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Abstract

A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a
network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. En-
ergy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against
available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy
fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of
20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate
and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority
of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most
conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent
fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpret-
ing long-term CO2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated
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with the eddy covariance technique or from errors in calculating the available energy terms. Although it was not entirely
possible to critically evaluate all the possible sources of the imbalance, circumstantial evidence suggested a link between the
imbalance and CO2 fluxes. For a given value of photosynthetically active radiation, the magnitude of CO2 uptake was less
when the energy imbalance was greater. Similarly, respiration (estimated by nocturnal CO2 release to the atmosphere) was
significantly less when the energy imbalance was greater.
Published by Elsevier Science B.V.

Keywords: Energy balance; FLUXNET; Eddy covariance technique

1. Introduction

The global proliferation of long-term eddy co-
variance sites measuring carbon and energy fluxes
(FLUXNET) provides a unique contribution to the
study of the environmental, biological and climato-
logical controls of net surface exchange between veg-
etation and the atmosphere (Baldocchi et al., 2001).
Independent methods of evaluating the reliability of
the eddy covariance measurements at FLUXNET sites
are highly desirable. One method of independently
evaluating scalar flux estimates from eddy covariance
is energy balance closure. Energy balance closure, a
formulation of the first law of thermodynamics, re-
quires that the sum of the estimated latent (LE) and
sensible (H) heat flux be equivalent to all other energy
sinks and sources

LE + H = Rn − G − S − Q (1)

whereRn is the net radiation,G the heat flux into the
soil substrate,S the rate of change of heat storage (air
and biomass) between the soil surface and the level of
the eddy covariance instrumentation, andQ the sum
of all additional energy sources and sinks. Typically,
Q is neglected as a small term, and an imbalance be-
tween the remaining independently measured terms
on the left- and right-hand sides ofEq. (1) may
indicate inaccurate estimates of scalar fluxes.

Energy balance closure is directly relevant to the
evaluation of latent and sensible heat fluxes and not
to other scalar fluxes (e.g. CO2 fluxes, the primary
constituent for FLUXNET). However, at least four
considerations make an analysis of energy balance
closure at FLUXNET sites relevant and functional.
First, although the source–sink distributions for wa-
ter, heat and CO2 are different from each other in
an ecosystem, the atmospheric transport mechanisms
within and above the canopy, which are measured by

eddy covariance, are similar for all scalars. Second,
the computation of all scalar fluxes using the eddy co-
variance technique is founded on similar theoretical
assumptions in the conservation equations and their
Reynolds decomposition (Paw U et al., 2000). Thirdly,
at FLUXNET sites all the terms inEq. (1)are typically
measured and recorded continuously at a high tempo-
ral resolution, providing a data set for independently
evaluating eddy covariance fluxes across multiple time
scales. Finally, an independent evaluation of energy
balance closure across FLUXNET sites is useful for its
own purposes, especially in view of the close biophys-
ical coupling between carbon, energy and water fluxes
(Collatz et al., 1991; Baldocchi and Meyers, 1998).

Historically, energy balance closure has been ac-
cepted as an important test of eddy covariance data
(Anderson et al., 1984; Verma et al., 1986; Mahrt,
1998), and a number of individual sites within the
FLUXNET network report energy balance closure
as a standard procedure (e.g.Hollinger et al., 1999;
Anthoni et al., 1999; Aubinet et al., 2000; Goldstein
et al., 2000; Wilson and Baldocchi, 2000; Schmid
et al., 2000). From these studies and many others, a
general concern has developed within the micromete-
orological community because surface energy fluxes
(LE + H) are frequently (but not always) underes-
timated by about 10–30% relative to estimates of
available energy(Rn − G − S). The imbalance is
often present, though often to a lesser extent, even
over flat, homogeneous surfaces and short vegetation
(Stannard et al., 1994; Mahrt, 1998; Twine et al.,
2000), which are presumably ideal conditions for the
eddy covariance method.

An energy imbalance has implications on how en-
ergy flux measurements should be interpreted and
how these estimates should be compared with model
simulations (Liu et al., 1999; Twine et al., 2000; Culf
et al., 2002). Within the FLUXNET community, the
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consequence of a possible widespread energy imbal-
ance on the interpretation of CO2 fluxes is somewhat
less certain and is dependent on the mechanisms cre-
ating the imbalance. General hypotheses have been
suggested to account for the lack of energy balance
closure, including: (1) sampling errors associated with
different measurement source areas for the terms in
Eq. (1), (2) a systematic bias in instrumentation, (3)
neglected energy sinks, (4) the loss of low and/or high
frequency contributions to the turbulent flux and (5)
neglected advection of scalars. If the energy imbal-
ance results from different measurement source areas
for the terms inEq. (1), or bias errors in net radiation,
or neglected energy sinks and sources, there may be
no reason to suspect that the measured CO2 fluxes
are systematically inaccurate. However, if the mecha-
nisms creating the imbalance result from inappropri-
ate assumptions made from the scalar conservation
equation, such as neglecting mean advection (Paw U
et al., 2000), or result from low or high frequency loss
of flux, the estimated CO2 flux may contain similar
errors in relation to the actual terrestrial exchange.
An overall evaluation of site characteristics and me-
teorological conditions associated with the energy
imbalance may provide circumstantial evidence for
its cause, and also suggest whether similar errors are
likely in the CO2 flux estimates.

Because of the large geographic and biological
variability at the contributing sites, FLUXNET offers
a unique data set to compare energy balance closure
for different vegetation types, terrain features and cli-
mates. Previous studies have focused on energy bal-
ance closure at multiple sites (Stannard et al., 1994;
Barr et al., 1994; Aubinet et al., 2000; Twine et al.,
2000), but FLUXNET encompasses a larger quantity
of sites and with extensive variability in site charac-
teristics. Although diverse instrumentation and pro-
cessing methods in FLUXNET increase the possible
sources affecting energy balance closure, instrumenta-
tion differences also present an opportunity to examine
the effect of available techniques, especially potential
differences between open and closed path infrared
gas analyzers (IRGAs). Because FLUXNET sites
typically measure continuously over annual cycles,
an evaluation of closure over different seasons is pos-
sible, which has not generally been reported in other
synthesis studies of energy balance closure (Stannard
et al., 1994; Mahrt, 1998; Twine et al., 2000).

The goals of this study are: (1) to evaluate energy
balance closure at all FLUXNET sites, and (2) to eval-
uate the potential source of differences in the imbal-
ance within and between sites. Based on these con-
siderations, (3) we will also discuss the relationship
between energy balance closure and the consequences
for interpreting CO2 fluxes.

2. Materials and methods

Methodology and review papers for many of the
FLUXNET eddy covariance sites are published in
Aubinet et al. (2000)andBaldocchi et al. (2001). Eddy
covariance and the supporting environmental and
meteorological data were contributed by individual
investigators to the FLUXNET database at Oak Ridge
National Laboratory’s Data Archive Center. The data
set contains annual files of half-hourly flux and me-
teorological data at eddy covariance stations across
Europe and North America (Table 1) and includes a
range of vegetation types and climates. A ‘site-year’
was accepted for analysis if more than 10% of the
half-hours (approximately 1750 half-hours) in a year
contained non-missing values for each of the follow-
ing: net radiation (Rn), ground heat flux (G), canopy
heat storage (S), latent heat (LE) flux and sensible
heat flux (H). Because the importance of canopy heat
storage is expected to be small in short canopies with
minimal biomass, half-hourly data were still accepted
for analysis when canopy heat storage was missing,
provided that the vegetation height was less than 8 m.
However, the canopy heat storage requirement was
maintained for tall, forested sites because of its poten-
tial importance (McCaughey, 1985; Moore and Fisch,
1986), which eliminated several sites in this analysis.
Twenty-two FLUXNET sites and 50 site-years (out of
90 available) met these requirements and were evalu-
ated for energy balance closure. The mean energy bal-
ance data coverage (the percent of all half-hours with
all energy balance terms) of the accepted site-years
was 48%, ranging from 11 to 90%. Either because of
protocol or instrument malfunctions, a number of the
‘site-years’ do not include data uniformly distributed
throughout the year.Table 1also contains a qualita-
tively brief description of terrain for each site that
was available from the FLUXNET data archive.
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Table 1
Summary of the FLUXNET sites in this analysisa

Location Country Vegetation Height Max LAI Terrain IRGA Yrs

Atqasuk, AK United States Tundra 0.5 1.5 Flat O 1
Blodgett, CA United States Conifer 4 7.8 Flat C 4
Bondville, IL United States Agriculture 2 6 Flat O 4
Barrow, AK United States Tundra 0.3 1.5 Flat O 2
Happy Valley, AK United States Tundra 0.3 1.5 Gentle slope O 2
Little Washita, OK United States Rangeland 1 2.5 Flat O 2
Metolius, OR United States Conifer 20 1.5 Hilly O 2
Niwot Ridge, CO United States Conifer 20 4.2 Hilly C 1
Ponca, OK United States Agriculture 1 5.3 Flat C/H 1
Shidler, OK United States Grassland 0.7 2.8 Flat C/H 2
Sky Oaks, CA United States Chaparral 2 3.0 Hilly O 2
Sky Oaks, CA United States Chaparral 0.5 1.1 Hilly O 2
Walker Branch, TN United States Deciduous forest 26 5.5 Hilly O 4
Aberfeldy United Kingdom Conifer 6 8 Gentle slope C 2
Bordeaux France Conifer 18 5.5 Flat C 3
Brasschaat Belgium Conifer 22 3 Flat C 3
Castelporziano Italy Evergreen 13 3.5 Flat C 2
Loobos Netherlands Conifer 15 3 Flat C 2
Norunda Sweden Mixed conifer 25 5 Flat C 3
Tharandt Germany Conifer 28 6 Gentle slope C 4
Vielsalm Belgium Mixed forest 32 4.5 3% slope C 3
Bayreuth Germany Conifer 19 5 Hilly C 2

a ‘Height’, ‘Max LAI’ and ‘Yrs’ are the vegetation height (m), maximum leaf area index of the vegetation and the number of years
with data. ‘O’ denotes an open path system used for measuring both water and CO2 fluxes, a ‘C’ denotes a closed path system used
for measuring both water and CO2 fluxes, and ‘C/H’ denotes that a closed path IRGA used for measuring CO2 fluxes and a krypton
hygrometer used for measuring water vapor.

Energy balance closure was evaluated for each
site-year using four different methods. The first
method, and the principal method discussed in this
study, was to derive linear regression coefficients
(slope and intercept) from the ordinary least squares
(OLSs) relationship between the half-hourly estimates
of the dependent flux variables(LE + H) against the
independently derived available energy (Rn − G − S;
seeEq. (1)). Ideal closure is represented by an inter-
cept of zero and slope of 1. The OLS regression is
technically valid only if there are no random errors in
the independent variable (Meek and Prueger, 1998),
which would incorrectly imply that the measurements
of Rn, G andS contain no random errors. Two alterna-
tive methods were used to address the effects of this
random error on the linear regression statistics (Meek
and Prueger, 1998). The reduced major axis (RMA)
method switches the independent and dependent vari-
ables and evaluates the slope as the geometric mean
of the OLS and switched regressions. A second alter-
native method used to account for random errors in

available energy was the method of moments (MMs),
which requires that the random error inRn − G − S

be specified. Because the random error is associated
with instrumentation, sampling methods and natural
variability, this error is unknown and variable between
sites. Therefore, several hypothetical error estimates
(10, 20, 40 and 50%) were used in the MM approach
to evaluate the possible effect of random error on the
linear regression slope. A fourth method to evaluate
closure was to cumulatively sumRn − G − S and
LE + H over specified time periods, such as over an
entire year or during nocturnal periods, and calculate
the energy balance ratio (EBR) (Mahrt, 1998; Gu
et al., 1999)

EBR =
∑

(LE + H)
∑

(Rn − G − S)
(2)

The advantage of EBR is that it gives an overall eval-
uation of energy balance closure at longer time scales
by averaging over random errors in the half-hour mea-
surements. A disadvantage of EBR is the potential to
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overlook biases in the half-hourly data, such as the ten-
dency to overestimate positive fluxes during the day
and underestimate negative fluxes at night (Blanken
et al., 1998; Mahrt, 1998).

3. Results

3.1. Overall energy balance closure

Regression coefficients of LE+H againstRn−G−
S, using OLSs on all the half-hour data for each of the
50 site-years, are shown inTable 2. The slope was less
than 1 for all site-years, ranging from 0.53 to 0.99,
with a mean of 0.79±0.01. The intercept ranged from
−32.9 to 36.9 W m−2, with a mean of 3.7±2.0 W m−2.
There were more positive (31) than negative intercepts
(19). The mean coefficient of determination (r2) was
0.86, ranging from 0.64 to 0.96.

Using the RMA approach, which accounted for
random errors in available energy, increased the
mean slope to 0.83 ± 0.01. The increase in slope
ranged from 2 to 10% for 43 of the 50 site-years (not
shown). The remaining seven site-years increased by
more than 10%, with one site increasing by 25%.
The sites with the largest increase in slope using the
RMA approach had the lowest correlation (r2 values
less than 0.80). The mean intercept using the RMA
method was slightly less than using the OLS method
(−1.4 ± 1.8 W m−2).

A second method to account for random errors in
the independent variable was the MMs approach. The
MM approach requires a quantitative estimate of the
random error in the measurement of the independent
variable (Rn − G − S). Setting hypothetical estimates
of the random error inRn − G − S of 10, 20, 40
and 50% resulted in mean slopes of 0.78, 0.82, 0.99
and 1.17, respectively. Random errors of greater than
20% in available energy would be required for sub-
stantial improvements in energy balance closure. The
mean intercept of the site-years decreased as the ran-
dom error increased: 2.7 W m−2 (for a 10% random
error),−0.4 W m−2 (20%),−16.3 W m−2 (40%) and
−33.5 W m−2 (50%).

The bias in the energy imbalance is still evident at
most sites when it is evaluated as the annual ratio of
total annual turbulent heat flux to available energy (i.e.
annual value of EBR,Table 2). The mean EBR for

Table 2
Ordinary linear regression (OLR) coefficients for energy balance
closure for all site-yearsa

n Intercept Slope r2 EBR

5129 3.5 0.55 0.80 0.56
3771 7.1 0.58 0.87 0.70
3324 16.8 0.60 0.64 0.77
3495 20.9 0.62 0.74 b

6197 29.7 0.64 0.74 0.82
6144 −10.1 0.65 0.83 1.00
8738 −0.8 0.68 0.85 0.68

14418 −0.7 0.69 0.85 1.20
11459 2.5 0.70 0.84 0.72
10227 6.0 0.70 0.83 0.74
9267 −12.3 0.71 0.87 1.03
7952 −18.3 0.72 0.86 0.59
9621 −6.9 0.72 0.86 0.66
3918 12.7 0.73 0.92 0.84

10712 −32.9 0.73 0.80 0.39
11267 7.7 0.74 0.88 0.82
12727 36.9 0.74 0.76 1.00
13834 11.3 0.75 0.84 0.86
14468 9.6 0.75 0.85 0.88
11561 8.4 0.75 0.86 0.83
9649 31.1 0.75 0.89 1.16

12016 3.1 0.75 0.88 0.78
9005 16.6 0.76 0.92 0.88

11789 −6.0 0.77 0.83 0.76
11058 −16.2 0.78 0.81 0.53
4032 2.6 0.78 0.87 0.81
4039 −5.4 0.79 0.85 0.62
4181 4.5 0.80 0.88 0.87
6848 −8.7 0.82 0.83 0.69
3846 16.3 0.83 0.92 0.93
4370 5.0 0.83 0.89 0.79
4896 7.4 0.84 0.96 0.93

14760 6.4 0.85 0.92 0.97
4150 4.1 0.85 0.85 0.92

12751 −1.2 0.85 0.90 0.84
5193 −12.5 0.85 0.95 0.73

15638 −5.3 0.85 0.87 0.69
2594 −2.1 0.85 0.94 0.83

13891 2.6 0.86 0.90 0.89
14198 −7.7 0.86 0.91 1.00
6357 28.6 0.87 0.86 1.09
3850 3.6 0.89 0.90 0.93
3864 6.6 0.89 0.87 0.34

14324 8.9 0.90 0.91 1.69
7993 −18.7 0.90 0.89 0.79

12064 31.5 0.91 0.91 1.17
14545 −15.2 0.92 0.92 0.77
13655 7.1 0.95 0.91 0.89
4670 −23.8 0.97 0.90 0.71
1883 32.6 0.99 0.79 b

a ‘EBR’ refers to the annual ratio of(H + LE)/(Rn − G − S);
n is the number of half-hours.

b A spurious EBR ratio because the summed available energy
was close to zero.



228 K. Wilson et al. / Agricultural and Forest Meteorology 113 (2002) 223–243

all the site-years was 0.84, ranging from 0.34 to 1.69.
The ratio of total turbulent heat flux to total available
energy across all 50 site-years was similar, 0.82.

3.2. Role of canopy and ground heat storage

Twenty-six site-years with tall vegetation(height>
8 m) reported an estimate of canopy heat storage (S).
IncludingS in the regressions for these sites increased
the slope of the OLS regression by an average of 7%,
which is why forested sites were required to reportS
in this study. The mean intercept decreased from 2.1 to
−0.8 W m−2. Soil heat flux (G) increased the average
OLS slope for grasslands, agricultural and chaparral
sites by about 20%. Soil heat flux had much less im-
pact at the forested sites, where the average OLS slope
increased by only 3%.

3.3. Vegetation type, vegetation height and IRGA type

Fig. 1shows the slope of the OLS regression against
vegetation height, differentiating between sites using
open and closed path IRGAs. There were no obvious
differences in the slope for sites using the open and
closed path designs. There was also no obvious effect
of vegetation height on the OLS slope.

Fig. 1. The slope of the OLS regression against vegetation height
for sites using closed (closed symbols) and open (open symbols)
path IRGAs. Symbol shapes represent different vegetation types.

3.4. Diurnal variation in closure

The OLS regression statistics during periods of pos-
itive net radiation (not shown) were similar to the
statistics using all the data that are shown inTable 2.
The mean slope was 0.80±0.02, ranging from 0.56 to
0.97. The mean intercept was−0.3 ± 3.0 W m−2 and
r2 was 0.81. The ‘site-year’ mean annual EBR during
‘daytime’ periods was 0.80, and EBR was equal to or
greater than 1 at only two site-years. The ratio of total
daytime turbulent heat flux to total daytime available
energy for all 50 site-years was similar, 0.79.

The mean OLS slope during nighttime periods
(net radiation less than zero) was only 0.35 ± 0.03,
ranging from−0.04 to 0.69. The mean intercept was
−5.5 ± 1.4 W m−2 and the correlation was typically
weak (meanr2 = 0.11). In some cases, the ‘site-year’
annual nocturnal EBR was negative or was much less
or much greater than 1. The ratio of total turbulent
flux to the total available energy summed over all the
sites was 0.54 during the night, which is less than
during the day. The magnitude of the imbalance at
night was strongly dependent on turbulent mixing, as
shown in the following section.

Data from all the site-years were combined to com-
pute the diurnal course of the EBR. For each of the
24 h the half-hourly LE+ H andRn − G − S were
summed over entire site-years using the entire data
set. The ratio between these two sums (Eq. (1)) was
the hourly EBR.Fig. 2 shows the diurnal course of
the EBR, along with the mean magnitudes of LE+H

andRn − G − S. During morning and evening tran-
sition periods, when the mean value ofRn − G − S

was close to zero, the EBR is not especially meaning-
ful. Between these two transition periods there was
a general increase in the EBR from the morning to
afternoon. This pattern of a greater EBR in the af-
ternoon relative to the morning was observed in both
the warm and cold seasons and was typical for most
of the individual site-years (not shown).

3.5. Effect of turbulent mixing

The effect of turbulent mixing was evaluated
between and within sites by analyzing closure with
respect to friction velocity. The slope of the OLS
regression was not a function of the mean annual
friction velocity across all the site-years (not shown).
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Fig. 2. The mean diurnal energy budget ratio (EBR) using all the site-years in this study. Also shown are the mean diurnal values of
Rn − G − S and LE+ H .

The effect of friction velocity was also evaluated
within each of the site-years. Friction velocity typi-
cally changes with stability and time of day. There-
fore, the change in energy balance closure between
night and day (shown above) could also be the direct
result of changes in friction velocity. Nevertheless,
a simple method was used to partially isolate the
effects of friction velocity from the effects of time
of day (and presumably to some extent, stability).
Data for each of the site-years were separated into 48
groups, representing the 48 half-hours in a day. The
data in each of the 48 groups were segregated into
two large groups, each containing half the data. One
group contained data when the friction velocity was
above the annual median for that half-hour, and the
second group contained data when the friction veloc-
ity was below the annual median for that half-hour.
OLS regressions were performed for both groups of
half-hour data for each site-year.

The slope was typically greater when the friction
velocity was above the half-hourly medians, but the
intercept was slightly less. The mean slope for all
site-years was 0.73 when the friction velocity was be-
low the median, with an intercept of 7.1 andr2 =

0.86. Above the median friction velocity, the slope was
0.81, with intercept of 1.0 andr2 = 0.87. The slope
was significantly(P < 0.05) greater for data above
the mean friction velocity in 41 of the 50 site-years.
A similar result was obtained when data were sepa-
rated into five friction velocity categories instead of
two, but the largest differences were between the low-
est friction velocity groups. The OLS slope increased
from 0.69 for winds in the lowest 20% to 0.73, 0.77,
0.80 and 0.80 in the four remaining groups.

The effect of friction velocity on energy balance
closure was analyzed separately for daytime and
nighttime data using the same methods that were just
described using all the data. For both daytime and
nighttime, data from each site-year were segregated
by friction velocity into five percentile groups (five
sets, each with 20% of the site-year data). There was
a very weak trend(r2 = 0.08) for the OLS slope to
increase with friction velocity during daytime hours
(Fig. 3a). A slightly more obvious trend was evi-
dent when EBR was plotted against friction velocity
(r2 = 0.14) (Fig. 3b).

The OLS slope was smaller and was more depen-
dent(r2 = 0.43) on friction velocity during nocturnal
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Fig. 3. The (a) OLS slope and (b) EBR against friction velocity
during daytime periods. Each site-year is represented by five points
on these plots, representing data sorted by friction velocity into
five 20 percentile groups of half-hour data. The points showing a
friction velocity of zero are the result of an inadequate number of
significant figures in the FLUXNET data archive.

periods than during the daytime (Fig. 4). When the
mean friction velocity was below 0.25 m s−1, the
slope of the OLS regression was less than 0.50 for
all site-years. When the mean friction velocity ex-
ceeded 0.50 m s−1 the slope was greater, but was still
typically less than 1.0.

Fig. 4. The OLS slope against friction velocity (u∗) during noctur-
nal periods (net radiation less than zero). Each site-year is repre-
sented by five points, representing data sorted by friction velocity
into five 20 percentile groups of half-hour data.

Fig. 5 shows the effect of friction velocity on the
OLS slope during nocturnal periods in more detail at
specific FLUXNET sites. The sites shown inFig. 5
represent a range of vegetation types, IRGA types and
terrain. The nocturnal OLS slope usually increased
with friction velocity within (Fig. 4) and across (Fig. 5)
sites, but the meanr2 was only 0.15, ranging from 0.00
to 0.51. In some cases the slopes were not statistically
different from zero, or the intercept changed percep-
tibly with friction velocity. To help address this issue,
the effect of friction velocity on nighttime closure was
also analyzed using the EBR method (Fig. 6). The
general relationship between EBR and friction veloc-
ity was similar to that using the OLS slope (increasing
with friction velocity), except EBR often exceeded 1
at high friction velocities.

3.6. Effects of seasonality and the Bowen ratio

Nineteen site-years had sufficient data within all
months of the year to analyze seasonality in energy
balance closure. Within each of these 19 site-years,
data was segregated into six 2-month increments, and
OLS regressions were performed for each 2-month pe-
riod. Fig. 7 shows the OLS slope of the six 2-month
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Fig. 5. The OLS slope against friction velocity for four contrasting FLUXNET sites during nocturnal periods.

increments for each site-year, with the line depicting
the mean of all site-years. All sites are in the Northern
Hemisphere and the mean slope increased from win-
ter to summer months, averaging 0.66 in January and
February to 0.80 in July and August. The mean inter-
cept was also lower in winter (−3.5 W m−2) than in
summer (4.0 W m−2). The coefficient of determination
(r2) ranged from 0.68 to 0.89 and was generally larger
in summer than in winter. The EBR method indicated

smaller differences between seasons (not shown), with
the mean ratio ranging from only 0.81 to 0.87, with the
exception of first 2-month period (January and Febru-
ary) when the mean ratio was 0.72. Total available
energy, and the denominator in the EBR calculations,
was an order of magnitude greater in the peak summer
period relative to the winter period.

Data were also analyzed to determine if the energy
imbalance varied with Bowen ratio. For each of the 50
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Fig. 6. EBR against friction velocity (u∗) during nocturnal periods
(net radiation less than zero). Each site-year is represented by five
points, representing half-hour data sorted by friction velocity into
five 20 percentile groups.

Fig. 7. The OLS slope, evaluated over 2-month increments, for the 19 site-years that had data over the entire annual cycle. The line shows
the mean for the 2-month increments.

site-years, the daytime data were segregated by Bowen
ratio into four percentile groups, with the requirement
that bothH and LE exceed 10 W m−2 to avoid periods
of very small fluxes. For each of the sites, the Bowen
ratio changed by nearly an order of magnitude between
the first and last percentile groups. No overall trend
in the OLS slope with Bowen ratio was observed for
the sites. Isolating sites with closed path sensors, the
mean slope was least in the lowest Bowen ratio cate-
gory (0.67 versus 0.77 for other categories) (Fig. 8a);
isolating sites with open path sensors, the mean slope
was least for the highest Bowen ratio category (0.67
versus 0.74 for other categories) (Fig. 8b). The mean
intercept decreased with Bowen ratio for sites employ-
ing the open path sensors and increased with Bowen
ratio for sites using the closed path sensors. The EBR
did not change with Bowen ratio for either closed or
open path sensors.

3.7. Link between energy balance closure
and CO2 fluxes

To evaluate a possible link between the energy im-
balance and the fluxes of CO2, data for each site-year
were sorted into three groups based on the normalized
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Fig. 8. The OLS slope versus Bowen ratio for site-years with
(a) closed and (b) open path IRGAs. Daytime half-hour data was
segregated into four 25 percentile groups for each site.

residual in the energy imbalance (δe)

δe = Rn − G − S − LE − H

Rn − G − S

One group (labeled ‘AC’ for ‘acceptable closure’)
contained only half-hourly data when energy balance

closure was ‘acceptable’ (|δe| ≤ 0.10). The second
group (labeled ‘LF’ for ‘low fluxes’) contained data
whenδe > 0.10 (turbulent heat fluxes underestimated
relative to available energy) and the third group (la-
beled ‘HF’ for ‘high fluxes’) contained data when
δe < 0.10 (turbulent heat fluxes overestimated rela-
tive to available energy). Daytime data, defined by
photosynthetically active radiation(PAR) > 0, was
further segregated into five sub-groups based on PAR
(50 < PAR < 300; 300 < PAR < 600; 600 <

PAR < 1000; 1000< PAR < 1500; PAR> 1500)
(units of PAR in �mol m−2 s−1). To avoid spurious
ratios, half-hour data was not included in this analysis
if Rn + G + S < 20 W m−2. Only data between day
160 and day 240 (mostly summer season) were used
to limit the analysis to periods when assimilation and
CO2 uptake are important and when PAR is expected
to be a forcing variable for CO2 fluxes. Therefore,
this evaluation only applies to the warm season.

Fig. 9 shows the mean CO2 flux (negative values
indicate uptake by vegetation) for each of the five

Fig. 9. The mean CO2 flux between days 160 and 240 across all
available site-years for the five PAR groups (see text). Data was
segregated into one of the three groups based on energy balance
closure (LF for low turbulent energy fluxes relative to available
energy; AC for acceptable closure and HF for high turbulent
energy fluxes relative to available energy). The means shown were
estimated after estimating each of the site-year means (i.e. each
site-year contributed equally).
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Table 3
The results of thet-test to check for significant differences in the mean CO2 flux with energy balance closure for each of the five PAR
categories (see text)a

PAR group LF< AC NS LF > AC HF < AC NS HF> AC

PAR 1 12 14 2 2 23 3
PAR 2 18 15 2 9 25 1
PAR 3 17 16 5 6 23 6
PAR 4 16 14 8 5 29 4
PAR 5 12 9 4 3 19 3

a Columns 2–4 give the number of site-years that fall within one of the three categories in the test between groups LF and AC
(LF < AC: magnitude of mean CO2 flux in group LF was less (less negative) than AC; NS: not significant; LF> AC: magnitude of mean
CO2 flux in group LF greater (more negative) than in AC). The last three columns show number of site-years that fall within one of the
three similar categories between groups HF and AC (symbols have similar meaning as for thet-test between LF and AC). At-test was
performed only if more than 30 half-hours of data were available in the PAR/energy balance closure category.

PAR categories across all sites, differentiating be-
tween data with ‘acceptable’ energy balance closure
(AC) and data when turbulent heat fluxes were un-
derestimated (LF) or overestimated (HF) relative to
available energy. For all PAR categories, the mag-
nitude of the mean CO2 was lowest (less negative)
during periods when the turbulent heat fluxes were
underestimated relative to available energy (group
LF). Taking the mean across all PAR categories the
magnitude of the CO2 flux was approximately 15%
lower for group LF relative to AC. Alternatively,
there was little change in the mean CO2 flux between
data with AC and data when the imbalance occurred
because of an ‘overestimate’ of turbulent heat fluxes
relative to available energy (between groups HF
and AC).

For each site-year, at-test was performed within
each of the five PAR categories to determine if there
were statistical differences in the mean CO2 flux
across the energy imbalance groups (i.e. AC, LF, and
HF). Table 3summarizes the number of site-years for
groups LF and HF when there was not a significant
difference in the mean CO2 flux relative to AC data
for the given PAR group, and when the magnitude
of the CO2 flux was either significantly(P < 0.05)
lower or higher than data in the AC group. For each
PAR group, between 42 and 48% of the site-years had
a significantly lower net CO2 uptake (less negative
flux) when the turbulent energy flux was underesti-
mated compared to when the imbalance was within
10% (group LF relative to AC inTable 3). There were
far fewer differences in the mean CO2 fluxes between
group HF and AC (Table 3).

Nighttime data were also separated into three simi-
lar groups based on energy balance closure. The mean
CO2 flux across all sites when energy balance clo-
sure was acceptable (group AC) was almost twice
(4.72�mol m−2 s−1) that compared to periods when
turbulent heat fluxes were underestimated (group LF,
2.39�mol m−2 s−1). There was no difference in the
mean air temperature between these two groups of
data (both were 16.2◦C). Of the 36 site-years with
sufficient nocturnal energy balance and CO2 flux data
available, the nocturnal CO2 flux was significantly
greater(P < 0.05) in group AC relative to LF for 27
of the site-years. The quantity of nocturnal data in the
group HF was minimal, and it was not included in the
analysis.

To further demonstrate a possible link with the
nocturnal carbon dioxide flux,Fig. 10 shows the
relationship between ecosystem respiration at 10◦C,
estimated from nocturnal data using the methods de-
tailed byFalge et al. (2001), for two of the sites shown
in Fig. 5. At the agricultural site (Fig. 10a), there
appears to be a threshold friction velocity in carbon
dioxide flux, although no threshold is apparent in the
energy balance closure (Fig. 5c). At the forest site
in Norunda, Sweden, a threshold friction velocity for
carbon fluxes (Fig. 10b) and energy balance closure
(Fig. 5b) is not obviously apparent.

4. Discussion

Although the intercepts of the OLS regressions for
the site-years were typically non-zero, the OLS slope
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Fig. 10. The mean nocturnal respiration, normalized to 10◦C,
against friction velocity sorted into 20 five percentile friction
velocity groups using the method ofFalge et al. (2001): (a) data
from agricultural field in Bondville, IL; (b) data from a mixed
forest in Norunda, Sweden.

(for positive and negative intercepts) was always less
than 1. The EBR was less than 1 for over 80% of the
site-years, further suggesting a general lack of closure.
The general lack of complete energy balance closure
at FLUXNET sites (linear regression slope and EBR

typically less than 1) is consistent with historical ev-
idence that the energy balance is often not closed us-
ing the eddy covariance technique (Mahrt, 1998; Gu
et al., 1999; Twine et al., 2000). Explanations for the
imbalance have been hypothesized in previous stud-
ies (Stannard et al., 1994; Mahrt, 1998; Aubinet et al.,
2000; Twine et al., 2000; Culf et al., 2002) and can
generally be summarized by the list inTable 4. This list
is not totally comprehensive, but covers the primary
reasons usually suspected for the energy imbalance:
(1) systematic errors associated with the sampling mis-
match between the flux footprint and the sensors mea-
suring other components of the energy balance, (2) a
systematic instrument bias, (3) neglected energy sinks,
(4) low and high frequency loss of turbulent fluxes,
and (5) horizontal and/or vertical advection of heat
and water vapor.Table 4also summarizes how these
sources of error may affect energy balance closure and
carbon dioxide fluxes. Each of these problems will be
discussed and related to the FLUXNET data set. Errors
in the eddy covariance approach are also summarized
in Businger (1986)andFolken and Wichura (1996).

4.1. Sampling errors

Random errors associated with averaging a subset of
turbulent eddies at one location to estimate ensemble
mean turbulent fluxes (Moncrieff et al., 1996; Mahrt,
1998) will reduce r2, but should not affect the OLS
slope, the long-term EBR or long-term flux estimates.
Accounting for random errors in the dependent vari-
able (Rn − G − S) using two statistical approaches
(Meek and Prueger, 1998) reduced the slope of the
OLS regression, but the errors would need to approach
40% to obtain a mean slope of 1 across sites, and with
these hypothetical errors the intercepts became highly
negative. Furthermore, random errors larger than 40%
are possible forG andS in some conditions, but they
are less likely forRn, which has a larger source area
and is frequently the dominant available energy term.
Furthermore, the overall long-term bias in closure at
most sites, indicated by the annual values of EBR, sug-
gests a low probability that the imbalance is primarily
a statistical artifact.

A second type of sampling error is associated with
the inability to match the source areas of the eddy
covariance measurements (the flux footprint) with the
source area of the instrumentation measuringRn, G
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Table 4
General list of possible reasons for energy imbalance at FLUXNET sitesa

Cause of imbalance Examples LE+ H Rn − G − S Ratio Affects CO2

Sampling Source areas differ No
Instrument bias Net radiometer biased If sonic or IRGA
Neglected energy sinks Storage above soil heat plates + − No
High/low frequency loss Sensor separation/large eddies − − Yes
Advection Regional circulation Yes

a Also shown is whether this effect is expected to underestimate (negative sign) or overestimate (positive sign) the turbulent fluxes
(LE +H), available energy(Rn −G−S) and the energy balance closure ratio(LE +H)/(Rn −G−S). The last column indicates whether
this effect is relevant to interpretations of the CO2 flux.

andS. Schmid (1997)provides a detailed discussion
of the issues involved in matching scales of observa-
tions, particularly the different geometry and dynam-
ics of the source areas for net radiometers and flux
footprints. The source area for a net radiometer has a
radius related to sensor height that is fairly constant
with time and is centered below the instrument. The
instrument typically protrudes horizontally off a tower,
and in some cases the tower structure or removal of
vegetation near the tower may influence the sensor.
Alternatively, the spatial dimension of the flux foot-
print is not fixed in space and is dependent on atmo-
spheric conditions, typically approximating an ellipse
that is distorted in the mean upwind direction. In the-
ory and practice, the source areas for a net radiometer
and eddy covariance flux footprint never match.

The assumption of equivalent source areas is even
more problematic when relatingG to H and LE.
The ground area influencing the soil heat flux plates
or thermocouples (if using the calimetric method)
(Buchan, 1989) is one to several orders of magnitude
smaller than the associated source areas of the net
radiometers and the eddy covariance flux footprint.
A similar daunting problem exists for the estimate of
S in tall vegetation, especially the component associ-
ated with sampling biomass temperature, which is a
complex function of aspect, depth into woody tissue
and canopy height.

The most obvious effect on energy balance closure
occurs when the measurement source area of one
of the energy balance components is representative
of a systematically different surface or climate than
the source area sensed by the other energy balance
components. This systematic error would generally
be greatest in open canopies or in canopies with large
gradients in biophysical characteristics, where hetero-

geneity is present at multiple scales (Culf et al., 1993;
Stannard et al., 1994; Baldocchi et al., 2000; Kustas et
al., 2000). FLUXNET sites are not generally designed
to evaluate spatial variability in the available energy
components at the spatial scale of the turbulent flux
footprint. However,Rn is typically the largest com-
ponent of available energy and several studies have
found little spatial variability ofRn above uniform
(Twine et al., 2000) and complex patchy landscapes
(Schmid et al., 1991; Stannard et al., 1994; Anthoni
et al., 2000) (but also seeCulf et al., 1993). Although
measurement source errors are present at FLUXNET
sites, this type of error is not expected to consistently
present a positive systematic bias in available en-
ergy relative to turbulent scalar fluxes. Other studies
investigating multiple sites have deduced a similar
hypothesis (Stannard et al., 1994; Mahrt, 1998; Twine
et al., 2000; Anthoni et al., 2000).

4.2. Instrument biases

A second group of errors that can affect energy
balance closure involves instrument biases, inaccu-
rate calibrations and data processing errors. These
comments will focus on a few general aspects of
instrumentation, because it is assumed that all sites
are processing data and computing fluxes correctly.
Cross calibration of instrumentation and processing
methods have probably reduced some of these uncer-
tainties between selected sites (Aubinet et al., 2000;
Baldocchi et al., 2001).

Soil heat flux plates can be inaccurate because
the thermal conductivity of the heat flux plate and
surrounding soil may be unequal (VanLoon et al.,
1998). Heat flux plates typically have a conductivity
similar to soil, but thermal properties vary temporally
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because of changes in soil water content and temper-
ature (Verhoef et al., 1996). Soil heat flux plates also
can alter the environment they are measuring, espe-
cially by limiting water movement in soils (Mayocchi
and Bristow, 1995). AmeriFlux sites generally use
REBS (Radiation Energy Balance Systems) heat flux
plates, and EUROFLUX sites use heat flux plates and
calimetric methods (Aubinet et al., 2000).

Several studies have addressed calibration methods
and the accuracy of various brands of net radiome-
ters (Field et al., 1992; Halldin and Lindroth, 1992;
Hodges and Smith, 1997; Stannard et al., 1994; Kustas
et al., 1998; Culf et al., 2002; Halldin, 2002). Some of
the differences in closure between FLUXNET sites are
probably the result of bias errors in net radiometers.
A majority of the AmeriFlux sites have used REBS
net radiometers; EUROFLUX sites have used a variety
of net radiometers, with many sites using instruments
manufactured by REBS and Schulze/Daeke. Bias er-
rors up to 15% have been noted between older ver-
sions of net radiometers, which includes some of the
manufactures used in FLUXNET (Field et al., 1992;
Stannard et al., 1994), although the commercial in-
strumentation and calibration methods have been sub-
sequently updated. Some versions of the REBS net
radiometers, which are common at AmeriFlux sites,
are known to have been calibrated incorrectly (Kustas
et al., 1998; Twine et al., 2000), creating a low bias
(15% during the daytime) in net radiation and possibly
erroneously improving energy balance closure. In fact,
recent improvement in design and calibration of net ra-
diometers appears to have increased the energy imbal-
ance (Wilson and Baldocchi, 2000; Culf et al., 2002)
Calibration procedures, either performed by the man-
ufacturer or site operators, differ among FLUXNET
sites, making it difficult to quantify bias errors. Recent
inter-comparisons of independently calibrated sensors
at several sites showed only small differences in sen-
sor type (unpublished data using Didcot DRN-305 and
REBS Q7 at Brasschaat, Germany, and REBS Q7 and
Kipp and Zonen NR LITE at Walker Branch, TN).

Although there can be differences between types
of net radiometers, nearly all the net radiometers used
in FLUXNET would have to be biased high during
the day and low at night to account for the energy
imbalance.Twine et al. (2000)concluded that in the
ARM (Atmospheric Radiation Measurement) project,
which has a primary goal of accurately measuring

radiation components, an energy imbalance persisted
despite careful net radiation calibrations. Estimates
of net radiation using independently derived satel-
lite estimates also indicated a lack of closure across
BOREAS sites (Gu et al., 1999).

Instrument errors can also occur with the eddy co-
variance instrumentation used to compute velocities
(sonic anemometer), temperature (sonic anemometer)
and water vapor (usually IRGA, either open or closed).
Mounting equipment and instrumentation may shadow
sonic anemometers (Wyngaard, 1981) and degrade
data quality and energy balance closure in certain
wind directions, but this effect does not explain the
consistent lack of closure across most wind directions
at the sites. A second source of error occurs when tur-
bulent fluctuations are of insufficient magnitude to be
resolved by the instrumentation (Mahrt, 1998). Errors
concerning possible insufficient sampling frequency
and loss of high frequency flux and other errors associ-
ated with time and space assumptions used in the eddy
covariance technique are addressed subsequently.

4.3. Other energy sinks

An assumption in the analysis of energy balance
closure is that the energy in the system can be approx-
imated from the five measured components (LE,H,
Rn, G, andS), and that all energy stored beneath the
sensor (G andS) is estimated properly. Even when soil
heat flux plates are used, as at a number of FLUXNET
sites, a heat storage term is needed to account for
the soil above the sensors (Mayocchi and Bristow,
1995). In open canopies, this storage can be large even
when heat plates are buried near the surface (Stannard
et al., 1994; Mayocchi and Bristow, 1995), and it is
assumed that this storage is correctly accounted for
at the FLUXNET sites. The FLUXNET data suggests
that inaccuracies inG have a greater impact on energy
balance closure in agricultural, chaparral and grass-
land sites than in forests.

A correction to the soil heat flux calculation that is
commonly neglected and difficult to estimate is the
‘isothermal’ LE component (Buchan, 1989; Mayocchi
and Bristow, 1995). If soil heat flux plates are near
the surface and above the region where subsurface
evaporation typically occurs, the isothermal LE flux
is proportional to the subsurface evaporation beneath
the heat flux plates. Published estimates of soil evap-
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oration indicate that the magnitude of this term for
FLUXNET sites is probably less than 5% ofRn in
closed forest canopies with dense litter layers (Wilson
et al., 2000), but may be several times greater in
more open canopies (Baldocchi et al., 2000) or above
bare soil or bare soil covered by crops (Villalobos
and Fereres, 1990). For the majority of FLUXNET
sites, which use soil heat flux plates, consideration
of this term will typically decrease the estimated
G (Mayocchi and Bristow, 1995) and increase the
estimated total available energy, which may further
degrade energy balance closure.

Heat storage between the soil surface and level of
flux measurements (S) can also be difficult to estimate,
because a full accounting requires air temperature and
humidity measurements at multiple heights, as well as
estimates of biomass temperature. The number of tem-
perature probes used at FLUXNET sites varies from
just a few to dozens (Aubinet et al., 2000). Gradients
of stem temperature, both with height and aspect in the
canopy and with depth in woody tissue, can be a source
of important sampling errors (Aston, 1985; Moore and
Fisch, 1986). Estimating total canopy biomass is par-
ticularly challenging, and an estimate of the canopy
specific heat constant is also required. Consideration
of canopy heat storage generally decreased the magni-
tude of the imbalance at FLUXNET sites. Because of
rapid temperature changes, the change in canopy heat
storage (S) was a greater fraction of net radiation early
in the day, which is also when the mean imbalance
was greater. Better energy balance closure during the
afternoon, when temperature changes andS are usu-
ally smaller, may be a clue that storage components
are frequently underestimated at FLUXNET sites.

Careful examination of storage terms at the
FLUXNET site in Bordeaux, France, dramatically
improved energy balance closure (Lamaud et al.,
2001) and this site has an OLS slope approaching
1 (3-year mean of 0.94). Nevertheless, the general
lack of closure, even in very short and sparse vegeta-
tion, seems to suggest that canopy heat storage is not
likely the only important source of imbalance across
all sites. Furthermore, because storage components
should nearly vanish when integrated over an annual
basis, storage errors would not explain the low EBR
over longer periods (i.e. site-years).

Even if each of the five components is accurately
measured, additional energy sinks (Q) are present in

the canopy, although these are typically neglected be-
cause they are considered small. Photosynthesis is a
form of biochemical energy storage that is typically in
the order of 1–2% of the available energy (Oke, 1987),
but may be several times greater in agricultural plants
with high quantum yields, such as at the maize site in
Bondville, IL.

Based on thermodynamic considerations, additional
terms in the energy balance equation have been sug-
gested bySun et al. (1995)andPaw U et al. (2000).
Along with other small correction terms investigated
by Sun et al. (1995), the correction associated with the
specific heat of moist air is expected to be less than
1%. A second sink of energy that has been neglected in
energy balance calculations is the expansion of air dur-
ing evaporation under constant pressure (Paw U et al.,
2000), which is implied if one accepts the correc-
tions of Webb et al. (1980). The suggested method
to correct for this effect is to use the sonic tem-
perature in calculating sensible heat flux instead of
the estimated ‘dry’ air temperature (a value that is
derived from the sonic temperature or measured in-
dependently using temperature sensors) in energy
balance computations, which is a correction of about
7–8% of LE. Over deciduous forests, agricultural
sites and many coniferous forests in FLUXNET, LE
is close to or in excess of one-halfRn during the
growing season, suggesting that this correction could
approach 5% ofRn − G − S during the daytime and
may improve energy balance closure by a similar
magnitude.

4.4. Low and high pass filtering

Independent of other considerations, the eddy co-
variance technique underestimates the total mean tur-
bulent flux to some extent because of high frequency
loss (low pass filters). Unintentional low pass filters
result from practical issues such as instrumentation
that necessarily measures with finite response times,
and at finite sampling increments and within finite
volumes (Moore and Fisch, 1986). Spatial separa-
tion of sonic anemometers and scalar concentration
instrumentation (i.e. IRGA) acts as a low pass filter.
Additional high frequency losses, associated with
tube attenuation and time lags, are present in systems
using closed path IRGAs (Leuning and Judd, 1996).
The averaging period used to define mean fluxes can
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cut-off low frequency contributions (high pass filter)
(Moore, 1986; Aubinet et al., 2000).

Theoretical (Moore, 1986) analytical (Massman,
2000) and empirical (Goulden et al., 1997) approaches
have been proposed to account for low and high fre-
quency loss of flux. However, no standard method
for estimating frequency response corrections is used
across all FLUXNET sites, and the different correc-
tion methods do not always agree (Aubinet et al.,
2000). Individual sites typically correct their data for
high frequency losses based on personal preferences
before submitting to the FLUXNET archive. For
closed path IRGAs, corrections are often based on
the assumption thatH defines the expected frequency
distribution of mass and energy-transporting eddies
(Ribmann and Tetzlaff, 1995).

One hypothesis is that some portion of the energy
imbalance may result from underestimates in water
vapor (LE) flux, as suggested byDugas et al. (1991).
Sensible heat flux is estimated using sonic anemom-
etry, but the water vapor sensor is separated from
the sonic anemometer (i.e. sensor separation acts as
a low pass filter). Additional LE loss may occur us-
ing closed path systems because of tube attenuation
or water vapor interactions with tubes and chamber
walls (Goulden et al., 1997; Leuning and Judd, 1996).
At the FLUXNET sites, there were no obvious dif-
ferences in the energy imbalance between open and
closed path IRGAs, which may indicate that these
problems are small or that the frequency response
corrections were applied appropriately. However, it
is possible that the slightly lower OLS slope at low
Bowen ratios using closed path sensors indicates an
underestimate of water vapor fluxes.

High frequency corrections are expected to be less
at tall-forested sites because turbulent time scales in-
crease (Anderson et al., 1984; Baldocchi and Meyers,
1988). Energy balance closure was not generally su-
perior at sites with tall vegetation, which may imply
that the loss of high frequency flux was not the ma-
jor source of the energy imbalance. FLUXNET sites
that have closed path sensors often show correction
terms as large as 15–30% (Goulden et al., 1997; Berger
et al., 2001), but there was no obvious difference in
the imbalance between sites with both types of sen-
sors. It was not possible to evaluate the effect of av-
eraging time on the energy imbalance across all sites,
but Goulden et al. (1997)found that averaging time

did not change energy balance closure at a FLUXNET
site in a spruce forest.

4.5. Advection

At nearly all FLUXNET sites, it is assumed that ad-
vection of scalars (including CO2), can be neglected
(Paw U et al., 2000). Vertical advection is neglected by
rotating the coordinate system so that the mean vertical
velocity is always zero (McMillen, 1988). However,
non-zero values of mean vertical velocity and vertical
advection are realistic and can be induced by horizon-
tal heterogeneity or mesoscale and synoptic scale forc-
ing (Lee, 1998; Sun et al., 1998). Two types of flows
may make the assumption of negligible mean vertical
advection problematic at FLUXNET sites. First, hor-
izontal heterogeneity in surface fluxes, even at scales
much larger than typically required in micrometeoro-
logical studies, can promote local circulations and ver-
tical motions that seriously compromise the zero ver-
tical velocity assumption (Vidale et al., 1997; Sun et
al., 1998; Leclerc et al., 2000). Similarly, even slight
elevation gradients over a range of spatial scales can
induce nocturnal drainage flows and advection near the
surface during periods of strong static stability (Mahrt
and Larsen, 1990; Lee, 1998).

The poor energy balance closure during nocturnal
periods at FLUXNET sites, especially when turbu-
lence was weak (low friction velocity), is consistent
with the establishment of drainage flows that advect
heat and water vapor (and CO2) to low terrain.Aubinet
et al. (2000)andBlanken et al. (1998)have also shown
that the energy imbalance during nocturnal periods is
usually greatest when friction velocity is small.Lee
and Hu (2002)hypothesized that the lack of energy
balance closure during nocturnal periods was often the
result of mean vertical advection.

If terrain-induced flow is the primary source of the
energy imbalance, it would be expected that sites on
‘flat’ terrain should have better energy balance clo-
sure, especially during nocturnal periods. Although
previous research suggests that terrain can affect the
extent of closure (Kustas et al., 1991; Stannard et al.,
1994) these studies also find a lack of closure at sites
across a range topographic variations. In this study,
closure was not obviously superior at sites reported
to be on ‘flat’ terrain across the FLUXNET sites.
However, the evaluation of terrain is highly subjective
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and can depend on spatial scales. Even at sites with
locally flat terrain, larger scale elevation gradients
may promote terrain-induced circulations.

Although nocturnal flows likely augment the rela-
tive energy imbalance compared to the daytime, the
daytime imbalance suggests that daytime advection
or other processes are also potentially important. It is
also reasonable to suspect that the lack of closure may
result from small but multiple issues that reduce the
magnitude of the estimated fluxes.

4.6. Implications for CO2 flux

A primary motivation for the FLUXNET network
is to quantify carbon cycling over specific ecosystems
around the globe. A general lack of energy balance
closure in the network may be a concern that CO2
flux estimates may be in error; however, it is not a
conclusive test. Errors in the energy balance calcula-
tions can be independent of CO2 flux estimates and
vice versa, implying that the consequences of the im-
balance on interpreting CO2 fluxes are largely depen-
dent on the reasons for the imbalance at FLUXNET
stations (Table 4).

Sampling errors associated with differences in
source area among the energy balance terms would
not have direct implications on the quality of CO2
flux measurements. An inaccurate account ofG, S
andQ, which is probable at some sites in FLUXNET,
was also not expected to have direct implications on
CO2 measurements, but different CO2 sinks may be
present, such as diffusion into groundwater (Jones
and Mullholland, 1998). Instrument biases in energy
measurements (net radiation, soil heat flux) would
not have implications on the quality of CO2 measure-
ments, but biases associated with sonic anemometers
or IRGAs could also bias CO2 fluxes. If low or high
pass filters are the primary source of the energy
imbalance, then errors in the CO2 flux should be ex-
pected, especially because the CO2 measuring device
(IRGA) and sonic anemometer are separated spatially.
Similarly, if mean horizontal or vertical advection are
affecting energy balance closure, advection of CO2
should also be suspected. However, because there are
spatial and temporal differences in source strengths
between heat, water and CO2, the magnitude of ad-
vection fluxes can be different for the different scalars.
For example, although the transport mechanisms for

heat, water and CO2 are similar, the CO2 flux is more
susceptible to nocturnal drainage. The integrated CO2
flux is the difference in two large terms, carbon up-
take associated with photosynthesis, and respiration.
Systematic errors in nocturnal respiration can have
large implications on long-term estimates of carbon
sequestration (Moncrieff et al., 1996). Alternatively,
the nocturnal water vapor flux is typically of relatively
minor quantitative importance to the long-term water
balance. This may be one reason why the catchment
water budget (Barr et al., 1994; Wilson et al., 2001)
is easier to close than the carbon budget, although the
estimated carbon budget may also be nearly closed
on an annual basis at some sites (Curtis et al., 2002).

Because the magnitude of the mean CO2 flux at a
given PAR was approximately 15% lower when the
turbulent energy fluxes are low relative to available
energy, there is some reason to suspect that the day-
time energy imbalance is also affecting CO2 fluxes
at FLUXNET sites. Mean warm season differences in
the nocturnal CO2 fluxes of nearly 2.5�mol m−2 s−1

(50%) between periods with acceptable and poor en-
ergy balance closure also suggests a link between the
imbalance and CO2 flux estimates. Using chamber es-
timates as a reference,Twine et al. (2000)also found
evidence that eddy covariance estimates of the CO2
flux were underestimated during periods of energy im-
balances. It is still possible that the energy imbalance
and the lower CO2 fluxes occur during calmer periods
when both energy and carbon storage terms are large
and underestimated, but these responses may also sug-
gest advection, drainage flows or some other problem
associated with the eddy covariance technique.

Previous studies have indicated that nocturnal respi-
ration estimates are in better agreement with chamber
measurements during periods of greater turbulent in-
tensity (friction velocity) (Goulden et al., 1997; Law
et al., 1999). This study andBlanken et al. (1998)sug-
gests similar improvement in energy balance closure
with friction velocity. These corresponding relation-
ships with friction velocity may support the notion that
data quality is improved during periods of higher tur-
bulent mixing (Goulden et al., 1997). However, there
is little evidence that nocturnal energy balance closure
is acceptable above a ‘threshold’ friction velocity, even
within particular sites, which may have implications
on using this technique for accepting or rejecting noc-
turnal CO2 fluxes (Goulden et al., 1997; Jarvis et al.,
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1997; Hollinger et al., 1999; Aubinet et al., 2000). The
large intercepts and poor correlation of the OLS en-
ergy balance regressions during nocturnal periods at
all values of friction velocity are also a concern.

5. Conclusions

1. There was a general lack of energy balance closure
at FLUXNET sites, with the scalar fluxes of sensi-
ble and LE being underestimated and/or available
energy being overestimated. The mean imbalance
was in the order of 20%.

2. Energy balance closure is typically poor during
nocturnal periods, especially when the turbulent
mixing is weak. On average, energy balance clo-
sure was better in the afternoon than in the morning,
possibly suggesting the underestimation of storage
terms, which are usually larger in the morning.

3. No conclusive differences were observed between
sites using open and closed path IRGAs or on sites
with ‘flat’ or sloping terrain.

4. The energy imbalance persisted during all seasons
of the year and at all Bowen ratios, but the regres-
sion slope was typically closer to 1 during the warm
season.

5. The mean relationship between CO2 and PAR, as
well as nocturnal respiration, were affected by the
extent of energy balance closure. This evidence
suggests a link between CO2 fluxes and energy bal-
ance closure, it is still uncertain if the mechanisms
creating the imbalance and the lower CO2 flux es-
timates are similar.
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