A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis during β-Lactam Stress

Vinai Chittenzham Thomas
Department of Pathology and Microbiology, Center for Staphylococcal Research

Lauren Kinkead
Department of Pathology and Microbiology, Center for Staphylococcal Research

Ashley Janssen
Department of Pathology and Microbiology, Center for Staphylococcal Research

Carolyn Schaeffer
Department of Pathology and Microbiology, Center for Staphylococcal Research

Keith Woods
Department of Pathology and Microbiology, Center for Staphylococcal Research

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis during β-Lactam Stress

Department of Pathology and Microbiology, Center for Staphylococcal Research, and Department of Cellular and Integrative Physiology; University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA

Volume 4, no. 4, doi:10.1128/mBio.00437-13, 2013. Below are two errors that were noted recently.

The first author’s name was spelled incorrectly. The byline should appear as shown above.

The units associated with Fig. 1A to E were mislabeled. The correct units on the x axis should be μg/ml instead of mg/ml. Figure 1 should appear as shown below.

Published 3 June 2014
Copyright © 2014 Thomas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Address correspondence to Paul D. Fey, pfey@umc.edu.