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Stochastic Analysis of Energy Consumption in
Wireless Sensor Networks

Yunbo Wang, Mehmet C. Vuran and Steve Goddard
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Email: {yunbow, mcvuran, goddard}@cse.unl.edu

Abstract—Limited energy resources in increasingly sophisticated
wireless sensor networks (WSNs) call for a comprehensive cross-
layer analysis of energy consumption in a multi-hop network. For
reliability analysis in such networks, the statistical information
about energy consumption and lifetime is required. However, tradi-
tional energy analysis approaches only focus on the average energy
consumed. In this paper, instead, we provide a stochastic analysis
of the energy consumption in a random network environment.
Accordingly, a comprehensive cross-layer analysis framework,
which employs a stochastic queueing model, is developed. Using
this framework, the distribution of energy consumption for nodes
in WSNs during a given time period is found. We show that when
the time duration is long, the energy consumption asymptotically
approaches the Normal distribution. This distribution of energy
consumption is then utilized to investigate the distribution of node
lifetime and network lifetime. The developed analysis framework is
generic and is parameterized for many WSN protocols, including
an anycast protocol as a case study. Comprehensive simulations and
testbed experiments are provided to validate the developed model.
The cross-layer framework is also used to identify relationships
between the distribution of energy consumption and network
parameters, such as network density, duty cycle, and traffic rate.
To the best of our knowledge, this is the first comprehensive work
to investigate probabilistic distribution of energy consumption in
WSNs.

I. INTRODUCTION

In most Wireless Sensor Network (WSN) applications, nodes
are powered by batteries, and replacing the batteries is a tedious
work. When energy is depleted, nodes become inactive, losing
their sensing and communication functionalities. Therefore, to
improve network reliability and prolong network lifetime, uti-
lizing and evaluating various energy-saving techniques, such as
periodic sleeping, is of great importance in network designs.

Accurately characterizing increasingly sophisticated energy-
saving techniques [1, 4] is a great challenge. In MAC layer, pe-
riodic sleeping based protocols [3, 21, 29] have been developed,
where nodes are forced into sleeping mode periodically, while
still maintaining network connectivity. In network layer, energy-
aware routing protocols [2, 8, 22] are also utilized to further
reduce the energy consumption. Complicated network activities
in multiple protocol layers necessitate a comprehensive and
generic model to accurately evaluate the energy consumption
in WSNs.

Traditionally, energy analyses are focused on the average
power consumption. For example, in studies proposing the pre-
viously mentioned energy-efficient WSN protocols, the authors
show the energy efficiency of their protocols with a reduced
average energy consumption than other protocols. Moreover,
existing generic energy analysis models [6, 20, 27] also focus on
the average energy consumption. However, due to the random
nature of the wireless environment, in critical applications where
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a highly reliable network is required, only knowing the average
energy consumption is insufficient. For instance, to evaluate if
a network has a 95% reliability to function more than 1 year,
additional statistics about the energy consumption is required.

In this paper, we develop a Markov chain-based cross-layer
analytical model to investigate the statistics of energy consump-
tion in WSNs. Instead of the average energy consumption, we
obtain the probabilistic distribution of the energy consump-
tion, i.e., the probability that the consumed energy within any
given period is lower than a specific threshold. The energy
consumption distribution is a natural tool to evaluate reliability-
critical networks. As an example, our stochastic model is used
to investigate the lifetime distribution of a node and the network.
Existing lifetime analysis work, such as in [9], only provides the
average lifetime. Although probabilistic lifetime is investigated
in [17, 18], these studies focus on a specific network topology
and simplistic MAC protocols. In contrast, our lifetime analysis
is designed to be generic and comprehensive. Protocols in both
MAC layer and network layer, traffic rate, wireless channels,
as well as queueing behaviors are all captured in the developed
framework to reveal their effects on the energy consumption.

The contributions of this paper are as follows: First, a
comprehensive and accurate cross-layer analysis framework is
developed to characterize the energy consumption distribution
during a given period of time in WSNs. The Markov process
based framework is generic and is parameterized for many WSN
protocols. Second, it is shown that when the time period is
large enough, the energy consumption converges to a Normal
distribution. This result greatly reduces the computation cost
for the analysis. Third, the node lifetime distribution and the
network lifetime distribution are derived using the energy con-
sumption distribution, and the relationships between network
parameters and the lifetime distribution are investigated. With
this framework, scheduling, deployment, admission control, and
communication solutions can be developed to provide proba-
bilistic lifetime guarantees in reliability-critical applications. To
the best of our knowledge, this is the first comprehensive work
to investigate probabilistic energy consumption in WSNs.

The remainder of this paper is organized as follows: In
Sec. II, the energy consumption distribution problem and the
probabilistic lifetime problems are formally defined, and an
overview of our Markovian model is provided. The detailed
derivation of the single-node energy consumption distribution is
developed in Sec. III. The single-node lifetime distribution and
network lifetime distribution are then given in Sec. IV. In Sec.
V, a case study for a specific protocol – the anycast protocol is
provided. Simulations and experimental results are given in Sec.
VI to validate the developed model. Finally, Sec. VII concludes
the paper, and suggests future research directions.
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II. PROBLEM DEFINITION AND SYSTEM MODEL

In our analysis, a WSN with N nodes is considered. The
traffic at each node A consists of two parts: the locally generated
traffic and the relay traffic. The arriving rate for these two
types of traffic are λl

A and λf
A, respectively. Node A is also

characterized by its queue length, MA, and the battery capacity,
CA. In this paper, when there is no ambiguity, subscript A
in any node-specific variables is omitted. Furthermore, a log-
normal fading channel model [30] is considered for wireless
channel effects. Accordingly, we are interested in the following
problems:

1) For any node in the network, given the traffic rates λl and
λf , the queue length M , and the MAC protocol, what is
the energy consumption distribution in a period of time
T , FE(T )(e)?

2) Given the energy consumption distribution for the node,
and a battery capacity C, what is the distribution of its
lifetime, FL(C)(t)?

3) Given the energy consumption distribution, and a battery
capacity Ci for each node i, what is the distribution of the
network lifetime, FNL(t)?

Of course, these random variables are dependent on the
network topology and protocols. In this section, an overview
of our generic and parameterized solutions for the above prob-
lems is provided. The detailed description of the framework is
elaborated in Sections III-IV.

A. Single Node Energy Consumption Distribution

Each node in the network is modeled by a discrete-time
queueing system with time unit Tu. and is characterized by
its traffic interarrival distribution and service process. More
specifically, in each time unit, the traffic interarrival is modeled
according to a Bernoulli process. Furthermore, a Discrete Time
Markov Process (DTMP) is used to model the service behavior.
Therefore, the service time is Phase-Type (PH) distributed [15,
Ch. 2]. We also assume that the queueing policy is First-Come-
First-Serve.

1) Arrival Pattern: The Bernoulli arrival process is motivated
by the following: In a multi-hop WSN, locally generated packets
consist of the local information sampled by the sensors, regard-
less if the node is listening, whereas relay packets are received
from the neighbors of the node, only when the node is listening.

The arrival pattern of the locally generated packets depends
on the application requirements. For monitoring applications,
where nodes repeatedly poll their sensors, the generated data
is periodic. Accordingly, the locally generated traffic can be
modeled using a constant bit rate (CBR) model. For event-based
applications, nodes send data only if a certain physical event of
interest occurs, e.g., the temperature exceeds a certain threshold.
In this case, the generated data are sporadic or bursty. In this
paper, we focus on event-based applications generating sporadic
traffics. Considering that such physical events do not occur very
frequently, we assume that the probability with which the event
occurs at any time is governed by a Poisson process. Other types
of traffics can be captured by extending our queueing model to
adopt a Markov Arrival Process (MAP) [16, Ch. 5]. However,
due to limited space, they are out of the scope of this paper,
and will be covered in our future work. In a discrete time model
with a small enough time unit Tu, the probability that more than
one events occur in a time unit is negligible. Thus, the Poisson
process is equivalent to a Bernoulli process [14, Ch. 6] in each
time unit.

The relay traffic, however, depends on the network topology
and protocols. Our experiment results reveal that, for multi-hop
communications, the arrival pattern for relay traffic in either
monitoring applications or event-based applications converges
to a Bernoulli distribution [28]. Accordingly, the local and
forwarding traffic rates λl and λf at a node are defined to be the
probability that a new locally generated packet or relay packet
arrives during a time unit Tu, respectively. When the node is
not listening, input traffic rate is λl, whereas when the node is
listening, the traffic rate is λl + λf .

2) Service Time: Since each node is modeled according to
a discrete-time Markov process (DTMP) with time unit, Tu,
the service time of each node is Phase-Type (PH) distributed.
Because a Bernoulli arriving process is assumed for packets
and the DTMP is used to describe the behavior of packet
transmission service, the system is essentially governed by a
Quasi-Birth-Death (QBD) process [15, Ch. 3].

The recurrent discrete-time Markov chain (DTMC) for the
process, denoted as {Xn}, has a layered structure, as shown in
Fig. 1(a). Each layer i contains the part of the chain where there
are i packets in the queue. The communication behaviors of
each node are represented by transitions among states in {Xn}.
The detailed explanation of this DTMC is provided in Sec.
III. Based on this DTMC, the pdf for the single-node energy
consumption, E(T ), is found for any given duration T . It is
also shown that, when T is large enough, E(T ) asymptotically
approaches the Normal distribution. The mean and the variance
of such distribution are given in Sec. III-C.

B. Node Lifetime and Network Lifetime Distribution

The lifetime distribution of a node depends on the energy
consumption distribution during any given period T , and the
total capacity of its battery C. Moreover, the network lifetime
distribution depends on the lifetime distribution for each node,
and how the network lifetime is defined. For different appli-
cations and network topologies, the network lifetime should
be defined differently [5]. While a complete investigation of
network lifetime with various definitions is out of scope in this
paper, we focus on the lifetime defined as the duration before the
battery depletion of the first node. In Sec. IV, the node lifetime
distribution and network lifetime distribution are found based
on the single-node energy consumption distribution.

III. SINGLE NODE ENERGY CONSUMPTION DISTRIBUTION

In WSNs, energy is consumed by each node for commu-
nication, sensing, computing, and other activities. While other
activities are dependent on applications and hardware platforms,
the communication process is common among most applications
and platforms. Therefore, in this paper, only energy consumed
for the communication is considered. Our Markov-chain based
technique can be easily extended to account for the energy
consumed in processing or sensing.

The communication behaviors of each node are represented
by transitions among states in Markov chain {Xn}. In the
following, the construction of states and transitions in {Xn}
is discussed. Then, the single-node energy consumption distri-
bution is found.

A. Constructing Markov chain {Xn}
As shown in Fig. 1, the Markov chain {Xn} is divided into

a Idle layer and M Transmission layers. Each layer m (1 ≤
m ≤M) represents the transmission process when there are m
packets in the system, and layer 0 represents the idle process
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Layer M

Layer M-1

Layer 1

Layer 0 { }nY

{ }nZ

{ }nZ

{ }nZ

(a) {Xn}

fail

success

begin Transmission Process

Idle Process
completebegin

{ }nY

{ }nZ

(b) {Yn} and {Zn}

Fig. 1. The layered structure of Markov chains {Xn} is shown in (a). {Yn}
and {Zn} are shown in (b). The structures of {Yn} and {Zn} are parameterized
by the MAC protocol.

when there is no packet to be transmitted. Note that the names of
transmission process and idle process do not necessarily indicate
that nodes are always transmitting or idle in these processes. For
example, in the idle process for a periodic sleeping protocol,
nodes perform default sleeping-waking cycle, and may be in
either sleeping or listening communication state.

The block structures in {Xn} for the idle layer and a trans-
mission layer are denoted as {Yn} and {Zn}, respectively, as
shown in Fig. 1(b). According to the MAC protocol employed,
they are parameterized by the following notations.

• PY and PZ : the transition probability matrices among the
states in {Yn} and {Zn}, respectively.

• αZ and αZ : the initial probability vector for {Yn} and
{Zn}, respectively. With each probability in these vectors,
the idle and communication process starts in the corre-
sponding state in {Yn} and {Zn}, respectively.

• ts
Y and ts

Z : the probability vector from each state in {Yn}
and {Zn} to complete the idle process and the transmission
process successfully, respectively.

• tf
Z : the probability vector from each state in {Zn} to

complete the transmission process unsuccessfully.
• λY and λZ : the packet arrival probability vector for each

state in {Yn} and {Zn}, respectively. They are functions
of λl and λf . For the states where the node is listening,
the corresponding elements in λY and λZ are λl + λf ,
otherwise the elements are λl.

Although the states and transitions within each layer, i.e.,
{Yn} and {Zn}, is MAC protocol dependent, the interactions
among layers are common for many MAC protocols, parame-
terized by the above transition probability matrices. Accordingly,
the transition probability matrix, QX , of the entire Markov chain
{Xn} can be found using these matrices as explained next.

For layer m, 1 ≤ m ≤ M − 1, the queue is not full. When
a packet arrives and the current transmission is not completing,
the process transits to a higher layer, since the queue length
increases. The probabilities of such transitions are governed by
the matrix

Au = (1λZ)T ⊗ PZ , (1)

where 1 is a properly dimensioned matrix containing all 1’s,
and ⊗ is the entry-wise product operator. λZ and PZ are
parameterized according to the MAC protocol. Note that element
(i, j) in Au represents the transition probability from the ith
state in previous layer to the jth state in the upper layer, and
other transition probability matrices in the following are defined
the similar way. The transition probability matrix within the

same layer m, 1 ≤ m ≤M − 1, is

As = (1λZ)T ⊗ (tZαZ) + (1 − 1λZ)T ⊗ PZ , (2)

where tZ = ts
Z +tf

Z is the probability vector from each layer to
complete the current transmission process regardless of success
or failure. The first term in (2) captures the case where a locally
generated packet arrives at the same time unit in which a packet
service is completed. The second term in (2) is for the case
where neither service completion nor new packet arrival occurs
during the time unit.

At layer m = M , the queue is full. Hence, new arriving
packets are dropped. Therefore, the transition probability matrix
within this layer is Au + As.

If there is no packet arrival and the current packet service is
completed at the current time unit, the Markov chain transits
to the lower layer. The transition probability matrix from layer
m+ 1 to layer m, (1 ≤ m ≤M − 1), is

Ad = (1 − 1λZ)T ⊗ (tZαZ). (3)

The transition probabilities are similar when the idle layer is
involved as shown below:

Au0 = λT
Y αZ , (4)

Ad0 = (1 − 1λZ)T ⊗ tZαY , (5)

As0 = (1 − 1λY )T ⊗ (PY + ts
Y αY ). (6)

When a new packet arrives while there is no packet in the
system, the chain transits from the idle layer to layer 1 according
to Au0 in (4). When the service is completed for the only packet
in the system and no new packet arrives, the chain transits from
layer 1 to the idle layer according to Ad0 in (5). Finally, the
transition probabilities with which the node stays in the idle
layer are given in As0 in (6).

Using (1)-(6), the transition probability matrix QX for the
entire recurrent Markov chain {Xn} is constructed as follows:

QX =

⎛
⎜⎜⎜⎜⎜⎝

layer 0 1 2 · · · M

0 As0 Au0 0
1 Ad0 As Au

2 Ad
. . .

. . .

· · · . . . As Au

M 0 Ad As + Au

⎞
⎟⎟⎟⎟⎟⎠, (7)

where each non-zero block corresponds to the transition proba-
bility among all layers. Then, the equilibrium state probability
vector, π, for {Xn} is calculated by solving πQX = π. The
detailed solution to this equation system is documented in [28].

B. Deriving the Energy Consumption Distribution

Suppose at the beginning of a time unit Tu, the node is in
state i of {Xn}. Also suppose that during the time unit, the
energy consumption by the node is εi, which is either measured,
or is calculated according to the specifications of the hardware
platform. An example will be given in Sec. V to show how to
calculate εi. The pdf 1 of the energy consumption during the
time unit is gi(e) = δ(e − εi), where δ() is the delta function.
Denote h(1)

ij (e) = gi(e)qij , where qij is the (i, j)th element of
QX , the transition probability matrix for {Xn} obtained in (7).

1It should be noted that, although a discrete time Markov process is used,
the energy consumption is continuous in our analysis. Thus the pdf is used to
characterize the distribution.
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Then h
(1)
ij (e) is the pdf of energy consumption given that the

Markov process transits from state i to j.
For a given period T during which the energy consumption

distribution is to be obtained, without loss of generality, we
assume that T is measured in terms of the number of small time
units of Tu. After T time units (T > 1), the joint conditional
pdf becomes

h
(T )
ij (e) =

∑
k∈S(h(1)

ik ∗ h(T−1)
kj )(e), (8)

where S is the set of all states in {Xn}. Therefore, if the matrix
of h(T )

ij (e) is denoted as H(T )(e), then H(T )(e) is the T -fold
convolution of H(1)(e).

The energy consumption distribution during T depends on the
initial state of the system at the beginning of this period, which
is usually randomly chosen. Thus the initial state probability
vector is represented by the equilibrium state probability vector
π. After T time units, the pdf and the cdf of the energy
consumption are

fE(T )(e) = πH(T )(e)1, FE(T )(e) =
∫ e

0
fE(T )(ε)dε, (9)

respectively, where 1 is the appropriately dimensioned column
vector containing all 1’s.

C. Asymptotic Energy Consumption Distribution

If a QBD process is modeled by a DTMC, and each state
in the DTMC is associated with a cost, then the sum of the
total cost during a given period T asymptotically approaches
the Normal distribution [13]. Therefore, considering the energy
consumption, εi, at each state i as the cost, the total energy
consumption during T , approaches the Normal distribution. The
mean and the variance of the Normal distribution are given by

μ(t) = πεt = tμ(1), (10)

σ2(t) =
(∑

i∈S(εi − πε)2πi + 2βε
)
t = tσ2(1), (11)

respectively, where ε is the vector of εi, i ∈ S, and vector β is
the solution of the following set of equations [13]:

β(QX − I) = −γQ, β1 = 0, (12)

where γ is a row vector whose ith element is (εi − πε)πi.

IV. LIFETIME DISTRIBUTION ANALYSIS

Using the pdf of energy consumption fE(T )(e) in (9) for any
given period T , the lifetime distribution of a node in a WSN
can be found. The lifetime distribution for a given node, L(C),
is a function of its total battery capacity C. The probability that
during T , the node consumes more energy than C is

Pr(E(T ) > C) =
∫∞

C
fE(T )(e)de . (13)

This is exactly the probability that the lifetime of the node is
shorter than T . Therefore the cdf of the node lifetime is

FL(C)(t) = Pr(L(C) ≤ t) = Pr(E(t) > C) =
∫∞

C
fE(t)(e)de .

(14)
As explained in Sec. III-C, when t is large, E(t) ∼
N (μ(t), σ2(t)), where μ(t) and σ2(t) are given by (10) and
(11), respectively. Thus, the cdf of lifetime is approximated as

FL(C)(t) ≈ Q

(
C−μ(t)√

σ2(t)

)
. (15)

The network lifetime, however, has different definitions ac-
cording to applications and network topologies [5]. Whereas

a complete investigation with various definitions is out of the
scope of this paper, in this paper, we focus on the network
lifetime defined as the duration before the battery depletion of
the first node. Since every node needs to be alive during the
network lifetime, the network lifetime (NL) distribution is easily
obtained for a WSN with N nodes:

FNL(t) = Pr(NL ≤ t) = 1 −∏N
i=1 Pr(Li(Ci) ≥ t), (16)

where Li(Ci) is the lifetime for the ith node with battery capac-
ity Ci. Using the approximation given by (15) for the single-
node lifetime distribution, the network lifetime distribution is
approximated by

FNL(t) ≈ 1 −∏N
i=1

(
1 −Q

(
Ci−μi(t)√

σ2
i (t)

))
, (17)

where μi(t), σ2
i (t) are given by (10) and (11) for the ith node,

respectively.

V. CASE STUDY: ANYCAST PROTOCOL

In this section, the techniques in Sec. III-IV to find the
energy consumption and lifetime distributions are illustrated for
a protocol with the anycast technique, which has been recently
exploited in [2, 8, 10, 12, 19]. With the anycast technique,
a node broadcasts beacon messages if it has packets to send.
Then, one of responding neighbors is chosen as the next-hop
node according to predefined rules (e.g., the first node that
responds, or the closest node to the destination). Finally, the
sender forwards the data packet to the chosen neighbor. While
there is no single dominantly used anycast protocol in WSNs,
in this paper, we model the following representative protocol.

A circular plane with a radius R is considered, where nodes
are located according to a Poisson distribution with density ρ.
Sensor nodes report their readings to a sink, located at the
center of the circular plane, through multi-hop routes in the
network. The nodes (excluding the sink) turn off their radio
transceivers periodically to save energy. When a node A has
a packet to send, it starts to repeatedly transmit RTS beacon
packets in a CSMA/CA manner – the channel is sensed before
the beacon transmission. If the channel is busy, a random backoff
is performed and the channel is sensed again. When any other
node B in the transmission range is awake and hears the packet,
it checks for the following criteria: 1) node B is closer to the sink
than A, and 2) the signal-to-noise ratio (SNR) of the received
RTS packet, ψ, is greater than some predefined threshold ψth. If
both criteria are met, node B sends a CTS packet. Node A then
chooses the first node that sent a CTS packet as the next-hop
node and transmits the data packet to it. Successful data packet
transmissions are acknowledged by the receiver, otherwise the
sender retransmits the data packet until successful.

In order to reduce the waiting time for the packets spent in the
queue, and balance the energy consumption in the network, we
assume that each node responds to beacon packets only when
it does not have packets to send. Considering the sink is awake
all the time, if a node closer than a distance threshold rth to the
sink transmits beacons, it is assumed that no node except the
sink will respond. Here rth is chosen such that a high SNR is
almost always guaranteed. Moreover, nodes are assumed to go to
sleep when they finish transmitting all packets in the queue. As
a result, compared to non-transmitting nodes, the active period
is shorter. In cases where transmission energy consumption is
significantly higher than listening, this helps balancing energy
consumption among nodes.
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Fig. 2. The Markov chain structure of (a) the transmission process {Zn} and
(b) the idle process {Yn} for the anycast protocol.
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Backoff

Transmission Timeout

CS
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Fig. 3. The process of transmitting beacon packets.

The entire circular plane is discretized into concentric rings
indexed by their distance to the sink, r. Each node senses the
physical events, and generates packets with traffic rate λl. By
symmetry, the relay traffic λf

r is the same for all nodes in
the same ring r. Each node has a queue length, M , a battery
capacity, C, and operates in a duty cycle ξ.

In the following, we first show the DTMC {Xn} for the
protocol. Then, the protocol-specific parameters for the generic
analysis in Sec. III, including the energy consumption at each
state, and the transition probabilities for {Xn} are derived. The
energy consumption distribution for each node is obtained after
these parameters are known. Finally, the lifetime distributions
for each node and the network are found.

A. Overview of the Markov Process

The anycast protocol is modeled according to a DTMC {Xn}
discussed in Sec. III, which consists of multiple transmission
blocks {Zn} and a single idle block {Yn}. The structures of
{Yn} and {Zn} for this protocol are shown in Fig. 2. {Yn}
consists of two types of states chained together: sleeping states
and listening states. When there is no packet arriving, the node
enters these two parts of the chain alternately, mimicking the pe-
riodic sleeping and listening behavior. In the listening states, the
node listens on the channel, thus both locally generated packets
and relay packets can arrive. In the sleeping states, however, the
node turns off its transceiver and only local packets can arrive.
The number of states in {Yn} is Nf = T sl/Tu+Tw/Tu, where
T sl is the duration of the sleeping period, and Tw is the duration
of the listening period. A large Tu can reduce the number of
states in the DTMC, thus reducing computation cost for the
model, but at the cost of reducing the granularity and accuracy
of the result (Recall that we made the assumption that only one
packet may arrive in a time unit. This is accurate only when Tu

is chosen small). When a packet arrives, the node terminates the
idle process and begins the first layer of transmission process
{Zn}. In each {Zn} layer, the node keeps transmitting beacon
packets. The number of states in {Zn} is Nm = Tm/Tu, where
Tm is the beacon time out.

At any time, a typical WSN node conducts one of the fol-
lowing communication tasks: transmission, listening, receiving,
and sleeping. In this paper, we do not differentiate between
listening and receiving, since most popular architectures, such
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Fig. 4. Area around node A is divided into small areas.

as Mica2 [23] and TelosB [25], consume similar power when
listening or receiving. We also ignore the energy consumed
by the data packet transmission. This is a valid simplification,
because usually the majority of energy is consumed by idle
listening and beacon transmissions. Therefore, there are 3 types
of states in {Xn}: Beacon transmission, Sleeping, and Listening
states. Nodes consume a specific amount of energy ε in states
of each type, as will be discussed in the following.

An additional assumption made in this case study is to ignore
the hidden terminals. For high density networks, hidden terminal
effects can be easily captured by the model as we showed in
[28]. Testbed and simulation results in Sec. VI suggest that, with
these assumptions, the derived energy consumption distribution
still agrees well with empirical results.

B. Energy Consumption in Each State

In practice, since battery voltage drops over time, battery ca-
pacity is often measured with normalized voltage. Therefore, in
this paper, energy is represented in the units of A·sec. In sleeping
and listening states, the energy consumed during a time unit, Tu,
are εsleep = IsleepTu, and εlisten = I listenTu, respectively,
where Isleep and I listen are the measured current drawn from
the battery in the sleep and listening modes, respectively.

The power consumption when the node is transmitting beacon
packets, εbeacon, however, depends on the beacon transmission
process shown in Fig. 3. For every beacon packet, the node
waits for a uniformly distributed random initial backoff with a
maximum duration T ibo

max, and whenever the channel is sensed
busy before transmission, a congestion backoff is performed.
The congestion backoff is also uniformly distributed with a max-
imum duration T cbo

max. These backoffs are used to avoid constant
beacon packets collision among nodes. Then, the transmission
takes a duration of T tx, which is determined by the packet size
and the data rate. Finally, after the transmission, a timeout period
of T to is spent to wait for any possible CTS response. Therefore,
the node transmits beacons only in a portion of time, and the
portion, ωbeacon, should be obtained first to determine εbeacon.
For a node A within ring rA, ωbeacon is expressed as

ωbeacon
rA

= T tx
/(
T ibo

max/2 + T cbo
max/2(1 − pbusy

rA
) + T tx + T to

)
,

(18)
where pbusy

rA
is the probability of sensing the channel busy, and

is derived as follows.
First, as shown in Fig. 4(a), the region within the transmission

range of A, NA, is divided into small areas according to the
polar coordinates centered at the sink. Each small area has a
size approximated by ΔrΔθr. Then, the probability of sensing
the channel busy, pbusy

rA
, is the probability that there is at least

one node transmitting a packet in these areas. Considering
that in WSN applications, sleeping cycles are usually long and
duty cycles are usually very small, a sender node often has to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Secon 2010 proceedings.



wait for a relatively long period transmitting beacon packets
before receiving a CTS response. Therefore, beacon packets
are considered the dominant packets in the channel, and the
major reason of a busy channel [8]. Thus, in the small area
(r : r+ Δr, θ : θ+ Δθ), denote pe

r as the probability that there
exists a node in this area, and φBeacon

r as the probability that at
any time a node in this area, if it exists, is transmitting a beacon
packet. Then pbusy

rA
is given by2

pbusy
rA

= 1 −
rA+D∏

r=rA−D

θmax∏
θ=−θmax

(
1 − pe

rφ
Beacon
r

)
, (19)

where D is the radius of transmission range of each node,
θmax is given by θmax = cos−1

(
(r2A + r2 −D2)/2rAr

)
. By

symmetry, pe
r is the same for all areas in ring r regardless of θ.

In this small area, pe
r is approximated by

pe
r = e−ρΔrΔθrρΔrΔθr ≈ ρΔrΔθr, (20)

where ρ is the density parameter of the Poisson node distribu-
tion. The probability that a node in this area is transmitting a
beacon packet, φBeacon

r , is given by φbeacon
r = πbeacon

r ωbeacon
r ,

where πbeacon
r is the total probability that the node is in one of

the beacon transmission states in the DTMC {Xn}, and is given
by adding the probabilities in the equilibrium state probability
vector, πr, (which will be discussed in Sec. V-C) corresponding
to the beacon transmission states. Therefore, ωbeacon

rA
for node

A depends on its values for other nodes in A’s neighborhood,
NA. An iterative procedure is used to calculate ωbeacon

r for all
r’s at the end of Sec. V. Then, εbeacon is obtained by

εbeacon = (I listen(1 − ωbeacon
r ) + Itxωbeacon

r )Tu, (21)

where Itx is the measured transmission current.

C. Constructing the DTMC {Xn}
The other parameters in {Xn}, i.e., transition probability

matrices in {Yn} and {Zn}, are obtained according to the
Markov structure in Fig. 2. In either {Yn} or {Zn}, there is only
one initial state (denoted by “begin”), with the initial probability
of 1. From each state, if there is an outgoing transition denoted
as “success” or “fail”, it has a probability to complete the current
transmission or idle process in a success or failure, respectively.
The transition probabilities among states are shown in Fig. 2.
Note that transitions with a probability of 1 are not labeled. The
transition probabilities pnr

rA(i), and the traffic rate λY , λZ are
explained in the following.

In the ith time unit in {Zn}, a node A in ring rA has a
probability of pnr

rA(i) of not receiving any CTS response, and
enters the next state. If in all Nm states, node A receives no
CTS response, the transmission fails and the packet is dropped.
On the other hand, if in any of the states, a CTS response is
received, the node transmits the packet and the transmission
succeeds. The probability pnr

rA(i) is the conditional probability
that given the transmissions in the previous i − 1 states failed,
the transmissions in the ith state still fails. Therefore,

pnr
rA(1) = pnr

rA(1∼1)

pnr
rA(i) = pnr

rA(1∼i)/p
nr
rA(1∼i−1), 2 ≤ i ≤ Nm (22)

2With a slight abuse of notations, for the sake of space and clarity, we use
rA+D∏

r=rA−D

to represent
(rA+D)/Δd∏

r=(rA−D)/Δd

, i.e., we omit the step length Δd. This

also applies to other products and sums of lengths and angles for small area
analyses in the remaining part of the paper.

where pnr
rA(1∼i) is the probability that during all first i states in

{Zn}, beacon transmission fails, since no CTS packet is received
in these states. Therefore,

pnr
rA(1∼i) =

rA−1∏
rB=rA−D

θmax∏
θ=−θmax

(
1 − pe

rB
pol

rB(i)p
SNR
A,B,θ

)
, (23)

where each of the small areas, (rA : rA + Δr, θ : θ + Δθ),
is located within the transmission range of A, NA, and is
closer to the sink than A (this range is called the feasible
region of A, FA, as shown in Fig. 4(a)); rB is the distance
from the small area to the sink. θmax is given by θmax =
cos−1

(
(r2A + r2B −D2)/2rArB

)
; pe

rB
is the probability that

there exists a node in each area, and is given by (20); pol
rB(i)

is the probability that the waking period of a node B, which
is located rB away from the sink, overlaps with the first i
beacon transmission time units of A; and pSNR

A,B is the probability
that a packet, transmitted from node A to node B with polar
coordinates (rB , θ) to the sink, has an SNR higher than some
predefined threshold ψth. It is obtained by Eq. (10) in [30].

The probability that the waking period of B overlaps with the
first i beacon transmission time units of A, pol

rB(i), is derived as
follows. If node A receives no response in each of the small
areas, at least one of the following statements is true: 1) a node
does not exist in the area, 2) at least one node exists but they
are sleeping during any of the first i slots, and 3) at least one
node exists and is awake, but the SNR of the beacon packet
they receive is lower than the predefined threshold ψth. Node
B is awake during any of the first i slots means that the first
beacon transmission time unit of A either coincides with any
of the awake time units of B or coincides with the last i − 1
sleeping units of B. Thus, pol

rB(i) is given by

pol
rB(i) =

Nw∑
j=1

πWj
rB

+

{ ∑Ns

j=Ns−i+1 π
Sj
rB , 1 ≤ i < Ns∑Ns

j=1 π
Sj
rB , i ≥ Ns

(24)

where Ns = Nf −Nw is the number of sleeping time units in
{Yn}, π

Wj
rB and π

Sj
rB are the equilibrium probability that B is

in the jth awake state or sleeping state in {Xn}, respectively.
Nf and Nw are the number of total states and awake states in
{Yn}, respectively.

Therefore, pnr
rA(1∼i) in (23) is determined using (20) -(24),

and pnr
rA(i) in (22) is obtained using (23).

Next, the traffic rate at each state, λI and λL, are discussed.
The arriving traffic at A contains locally generated and relay
traffic. In sleeping states, the traffic arrival rate is λl. In listening
states, the traffic rate is λf

rA
+ λl

rA
. Finally, in the beacon

transmission states, since nodes are assumed not to respond to
any relay packets, the traffic rate is λl.

Consider the small area (rA : rA + Δr, θ : θ + Δθ), where
the forwarded traffic arrives from any node B in the infeasible
region BA = NA \ FA, as shown in Fig. 4(b). Therefore λf

rA
is

given by

λf
rA

=

∑rA+D
rB=max(D+1,rA+1)

∑θmax

θ=−θmax
pe

rB
λo

rB
pfw

B,A

pe
rA
πlisten

rA

, (25)

where λo
rB

is the output traffic transmitted from B. πlisten
rA

is
the probability that A is in any listening state, and is the sum
of the probabilities corresponding to all listening states in πrA

.
Moreover, λo

rB
is calculated by

λo
rB

= λrB
(πrB

)T(1 − pqfull
rB

− pdrop
rB

), (26)
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where pfw
B,A is the probability that a node B forwards a packet

to node A, among all possible forward targets, and λrB
is the

traffic rate vector for all states in {Xn} for B. The probability
that the packet is dropped due to beacon transmission timeout,
pdrop

rB
, is easily obtained as pdrop

rB
= pnr

rB(1∼Nm
rB

) (see (23)). The

probability that the queue is full when the packet arrives, pqfull
rB

,
is obtained by pqfull

rB
= πM

rB
Au1, where πM

rB
is the probability

vector corresponding to the layer M in πrB
, and Au is given by

(1) for node B. In (25), pfw
B,A is proportional to the probability

that A is available when B transmits a beacon, and is normalized
on the total probability of available for all possible nodes. The
probability of availability is given by

pavail
B,A = pe

rA
pwake

rA
pSNR

B,A , (27)

where pwake
rA

=
∑Nw

j=1 π
Wj
rA is the probability that node A is

awake, and π
Wj
rA is the equilibrium probability that A is in the

jth waking state in {Xn}. Then, pfw
B,A in (25) is calculated as

pfw
B,A =

pavail
B,A∑rB−1

rC=rB−D

∑θ+βmax

β=θ−βmax
pavail

B,C

, (28)

where node C, with the polar coordinates (rC , β), can be in any
small area in FB .

Thus, according to (25), the traffic rate of node A at each
state is determined. Then, the equilibrium state probability for
the DTMC {Xn}, πrA

is obtained. Note that thus far, while
we solve ωbeacon

rA
, it is assumed that ωbeacon

r for all nodes in
range are known. This circular dependency is solved using an
iterative manner: first, arbitrary initial guesses of ωbeacon

r for all
rings are used, then updated values of ωbeacon

r are calculated.
The iteration terminates when the difference of these variables
between two consecutive iterations are negligible for each ring.
Then, εbeacon

r , the energy consumption during a beacon time
unit is obtained by (21). Accordingly, the energy consumption
distribution for any single node is calculated by (9).

With the energy consumption distribution for nodes in each
ring known, the lifetime distribution for nodes in each ring,
Lr(C), is directly obtained by (15). Then, the distribution of
the network lifetime, and its Normal distribution approximation
are

Pr(NL ≤ t) = 1 −
R∏

r=0

π∏
θ=−π

(1 − pe
r Pr(Lr(C) ≤ t))

≈ 1 −
R∏

r=0

π∏
θ=−π

(
1 − pe

rQ

(
C − tμr(t)√

σ2
r(t)

))
,

(29)

where μr(t) and σ2
r(t) are given by (10) and (11) for nodes in

ring r, respectively. Note that since we adopted a probabilistic
topology, these equations are slightly varied from (16) and (17).

D. Extension to Other Protocols

The techniques in this section for the anycast protocol can
be used to obtain the energy consumption and the lifetime
distribution for other protocols, for example, TDMA protocols
and XMAC[3]. First, the Markov chains {Xn} is constructed ac-
cording to the specific protocol behavior. Then, the single-node
energy consumption distribution is obtained by (9). Finally, the
single-node and network lifetime distributions are found using

(15) and (16), (17), respectively. The detailed solutions for other
protocols are left in our future work for space considerations.

VI. ANALYTICAL RESULTS AND EMPIRICAL VALIDATIONS

The energy consumption distribution model has been evalu-
ated using MATLAB to determine the distribution for single-
node energy consumption, single-node lifetime, and the net-
work lifetime for the anycast MAC protocol. The computing
environment is a computer with a Xeon 5150 CPU working
at 2.66GHz and 2G RAM. For any network setup in the
experiments below, the calculation for the asymptotic Normal
distribution of the energy consumption during any given dura-
tion takes less than 1 minute. In contrast, the TOSSIM-based
simulations [11] determine the energy consumption distribution
in the same order of simulated time, and is significantly slower.
For example, for a simulated duration of 2 hours, the simulation
takes roughly 30 mins. In this section, we show that our model
also provides a high accuracy against both empirical experiments
and simulations.

A. Validation of the Single-node Energy Analysis

We first show that the analytical prediction of energy con-
sumption distribution in (9) matches with the empirical experi-
ments. Our testbed consists of 28 Crossbow TelosB motes. The
nodes are randomly placed in a circular area of radius R = 4m.
The data packet size is lp = 40 bytes, whereas the beacon
message and the CTS response message have the same size
of lm = 22 bytes. Each node generates the same amount of
local traffic, and send packets towards the sink according to a
Bernoulli process with average rate λl = 0.0042 in each time
unit Tu = 0.25sec, which equals to 1 packet per minute. The
sleeping cycle of each node is T f = 10 sec, during which the
wake period is Tw = 5sec, thus the duty cycle is ξ = 0.5.
Moreover, the beacon transmission timeout is Tm = 10sec.
The maximum duration of initial backoff and congestion backoff
are T ibo

max = 10 msec and T cbo
max = 2.5 msec, respectively. The

beacon transmissions duration is T tx = 1.6 msec and the inter-
beacon timeout is T to = 12 msec. The transmission power is
set to -15dBm for all nodes. Other parameters for the channel
are: Pn = −105dBm, PL(D0) = 52.1dB, D0 = 1m, η = 3.3,
σs = 5.5. The threshold radius rth is set to 2.5m, within which
all nodes only transmit packets to the sink. The SNR threshold
is set to ψth = 10dB. The experiment is conducted for 24 hours,
and the current drawn from the battery is continuously measured
and logged using NI-USB 6210 DAQ modules [24]. The energy
consumption distributions during T = 60s for two nodes, which
have a distance of 2.6m and 3.5m to the sink, respectively, are
measured. The cdf s of the measured energy consumption are
shown in Fig. 5, along with the prediction by our analytical
model (see (9)). It can be observed that the predictions matches
well with the empirical measurements for each node.

The same network topology is also simulated using TOSSIM.
The results of the energy consumption distribution for each of
the two nodes are also shown in Fig. 5. The results suggest
that both simulation and our analytical model produce accurate
prediction of the empirical distribution. Therefore, in further
experiments, we use simulation results to validate our model
for larger scale networks, and for a longer duration.

For longer durations, i.e., T = 10 and T = 20 minutes, the
cdf of energy consumption for node at r = 3.5m are given in
Fig. 6. The cdf of the asymptotic Normal distributions predicted
by our model (see (10) and (11))are also shown. It can be
observed that as the duration increases, the energy consumption
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distribution converges to the asymptotic Normal distribution. We
further validate the accuracy of the asymptotic approximation
using Kurtosis [7, 26] as follows.

B. Validation of the Normal Distribution Approximation

To reveal the similarity between the energy consumption
distribution and the asymptotic Normal distribution, Kurtosis
is often used. For a random variable x, Kurtosis is defined
as κ(x) = μ4(x)/σ4(x), where μ4(x) is the fourth moment
of x, and σ(x) is the standard deviation. The closer κ(x) is
to 3, the closer x is to a Normal distributed variable. In the
following simulations, a network in a circular area is assumed,
and the topology is randomly generated according to a Poisson
distribution with density ρ = 0.05. Each topology is simulated
for 48 hours, and 100 different topologies are generated. The
energy consumption during 1, 2, 4, ..., 128 minutes for a
node at r = 16m are recorded to evaluate the Kurtosis. The
parameters used are as follows: network radius R = 20m,
traffic rate is 0.1 pkt/min, rth = 10m, duty cycle is 0.2,
and all other parameters remain the same as in the previous
experiments. The result shown in Fig. 7(a) reveals that when the
duration T increases to above 16mins, the Kurtosis of the energy
consumption converges to 3, which suggests that its distribution
converges to the Normal distribution. The predicted mean and
variance of energy consumption are shown in Fig. 7(b) and are
compared to the simulation. The results show that the mean and
the variance increase linearly with the duration, and is almost
perfectly predicted by our model.

C. Relationships between Lifetime and Network Parameters

Next, using the lifetime distribution predicted by (15), we
investigate the relationship between the probability of achieving
a given node or the network lifetime, and various network
parameters. In each of the following tests, the network density ρ,
the duty cycle ξ for all nodes, and the traffic rate λl for all nodes
are varied, respectively. The default values for these parameters
are 0.052, 0.2, and 0.1pkt/min, respectively. Other parameters
are kept unchanged from the previous experiment. The battery
capacities for all nodes are Cr = 2000mA·H. The probability
that the lifetime of a node at distance r = 12m is longer
than 500 hours is shown in Fig. 8. The results reveal that for
the maximum probability of achieving this lifetime, the density
should be no less than 0.053. This is because if the density
is low, when transmitting beacon packets, each node needs to
wait for a longer time before other nodes in the feasible region
wake up, thus consuming more energy. Moreover, reducing duty
cycle directly reduces the energy consumption, as observed in
Fig. 8. Finally, either increasing or reducing the traffic rate from
0.05pkt/min results in a decrease of the probability of achieving
this lifetime. This is because in the protocol, when each node is
transmitting beacon packets, it does not respond to other beacon
packets. Therefore, with a higher traffic rate, more nodes are
transmitting, and fewer are available to send CTS responses.
Thus transmitting nodes need to wait for a longer time, and the
energy spent on transmitting is higher. With a moderate traffic
rate, available relay nodes are enough, transmitting nodes can
finish their transmissions and go to sleep early, effectively saving
energy. With a lower traffic rate, however, the chance that nodes
relay a packet and go to sleep early is reduced, thus consuming
more energy than with a moderate traffic rate.

In the same network settings, the network lifetime distribution
is also examined. The probability of achieving a 500 hour
network lifetime (see (15)) is shown in Fig. 8(d) for various

0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy (AS)

cd
f

 

 
exp r=3.5m
exp r=2.6m
sim r=3.5m
sim r=2.6m
ana r=3.5m
ana r=2.6m

Fig. 5. cdf of the energy consumption during 1 min. Empirical experiments,
simulation results, and analytical prediction are shown.

1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Energy
cd

f

 

 

empirical
Normal

(a) T = 2s

5.4 5.6 5.8 6 6.2 6.4
0

0.2

0.4

0.6

0.8

1

Energy

cd
f

 

 

empirical
Normal

(b) T = 10s

Fig. 6. cdf of the energy consumption during longer periods. As the
duration increases, the energy consumption approaches the asymptotic Normal
distribution.

network densities. To achieve this lifetime, the optimal density
is greater than 0.097, which is significantly higher than the value
for a single node lifetime guarantee in Fig. 8(a). This is because
the network is only alive when all nodes are alive, which is a
much stronger requirement than for a single alive node.

VII. CONCLUSION AND FUTURE WORK

In this paper, a probabilistic analysis of the energy consump-
tion in a random multi-hop network is provided. A discrete
time Markov chain is used to model the transmission process,
and predict the energy consumption distribution for each node.
It is shown that, when the time duration is long, the energy
consumption converges to a Normal distribution, and the mean
and variance of such distribution are also provided. With the help
of energy consumption distribution, the lifetime distributions for
each node and the entire network are derived. The developed
model is validated by both testbed experiments and TOSSIM
simulations. The results show that the developed framework
accurately models the distribution of the energy consumption
and captures the randomness of multi-hop WSNs.

As future work, we plan to analyze the energy consumption
for more MAC protocols, such as BMAC [21], XMAC [3], using
our model. We also plan to extend the model to capture more
generic network topologies, and traffic types, such as periodic
and bursty traffics. Moreover, other network lifetime definitions
will be investigated.
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