Reply to Comment by Sushil K. Singh on "A Concept of Maximum Stream Depletion Rate for Leaky Aquifers in Alluvial Valleys"

Vitaly A. Zlotnik
University of Nebraska-Lincoln, vzlotnik1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/geosciencefacpub
Part of the Earth Sciences Commons

http://digitalcommons.unl.edu/geosciencefacpub/150

This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Reply to comment by Sushil K. Singh on “A concept of maximum stream depletion rate for leaky aquifers in alluvial valleys”

Vitaly A. Zlotnik
Department of Geosciences, University of Nebraska at Lincoln, Lincoln, Nebraska, USA

Received 22 November 2004; revised 28 March 2005; accepted 29 March 2005; published 19 August 2005.


[1] I thank S. K. Singh [Singh, 2005] for indicating an earlier mentioning of equation (22b) (not (A16)) by Hantush [1955]. This brief paragraph has been virtually unrecognized for the last four decades after Hantush [1964]. My article included an analysis of this solution in a hydrogeologic context, generalization of solution to the bounded aquifers with different recharge-discharge conditions, introduction of the maximal stream depletion (MSDR) concept, and demonstration of ramifications for water resources management.

[2] The MSDR was defined as a fraction of the pumping rate supplied by stream depletion. This rate is achieved after a hydrologic system arrives at a new equilibrium after the start of pumping. In general, the MSDR may range from 0 to 100% [Hantush, 1955, equation (14); Zlotnik, 2004, equations (22), (24), (28), and (31)]. The pumping rate is supplied by other sources in addition to the stream depletion. The MSDR can be assessed only with full consideration of hydrogeological conditions that include the hydrostratigraphy, geometry of recharge and discharge zones, and location of groundwater withdrawals. For example, the MSDR concept can be applied for analyses of the aquifer water budget considering the phreatophyte effects [Bredehoeft, 2002].

[3] The last point by S.K. Singh is concerned with equivalence of Theis [1941] and Glover and Balmer [1954] solutions. This equivalence was shown by Hantush [1955] by using 1/B = 0 in his equation (14). In addition, Hunt et al. [2004] have clarified this issue recently.

References
Hantush, M. S. (1955), Discussion of “River depletion resulting from pumping a well near a river” by Robert E. Glover and Glenn G. Balmer, Eos Trans. AGU, 36(2), 345–346.

V. A. Zlotnik, Department of Geosciences, University of Nebraska at Lincoln, 214 Bessey Hall, Lincoln, NE 68588, USA. (vzlotnik@unl.edu)