same subshell in such a way that the
second electron absorbs all the energy imparted to the atom by the
photon; the first electron is de-excited back to its original Toca-

tion in the nz—JEh subshell. For closed-shell atoms, the photoioniza-
tion process leads to a 1P1 final state in which the intrachannel

interaction is strongly repulsive. Hence with respect to central
potential model or average-of-configuration Hartree-Fock (HF) cal-
culations, which include only a weaker average intrachannel inter-
action in generating the basis wave functions, inclusion of these
interactions serves to shift the delayed maximum in the cross
section to higher energies (usually too high) as well as to broaden
this peak and decrease its amplitude. [Note that in those HF calcu-
lations (known as term-dependent HF calculations) that include the

correct 1P1 intrachannel interaction in solving for the HF wave-

functions no further treatment of these interactions is necessary:
one obtains cross sections equivalent to those obtained by starting
from an arbitrary basis set of final state wave functions and
explicitly treating the intrachannel interactions within this

basis set.]

As an example of the effect of intrachannel interactions, con-
sider the 3p-subshell photoionization cross section in Ar shown in
Fig. 7. The central-potential model calculation3! (HS) has the same
qualitative features as the experimental data3? (open circles) but
has a cross section that peaks at too Tow an energy and is far too
high and narrow. The solid Tines indicate the result of treating
the intrachannel interactions within the basis of the central-
potential model wave functions.3! The result using the length form
of the dipole matrix element peaks at too high an energy due to the
too repulsive intrachannel interaction. The result using the
velocity form of the dipole matrix element gives too low a cross
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Fig. 7. Photoionization cross sections for the 3p subshell of Ar,
-+-, Herman-Skillman central potential model calculation;
——, intrachannel calculation of Starace3!; ---, close
coupling calculation of Lipsky and Cooper; o, experimental
results of Samson.32 (From Ref. 31).

section, again due to the too repulsive intrachannel interaction
that keeps the continuum wave function out of the small r region,
which is weighted more strongly by the velocity dipole ogerator.
The dashed curves represent close coupling calculations,33 which
include not only the intrachannel interactions but also certain
weak interchannel interactions (discussed below) involving the 3s
subshell. Clearly the results are not very different from the
intrachannel calculations,3! indicating another cause for the
discrepancy with experiment.

Virtual Double Excitations

The MBPT diagram for this type of interaction is shown on the
left in Fig. 6(b). Topologically this diagram is similar to that
on the Teft in Fig. 6(a). In fact, the radial parts of the two
matrix elements are identical; only the angular factors differ. A
more pictorial description of this interaction is shown on the
right of Fig. 6(b). The ground state of the atom before photoab-
sorption is shown to have two electrons virtually excited out of

the anh subshell. In absorbing the photon, one of these electrons



A. F. STARACE, Atomic Photoionization (1983) 88

50 T T T T T

40 .

T
AN
A=
7/

L

30

20

Cross section {Mb)

|

1 1
0 5 10 15 20 25 30
Photoelectron energy (eV)

Fig. 8. Theoretical calculations of Chang3"% for the photoioniza-
tion cross section of the 3p subshell of Ar. Dashed and
solid lines give length and velocity results, respectively,
in three levels of approximation discussed in the text.
Experimentally measured values of the Ar cross section are
indicated by the solid circles32 and by the solid squares
(Samson, unpublished). (From Ref. 34).

is de-excited to its original location in the n%Eh subshell, while
the other electron is ionized. These virtual double excitations
imply a more diffuse atom than in central-potential or HF models
with the effect that the overly repulsive intrachannel interactions
are weakened, leading to cross sections that are in very good
agreement with experiment. Recent calculations of Chang3% for the
Ar 3p-subshell cross section (Fig. 8) demonstrate the effect of
including these virtual double excitations. The curves labeled I
are the length and velocity results including only the intrachannel
interactions. Curves Il indicate the effect of including virtual
double excitations in the initial state: the length and velocity
curves are in better agreement, but there is still a sizable dis-
crepancy with the experimental results3? (solid circles). Finally
curves III indicate the result of including virtual double excita-
tions in both the initial and the ionic state. Now the length and
velocity curves are virtually identical and are both in excellent
agreement with experiment.

Interchannel Interactions

A last type of particle-hole interaction that has been found
to be important, particularly for s subshells, is the interchannel
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interaction shown in Fig. 6{(c). This 1nteract1on has the same form
as the intrachannel interaction shown in F1% » except now when
an electron is photoexcited out of the n 20__ subshe]], it collides
or interacts with an electron in a different subshell — the nlllth
subshell — in such a way that the second electron is ionized, and
the first electron falls back into its original location in the

nOZOE— subshell. There are two major effects of this interaction:

(1) when the binding energy of the nolo—— subshell is greater than
that of the n&— th subshell, discrete members of the n0 Ot subshell
channels show up as resonances in the n1%q subshell cross section;
(2) when the dipole amplitude for ionization of the % lth subshell
is small compared with that for the No% O—E, for example, when N %y is

th

an s subshell, the zero-order nlzl subshell cross section can be

strongly modified by interchannel interactions.

As an example of the first effect — resonance behavior — we
consider once again the photoionization of the 3p subshell in Ar,
this time including also the effect of interchannel interaction with
the 3s subshell. The channels under consideration are thus

6 2,5

+ v > Ar 3s°3p” + e”

~ Art3s3pd + e . (22)

Ar3s23p

Figure 9 shows the MBPT calculation of Kelly and Simons,35 which
includes both intrachannel and interchannel interactions as well as
the effect of virtual double excitations. The cross section is in
excellent agreement with experiment,32:36 even to the extent of
describing the resonance behavior due to discrete members of the

3s + ep channel.

As an example of the second effect, strong modification of a
weak dipole amplitude, we consider again the two channels in
Eq. (22), but this time we focus on the 3s-subshell cross section.
Figure 10 shows three calculations, which include intrachannel and
interchannel interactions as well as virtual double excitations.
There are the R-matrix calculation of Burke and Taylor,37 the random
phase approximation (RPA) calculation of Amusia et al.,38 and the
simplified RPA calculation of Lin.39 As compared with the HF cal-
culationl® shown, which only includes the intrachannel interactions,
these three other calculations show that interchannel interactions
introduce a strong interference between the channels in Eq. (22).
This interference causes a minimum in the 3s-subshell cross section
in agreement with experiment.40,41
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Fig. 9. Photoionization cross section for the 3p and 3s subshells
of Ar. HFL and HFV indicate the length and velocity
results obtained using HF orbitals calculated in a P,
potential. Dot-dash and dashed 1lines represent the length
and velocity results of the MBPT calculation of Kelly and
Simons.3%> Only the four lowest 3s- np resonances are
shown; the series converges to the 3s threshold at
29.24 eV. Experimental results are those of Samson32 above
37 eV and of Madden et al.3% below 37 eV. (From Ref. 35).

As a final example of particularly strong interchannel interac-
tions we consider the 5s-subshell cross section in Xe as influenced
by the neighboring 4d and 5p subshells. The relevant channels are

6 9..2

5s 5p6 + e

6

Xe4d105525p + v > Xe'4d

> xe'4d195s5p

+ Xe'4d105525,°

+ e (23)
+e .

Figure 11 shows the calculations of Amusia and Cherepkov’ in three
approximations. The dot-dash line represents the HF result for
the 5s-subshell cross section. No interchannel interactions are
included. The dashed 1ine represents an RPA calculation including
interchannel interaction with the 4d - ef channel. One sees that
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Fig. 10. Photoionization cross section for the 3s subshell of Ar:
R-matrix, R-matrix (length) calculation of Burke and
Taylor37; RPAE, RPA calculation of Amusia et al.38;
SRPAE, simplified RPA calculation of Lin3%; HF-L,
Hartree-Fock (length) calculation of Kennedy and Mansonl®;
x, experimental data of Samson and Gardner“?; o, ex-
periTﬁntal data of Houlgate et al.“! (From Houlgate et
al. .

the large delayed maximum in the 4d-subshell cross section (compare
Fig. 2) is mirrored in the 5s-subshell cross section. The solid
line represents an RPA calculation including interchannel interac-
tion with both the 4d » ¢f and the 5p > ed channels. One sees that
interchannel interaction with the outer 5p subshell produces inter-
ference leading to a zero in the 5s-subshell cross section.

Remarks

The three types of interactions discussed are the most impor-
tant for the outer £ > 1 subshells of the rare gases and probably
for all closed-shell atoms. These interactions form the essential
physical content of the many ab initio theoretical methods that
have been developed to treat atomic photoionization such as the
RPA,75%2 the MBPT,“3 R-matrix method,37°** the transition matrix



A. F. STARACE, Atomic Photoionization (1983) 92

o

CROSS SECTION o{Mb)
°

PHOTON ENERGY w(Ry)

Fig. 11. Theoretical calculations of Amusia and Cherepkov’ for the
photoionization cross section of the 5s subshell of Xe,
showing the influence of interchannel interactions (see
text for deacription of curves) (From Ref. 7).

approach,342%5 and the multiconfiguration HF approach® among
others. We emphasize, however, that except for the RPA these
methods are not restricted to treating only the particle-hole class
of interactions. In particular, s subshells have such small cross
sections that other types of interaction may have a significant
influence on them.” Table 1 indicates the interactions taken into
account in the major approximation methods developed for atomic
photoionization. Note that in taking all particle-hole interac-
tions into account to infinite order the RPA opts for simplicity
at the expense of a certain amount of violation of the Pauli
Principle in higher orders of perturbation. Errors in the photo-
ionization cross section due to these violations have been esti-
mated to be less than 10%.7 The fact that both the MBPT and the
RPA achieve comparable agreement with experiment indicates that
higher order terms in interchannel interaction and in virtual
double excitations are not very important, at least for closed
shell atoms.

Among those additional interactions that are important in
closed-shell atom photoionization, relativistic interactions stand
out since experimentalists can resolve fine structure as well as
obtain photoelectron spin polarizations, both of which require a
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Table 1: Comparison of Major Theoretical Methods
for Atomic Photoionization

Intrachannel Interchannel Virtual Double
Method Interactions Interactions Excitations

(1) Central Potential Not treated Not treated Not treated

Model
(2) Term-Dependent o Qrder Not treated Not treated
Hartree-Fock
(3) MBPT o Qrder Usually to Usually to 1st
1st or 2nd or 2nd Order
Order
(4) Close-Coupling « Order « QOrder Treated By
and Configuration
R-Matrix Methods Interaction
(5) RPA « Qrder « QOrder « Order

Pauli Principle
Violated in 2nd
and higher
orders

relativistic treatment for their theoretical description. Further-
more when cross sections are small, relativistic effects can stand
out in a striking way. The relativistic RPA theory of Johnson and
co-workers*7™%% includes not only the particle-hole interactions
described above but also relativistic interactions. It thus repre-
sents the state-of-the-art for the theoretical description of
photoionization processes involving closed-shell atoms. Results
for partial cross sections,“8 fine-structure branching ratios,“8
photoelectron angular distributions,“® and photoelectron spin
polarizations®? are all in excellent agreement with experiment.

Except for the lightest atoms, relatively few open-shell atoms
have been studied in detail either experimentally or theoretically.
On the one hand this is due to the experimental difficulty of pro-
ducing open-shell atom vapors and on the other hand to the greater
number of channels that must be considered in a theoretical calcu-
lation. For this reason one can only speculate whether or not
open-shell atom cross sections will require theoreticians to treat
any interactions in addition to the particle-hole interactions in
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order to obtain good agreement with experiment. Of the theoretical
methods developed to describe closed-shell atom photoionization
processes, the MBPT“3 and R-matrix37:%% method are not restricted
to closed-shell atoms. Recently both the RPAS? and the transition
matrix method5! have been generalized to treat open-shell atoms.
What is now required are many detailed experimental measurements to
test the various theoretical methods as well as our understanding
of the electron correlations involved.

HYPERSPHERICAL COORDINATE DESCRIPTION OF PHOTOIONIZATION

So far we have focused on photoionization processes in which
only a single electron is photoionized and the ion is left in a
stationary state. Increasingly, however, interest has focused on
photoionization processes in which two electrons move outside an
ionic core such as in double photoionization, in photoionization
plus excitation, and in post-collision interaction and other relax-
ation processes in which a second electron is ionized or excited.
(These latter relaxation processes are often considered as distinct
from double photoionization or photoionization plus excitation only
because the two electrons usually come from different subshells.)
Knowledge of the electron dynamics when both electrons share com-
parable amounts of energy near the nucleus is crucial to under-
standing the excitation process. For this reason we focus in this
section on the hyperspherical coordinate formulation of atomic
photoionization since it treats the motion of two electrons outside
an ionic core on an equal footing. Within a separable approxima-
tion the method has proyided a new classification of whole series
doubly excited states. Furthermore the separable approximation has
proved to be a quantitatively accurate first approximation to two-
electron Tevel energies and single-electron photoionization cross
sections. Analysis of the breakdown of separability has provided
new insight into the photoexcitation process and quantitative
treatments of such processes are being developed.

Two-Electron Schrodinger Equation in Hyperspherical Coordinates

The hyperspherical coordinate system for two electrons outside
of a massive center is defined by introducing the mean square radius
of the two electrons from the nucleus,

2 2)%

R = (rl + T (24a)

and a corresponding angular coordinate

tan o = rz/r1 (24b)
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The radius R measures the "size" of the two electron state, while
the angle o measures the radial correlation of the two electrons.
Note that when o = w/4, ry = Tros when o = 0 or n/2, one of the

electrons is at a much larger distance from the nucleus than the
other.

In this system of coordinates the non-relativistic two-electron
Schrodinger equation becomes

2 2
d2 L ] in-_ 1, 21 s 22 ] C(u,elz) w26
EE7' R2 da2 4 cosza sinza R
X (RQ& sin o cos o ¥) =0 (25)
where
27 21 2
~C(0,8.0) =R | -~ == - =24+ —=
V12 r r > >
[ 1 2 |ry-1y| ]
(26)

N2 2
cosa SIna (1 _ 5in2q €0s6,

%

and El and Ez are the usual orbital angular momentum operators for
the individual electrons, 8,, = cos™ 1 ?1- ?2, and Z is the nuclear
charge.

In the hyperspherical coordinate method of Macek,>2 the two
electron wavefunction wv(Fl,?z) is expanded in terms of a complete
set of adiabatic eigenfunctions ¢u(R;a,?l,?2), which gepend para-
metrically on the hyperspherical radius R = (r% + 1"2)/2 and are

functions of the five angular variables o tan'l(rz/rl), ?1 and ?2.
The form of ¥ is thus:

U, (RyastrysTy) = (R”2 sina cosa)™t E Flo(R)e, (RiauTysry) (27)

The angular function ¢u is defined to satisfy the following differ-
ential equation in atomic units (A =e=m=1):
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2 42 g2
d + 1 + 2
2 2 . 2
do cos o sin o

- RC(0,675) ¢, = ~Uu(R)¢u . (28)

Here -C(u,elz) is defined in Eq. (26) and Uv(R) is an eigenvalue

which is parametrically dependent on R. Upon substituting equa-
tion (27) in the two-electron Schrdodinger equation and using equa-
tion (28), one obtains the following set of coupled differential

equations for the radial functions Fuv(R):

1 2
2 U (R)+ 3¢
Ly | e (o = v 2 | FLR)
dr R 7R H (20)
29
3% . %, 4

In equation (29) the coupling matrix elements (¢u,8n¢u./aRn), n=

1,2, involve integration over the five angular variables only and
are thus parametrically dependent on R.

The Separable Approximation

Each of the potentials Uu(R) and its corresponding angular
eigenfunction ¢u define a hyperspherical channel n. These channels

are coupled through the radial derivative matrix elements in

Eq. (29). In a separable — or adiabatic — approximation,>2 one
ignores the coupling terms in the second set of braces in Eq. (29).
Then the wavefunction in Eq. (27) may be represented by a single
term with y = v in the summation on the right hand side, i.e.,

Sep.

5, -
£ C (R/2 sino cosa) 1

U E(RIE, (Rsas iy ) (30)

For simplicity one usually sets u = v and drops the double subscripts
on F when referring to the separable approximation solutions. One
sees from Eq. (30) that the separable approximation amounts to
assuming that motion in R and in o are approximately independent of
each other. This may be confirmed by examining correlated two-
electron wavefunctions and observing that the nodal lines of such
waggfunctions lie approximately along constant R and along constant
(e
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The separable approximation has been very successful in classi-
fying and describing the essential properties of Rydberg series of
doubly excited states in both helium52s5% and in the negative ion
of hydrogen.>5:56 The index p labels the channels. The wavefunction
wﬁép' for the member of energy E in channel p is the product of the
angle function ¢ characteristic of the entire channel and the radial
function FuE(R) obtained by solving the radial Eq. (29) using the
channel potential UU(R) and ignoring the off-diagonal coupling terms.

Because each member of a Rydberg series of doubly excited states has
the same angular function ¢u and has a radial function FuE(R) that

is calculated in the same potential Uu(R)’ the physical properties

of the various channels u are often immediately apparent upon exami-
nation of UU(R) and ¢u' Furthermore, for the Towest energy states

calculated in the potentials Uu(R)’ the separable approximation

energies and wavefunctions are usually very well determined. Higher
energy states of a particular channel p calculated in the potential
UU(R) are however increasingly too high in energy,52 if bound, or

have too negative phase shifts,37:58 if unbound.

A recent calculation®® of the photoionization cross section of
He using separable approximation hyperspherical coordinate wave-
functions demonstrates the strengths and weaknesses of this
approximation. The initial and final wavefunctions, s and bes
for the process

He(1s) + v —>  He' 1s(%s) + e (!p) (31)

both have the form of Eq. (30). For the initial state, u corre-
sponds to the Towest lg potential UU(R), and for the final state,
u corresponds to the Towest 1P potential UU(R). The photoionization

cross section obtained using the separable hyperspherical approxima-
tion is shown in Fig. 12. Figure 12 also shows the revised exper-
imental data of Samson,5% which have error bars of + 3%. The
results lie within these error limits near threshold (for kinetic
energies 0.0 < € < 0.4 au) but are lower than experiment at higher
energies. Of the many other theoretical calculations, we show the
one with the best overall agreement with experiment: the four-
channel (i.e. 1s-2s5-2p) close-coupling calculations of Jacobs.®60
The single-channel hyperspherical calculations do not include cou-
pling to excited states of He*. Unpublished calculations®l in
which the Towest four hyperspherical channels were coupled together
show that while the cross sections are improved, they are not
better than the four-channel close coupling results at energies
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Fig. 12. Photoionization cross section for He. Full curve, sepa-
rable approximation (single-channel) hyperspherical
calculation of Miller and Starace (Ref. 58); dots, exper-
imental measurements of Samson (Ref. 59); dashed curve,
1s - 2s - 2p (four-channel) close-coupling calculation of
Jacobs (Ref. 60).

0.2 a.u. Thus one has the peculiar situation where for energies
0.2 a.u. above the ionization threshold the single-channel
separable approximation hyperspherical calculations agree to within
1% with experiment and are as good as or better than a four-channel
close-coupling calculation; but for energies ¢ 2 0.2 a.u. above
threshold the hyperspherical calculations are systematically Tower
than both experiment and the close-coupling results even when four
hyperspherical channels are coupled together. Similar findings have
been obtained by Lin®7 for e~ - H scattering phase shifts. We shall
discuss a new procedure to overcome this slow convergence of the
hyperspherical coordinate method below. Beforehand, however, we
wish to show how excitation processes, which involve the breakdown
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Fig. 13. Relief map of the potential —C(a,elz) defined in Eq. (26
for Z = 1. (From Ref. 63).

of the separable approximation, are described in the hyperspherica
coordinate approach.

Description of Electronic Excitation

The hyperspherical coordinate approach has been used to under

99

)

1

stand qualitatively how a low-energy two electron state concentrated

near the origin, upon receiving energy during a collision process,
evolves to states of high excitation far from the origin. The key
idea, stressed recently by Fano®? and illustrated graphically by
Lin,53563 is that such states describe motion along a potential
ridge centered about the direction o = n/4 (i.e., ry = r2).

Consider Eq. (28) for the channel functions ¢, (R;a,?l,?z).

The potential -C(a,elz), defined in Eq. (26), is shown in Fig. 13

for Z=1. States having one electron more excited than the other,
i.e., rp >> ryor ry>> ros have an angle function ¢u with maximum

amplitude in the valleys of the potential in Fig. 13, near a = 0
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and o = m/2. Comparably excited, doubly-excited states have ryv Ty
and thus the angle function ¢u for these states has maximum ampli-

tude on the ridge of the potential in Fig. 13, near a = n/4, and
preferably near cosbyy = -1 (i.e., on opposite sides of the nucleus).

Consider now the R-dependence of the angle functions ¢u' Eq. (28)

shows that the potential -C is multiplied by R. For large enough
R, therefore, the potential -RC on the ridge becomes equal to the
eigenvalue —UU(R). At this "classical turning point" the angle

function ¢u has no more "kinetic energy” of motion in o on the

ridge. For larger R values, its amplitude on the ridge is exponen-
tially damped and the probability amplitude in the channel 1 must
retreat to the valleys of the potential in Fig. 13, implying that
for such large R values u describes states with one electron more
highly excited than the other. Alternatively, the two electron
state on the ridge may "hop" to the next higher channel nu'. With a
higher value of _Uu'(R)’ the two electron excitation could move to

somewhat larger R along the ridge since the difference between _Uu'

and the top of the potential ridge of -RC would restore some posi-
tive "kinetic energy" of motion in a. Actually the vicinity of the
classical turning point is propitious for such a transition to a
higher channel p' since the coupling matrix elements (cf. Eq. (29))
are largest precisely where the channel functions are changing most
rapidly with R.

Lin%3 has shown graphically how the channel functions ¢u behave

as functions of R. Figs. 14 and 15 show the H'(ls) channel functions
¢U(R;u,612) forp=1and u =2 (i.e., the Towest two 1S hyperspheri-

cal channels). In Fig. 14 one sees that at R = 1 the charge distribu-
tion in the first channel 1is peaked about a = n/4, lying on the
potential ridge. At R = 4, however, the charge distribution is va-
cating the ridge and moving to the valleys near o = 0 and o = w/2.
By R =8, u=1 describes a channel with one electron much more
highly excited than the other. Fig. 15 shows the next higher hyper-
spherical channel function. Note that at R = 4, precisely where

u =1 has a depression along the ridge, the u = 2 channel's charge
distribution has a maximum. This peak in u = 2 along the ridge
progresses outward to larger R values until at R = 12 a depression
appears along the ridge. If two-electron states in u = 2 are to
move to larger R and remain comparably excited they must hop again
to the next higher hyperspherical channel, and so on.

This new perspective of two electron excitation states evolving
toward large radii R along a potential ridge has its origins in the
Wannier-Peterkop-Rau®" analysis of electron impact jonization near
threshold. 1Its application to quantitative predictions of excita-
tion cross sections is only just beginning. Of particular interest
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Fig. 14. Plot of |cpu(R;oc,612)|2 Fig. 15.

vs. o and 612 for var-
ijous R values for the

first o Is hyper-
spherical channel u=1.
(From Ref. 53.)

2
Plot of |¢U(R;OL,612)|
vs. o and 612 for var-
jous R values for the

second H™ 1s hyper-
spherical channel u = 2.
(From Ref. 53.)

is the recent calculation of the photoionization plus excitation

cross section of Be by Greene.®5

Greene®> has calculated the photoionization cross section of Be
including coupling between the lowest two hyperspherical channels,
p = 1 corresponding to leaving the ion in its ground 2s state and
u = 2 corresponding to leaving the ion in its excited 2p state.

(The inner 152 core was represented by a central potential so that
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Fig. 17. Hyperspherical potential curves —Uu(R)/R2 vs. R for the
three Be 1P channels converging to the n=2 state of
Be'. (From Ref. 65.)

populated; it has a much less repulsive potential barrier than
either the y = 2 or y = 3 channels. Macek®2 has shown that the
hyperspherical adiabatic channel u=1 corresponds to the 2sp+ chan-
nel of Cooper, Fano, and Prats®? while 1 =2 and u=3 correspond to
the 2sp- and 2pd channels respectively. The channel function ¢u

for the "+" channel (u=1) is symmetric in o having an antinode on
the potential ridge in Fig. 13 while the "-" channel (p=2) is anti-
symmetric in a, having a node on the potential ridge. The symmetry
about o = n/4 for the He wavefunctions holds for all R values due to
the degeneracy in energy of these channels. Note also that the "+"
and "-" channels are shown to cross in Fig. 16. This crossing is
actually avoided, but in any case the channel functions ¢u do not

adjust to the crossing but proceed diabatically through it. For
this reason the middle curve for R > 7.5 a.u. has "+" character
while the lowest curve for R > 7.5 a.u. has "-" character.

Consider now the Be potentials in Fig. 17. Two differences
from He are immediately apparent. First, the potential curves are
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Fig. 18. Adiabatic "sp" channel wave functions associated with the
Towest two Be potential curves: (a) 2sep, u = 1;
(b) 2pes, u = 2. (From Ref. 65.)

non-degenerate for R -+ «. Secondly there is an avoided crossing
between the first and second potential curves for 4 < R < 6.
Otherwise, however, one expects most of the absorption strength,
as in He, to go into the channel with the Towest potential curve.
In his calculations Greene expanded the channel functions as
follows:

) 1%
¢ = g (Rsa) ¥ (F1,7,) (32)
w5 Y £1£2LM 1°°2

%1%

The most important functions gu (those with 2122 = "sp") are

shown in Fig. 18 for the potential curves w =1 and u = 2 for
various R values. For R = 2 one sees that the y = 1 function is
approximately symmetric about a = w/4 while the p = 2 function is
approximately antisymmetric, just as for the "+" and "-" channels
in He. As R increases, however, the channel functions drop into
one or the other of the potential valleys in Fig. 13, i.e., the

u = 1 amplitude becomes concentrated near o = 0 while the u = 2
amplitude becomes concentrated near o = w/2. Thus, as R increases
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the non-degeneracy of the thresholds in Be causes a breakdown of
the "+" and "-" symmetry about o = w/4 observed at small R values.
Furthermore this transition is seen to occur for R values

4 < RKG6.

What is remarkable about Greene's solution of the radial
equation (29) is that the solution that at small R starts out in
the y = 1 channel as the adiabatic solution Fuzl(R)¢u=1(R;Q)

becomes at R > 6 a nearly equal superposition of the adiabatic
solutions for w =1 and u = 2 in such a way that the "+" symmetry
is preserved through the avoided potential crossing region. In
other words, just as in He, the "+" solution proceeds diabatically
through the avoided potential crossing. This also explains the
observed large excitation cross section seen in Be. Furthermore
it is expected that this diabatic behavior of the hyperspherical
"+" solution will be a common feature of all alkaline earth and
other similar two electron systems.65:68 This common feature of
He and Be photoexcitation processes, despite vast differences in
the coupling strength between the associated channels, is one of
the most recent of the new perspectives on two-electron correla-
tions provided by the hyperspherical coordinate method.

The Fock Expansion About R =10

We return now to the question of the slow convergence of cal-
culations which couple hyperspherical adiabatic channels. A clue
to the difficulty is the observation that while the separable
approximation in hyperspherical coordinates gives a very good
initial approximation to the exact two electron wavefunction, it
becomes inadequate for describing states of moderate and high
kinetic energy relative to the bottom of the hyperspherical poten-
tial UU(R). If we consider the adiabatic potential curves for He

and Be shown in Figs. 16 and 17 we see that at very small R these
curves all have a strong generalized angular momentum barrier. For
states lying at Tow energy E in the potential, the radial function
FuE(R) is small for small R and is not significantly affected by

this barrier. W4When E is sufficiently high, however, the radial
wavefunction is repelled by the barrier and is accordingly shifted
in phase. The so-called "post adiabatic" approximation has
addressed this problem and obtains a faster convergent procedure,
but only at the expense of a poorer first approximation at low
energies.®9 Unpublished calculations for He®! have shown that
coupling between the adiabatic hyperspherical channels is strong
near R = 0 and that series expansions of the radial solutions near
R = 0 must incorporate powers of &nR whenever coupling is
introduced.
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Fock7® has shown that the full two-electron wavefunction has
the following series expansion near R = 0O:

W(F o) = 1T € (asfuF,) R (anR)" (33)
nm

Demkov and Ermolaev’! have generalized the Fock expansion in the
hyperpherical coordinate R to an N-electron system having any
symmetry. In addition, Macek’2 has proved that, for sufficiently
small values of the mean square radius R of the two electrons, the
Fock expansion converges and thus does indeed represent a physical
solution. The numerical calculations®! indicate that the 2nR
terms are inextricably linked with the coupling of adiabatic hyper-
spherical solutions near R = 0. Since the Fock expansion in

Eq. (33) is an exact solution of the problem, it must be that the
full expansion treats all coupling between the adiabatic channels.
Such coupling is necessary to reduce the effect of the excessive
repulsion of the centrifugal potential barrier within the indi-
vidual adiabatic hyperspherical channels.

Given the numerical difficulties near R = O when representing
the two-electron wavefunctions as an expansion in adiabatic channel
functions, as in Eq. (27), it makes sense to simply use the exact
Fock expansion in Eg. (33) near R = 0. One still has the non-
trivial task of calculating the coefficients Con 10 Eg. (33), of

course. Given such an expansion as in Eq. (33), however, one could
match onto an expansion in terms of a few adiabatic hyperspherical
channel functions, as in Eq. (27), at some radius R = R0 near the

bottom of the potential curves —UU(R)/R2 (cf. Figs. 16 and 17) well

away from the troublesome centrifugal barrier region near R = 0.

The precise method of matching the solutions in the two regions
must also be developed. One hopes, of course, that once the wave-
function is obtained for R < R0 that the expansion in hyperspherical

adiabatic solutions will be rapidly convergent. This hyperspherical
R-matrix method using the Fock expansion in the inner R < R0 region

is being carried out collaboratively by Joseph Macek, the author,
and co-workers at the University of Nebraska.

CONCLUDING REMARKS

We have reviewed here in a compact way current theoretical
understanding of the photoionization process. Single electron
photoionization processes are generally well understood, at least
for closed-shell atoms, in terms of the effects of the so-called
particle-hole electron correlations. Even so, in regions of small
cross sections such as near cross section minima, relativistic and
other weak interactions play an important r6le. Real two-electron
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photoexcitation processes are attracting increasing experimental
and theoretical interest and we have described here one theory,
the hyperspherical coordinate method, which has provided a number
of insights into the important correlations involved and which is
still under very active development.

Finally, it should be stressed that although we have focused
here on photoionization cross sections, it is becoming increasingly
important for theoreticians to present their results in the form
of transition amplitudes and phases. In the first place one needs
such theoretical data to predict other aspects of the photoioniza-
tion process, such as photoelectron angular distributions, and
photoelectron spin polarizations. Secondly, there are a growing
number of so-called “"complete" experiments’3-75 which use data
obtained from cross sections, angular distributions, and photo-
electron spin polarizations to provide experimental values for the
transition amplitudes and phases. Thirdly, as shown by Fliigge
et al.,’® the photoionization process produces an alignment of the -
residual ion. This alignment may be observed experimentally by
measuring the polarization of the subsequent fluorescence radiation
or else the angular distribution of the subsequent Auger electrons.
The alignment itself, however, is calculated theoretically using
the dipole amplitudes for the photoionization process. The day is
thus approaching when experimentalists and theoreticians will each
present their results in the form of the fundamental dynamical
amplitudes of the collision process under study. Such comparisons
will provide very stringent tests of theoretical understanding of
the photoionization process since transition amplitudes and phases
are usually much more sensitive to electron correlation and other
effects than are the photoionization cross sections.

REFERENCES

1. A. F. Starace, "Theory of Atomic Photoionization," in Handbuch
der Physik, Vol. 31, W. Mehlhorn, Ed. (Springer, Berlin, 1982).
pp 1-121.

2. A. F. Starace, "Trends in the Theory of Atomic Photoionization,"
Applied Optics 19, 4051-4062 (1980).

3. A. F. Starace, "New Perspectives on Electron Correlations,"
in Physics of Electronic and Atomic Collisions, S. Datz, Ed.
(North-HoTland, Amsterdam, 1982), pp 431-446.

4. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley,

Reading, Massachusetts, 1967), p. 39.

S. Chandrasekhar, Astrophys. J. 102, 223 (1945).

A. F. Starace, Phys. Rev. A 3, 1242 (1971); 8, 1141 (1973).

M. Ya Amusia and N. A. Cherepkov, "Many-Electron Correlations

in Scattering Processes," Case Studies in Atomic Physics 5,

47 (1975).

8. J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

~NOoOyon



A. F. STARACE, Atomic Photoionization (1983) 107

9.
10.

11.

12.
13.

14.

C. N. Yang, Phys. Rev. 74, 764 (1948).

D. J. Botto, J. McEnnan, R. H. Pratt, Phys. Rev. A 18, 580
(1978).

R. H, Pratt, A. Ron and H. K. Tseng, Rev. Mod. Phys. 45,

273 (1973).

E. Storm and H. I. Israel, Nucl. Data Tables A 7, 565 (1970).

J. H. Scofield, Lawrence Livermore Laboratory Report No.
UCRL-51326 (1973).

?. D.)Oh, J. McEnnan, and R. H. Pratt, Phys. Rev. A 14, 1428
1976).

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and
Two-Electron Atoms (Springer, Berlin, 1957), Sections 69-71.
D. J. Kennedy and S. T. Manson, Phys. Rev. A 5, 227 (1972).

J. W. Cooper, Phys. Rev. 128, 681 (1962).

U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968),
Section 4.

M. Goeppert-Mayer, Phys. Rev. 60, 184 (1941).

A. R. P. Rau and U. Fano, Phys. Rev. 167, 7 (1968).

F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Englewood CTiffs, New Jersey, 1963).

D. R. Bates, Mon. Not. Roy. Astron. Soc. 106, 432 (1946).

M. J. Seaton, Proc. Roy. Soc. A 208, 418 (1951).

A. Msezane and S. T. Manson, Phys. Rev. Lett. 35, 364 (1975).

Y. S. Kim, A. Ron, R. H. Pratt, B. R. Tambe, and S. T. Manson,
Phys. Rev. Lett. 46, 1326 (1981).

Y. S. Kim, R. H. Pratt, and A. Ron, Phys. Rev. A 24, 1626
(1981).

A. Z. Msezane and S. T. Manson, Phys. Rev. Lett. 48, 473
(1982).

M. J. Seaton, C. R. Acad. Sci. 240, 1317 (1955); Mon. Not.
Roy. Astron. Soc. 118, 504 (1958).

S. T. Manson and A. F. Starace, Rev. Mod. Phys. 54, 389 (1982).

M. S. Wang, Y. S. Kim, R. H. Pratt, and A. Ron, Phys. Rev. A

25, 857 (1982).

A. F. Starace, Phys. Rev. A 2, 118 (1970).

J. A. R. Samson, Adv. At. MoTl. Phys. 2, 177 (1966).

L. Lipsky and J. W. Cooper (unpublished). Results presented
in Fig. 22 of Ref. 18.

T. N. Chang, Phys. Rev. A 15, 2392 (1977).

H. P. Kelly and R. L. Simons, Phys. Rev. Lett. 30, 529 (1973).
R. P. Madden, D. L. Ederer, and K. Codling, Phys. Rev. 177,
136 (1969).

P. G. Burke and K. T. Taylor, J. Phys. B 8, 2620 (1975).

M. Ya Amusia, V. K. Ivanov, N. A. Cherepkov, and L. V. Cherny-
sheva, Phys. Lett. A 40, 361 (1972).

C. D. Lin, Phys. Rev. A 9, 181 (1974).

J. A. R. Samson and J. Gardner, Phys. Rev. Lett. 33, 671
(1974).




A. F. STARACE, Atomic Photoionization (1983) 108

41. R. G. Houlgate, J. B. West, K. Codling, and G. V. Marr, J.
Electron Spectrosc. Relat. Phenom. 9, 205 (1976).

42. G. Wendin, in Photoionization and Other Probes of Many-Electron
Interactions, F. J. Wuilleumier, Ed. (Plenum, New York, 1976),
pp. 61-82.

43. H. P. Kelly, in Photoionization and Qther Probes of Many-
Electron Interactions, F. J. Wuilleumier, Ed. (Plenum, New
York, 1976), pp. 83-110.

44, ?. G.)Burke and W. D. Robb, Adv. At. Mol. Phys. 11, 143

1975

45. T. N. Chang and U. Fano, Phys. Rev. A 13, 263, 282 (1976).

46. J. R. Swanson and L. Armstrong, Jr., Phys Rev. A 15, 661
(1977); 16, 1117 (1977).

47. W. R. Johnson and C. D. Lin, Phys. Rev. A 20, 964 (1979).

48. W. R. Johnson and K. T. Cheng, Phys. Rev. A 20, 978 (1979).

49, K.-N. Huang, W. R. Johnson, and K. T. Cheng, Phys Rev. Lett.
43, 1658 (1979).

50. ?. A.)Cherepkov and L. V. Chernysheva, Phys. Lett. A 60, 103

1977).

51. A. F. Starace and S. Shahabi, Phys. Rev. A 25, 2135 (1982).

52. J. H. Macek, J. Phys. B 2, 831 (1968).

53. C. D. Lin, Phys. Rev. A 25, 76 (1982); "Comparison of Config-
uration-Interaction Wave Functions with Adiabatic Channel
Funct;ons in Hyperspherical Coordinates," Phys. Rev. A (in
press).

54, C. D. Lin, Phys. Rev. A 10, 1986 (1974).

55. C. D. Lin, Phys. Rev. Lett. 35, 1150 (1975); Phys. Rev. A 14,

30 (1976).
56. C. H. Greene, J. Phys. B 13, L39 (1980).
57. C. D. Lin, Phys. Rev. A 12 493 (1975).
58. D. L. Miller and A. F. Starace J. Phys. B 13, L525 (1980).
59. J. A. R. Samson, Phys. Reports 28C, 303 (1976)
60. V. L. Jacobs, Phys. Rev. A 3, 289 (1971)
61. D. L. Miller and A. F. Starace (unpublished).
62. U. Fano, Phys. Rev. A 22, 2660 (1980).
63. C. D. Lin, Phys. Rev. A 10, 1986 (1974).
64. (a) G. Wannier, Phys. Rev. 90, 817 (1953).

(b) R. Peterkop, J. Phys. B 4, 513 (1971).

(c) A. R. P. Rau, Phys. Rev. A 4, 207 (1971).

65. C. H. Greene, Phys. Rev. A 23, 661 (1981).

66. J. Dubau and J. Wells, J. Phys. B 6, 1452 (1973).

67. J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10,
518 (1963).

68. U. Fano, Physica Scripta 24, 656 (1981).

69. H. Klar and U. Fano, Phys. Rev. Lett. 37, 1132 (1976);
H. Klar, Phys. Rev. A 15, 1452 (1977); H. Klar and M. Klar,
Phys. Rev. A 17, 1007 1—978



A. F. STARACE, Atomic Photoionization (1983) 109

70. V. Fock, Izvest. Acad. Nauk USSR ser Fiz. 18, (1954) [Eng.
Transl.: Kong. Norske Videnskabers Selskabs Forh. 31, 138,
145 (1958).]

71. Yu. N. Demkov and A. M. Ermolaev, Zh. Eksp. Teor. Fiz. 36,
896 (1959) [Sov. Phys. -JETP 36, 633 (1969)].

72. J. H. Macek, Phys. Rev. 160, 170 (1967).

73. J. Kessler, "The 'Perfect' Photoionization Experiment,"
Comments Atom. Mol. Phys. 10, 47 (1981). See also references
to earlier work therein.

74. U. Heinzmann, J. Phys. B 13, 4353 (1980); 13, 4367 (1980).

75. F. Schidfers, G. Schonhense, and U. Heinzmann, "Experimental
Determination of Matrix Elements and Phase Difference for Hg
6s2 Photoionization,” XII Int'l. Conf. Phys. Elec. Atom. Coll.,
Gatlinburg, Tenn., 1981, Abstracts Vol. 1, p. 5.

76. S. Fligge, W. Mehlhorn, and V. Schmidt, Phys. Rev. Lett. 29,

7 (1972).
ACKNOWLEDGMENT

The author gratefully acknowledges the research support of the
U. S. Department of Energy and the U. S. National Science Foundation.



	Atomic Photoionization
	

	AtomPhotoion001.pdf
	AtomPhotoion002.pdf
	AtomPhotoion003.pdf
	AtomPhotoion004.pdf
	AtomPhotoion005.pdf
	AtomPhotoion006.pdf
	AtomPhotoion007.pdf
	AtomPhotoion008.pdf
	AtomPhotoion009.pdf
	AtomPhotoion010.pdf
	AtomPhotoion011.pdf
	AtomPhotoion012.pdf
	AtomPhotoion012a.pdf
	AtomPhotoion013.pdf
	AtomPhotoion014.pdf
	AtomPhotoion015.pdf
	AtomPhotoion016.pdf
	AtomPhotoion017.pdf
	AtomPhotoion018.pdf
	AtomPhotoion019.pdf
	AtomPhotoion020.pdf
	AtomPhotoion021.pdf
	AtomPhotoion022.pdf
	AtomPhotoion023.pdf
	AtomPhotoion024.pdf
	AtomPhotoion025.pdf
	AtomPhotoion026.pdf
	AtomPhotoion027.pdf
	AtomPhotoion028.pdf
	AtomPhotoion029.pdf
	AtomPhotoion030.pdf
	AtomPhotoion030a.pdf
	AtomPhotoion031.pdf
	AtomPhotoion032.pdf
	AtomPhotoion033.pdf
	AtomPhotoion034.pdf
	AtomPhotoion035.pdf
	AtomPhotoion036.pdf
	AtomPhotoion037.pdf
	AtomPhotoion038.pdf
	AtomPhotoion039.pdf

