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a b s t r a c t

ZnO is an alternative to TiO2-based dye-sensitized solar cells (DSSCs). Adsorption of cis-ruthenium-
bis[2,20-bipyridine]-bis[4-thiopyridine] onto ZnO nanorods has been studied using X-ray and ultraviolet
photoelectron spectroscopies (XPS and UPS). XPS indicates chemisorption with a surface density of ca.
1 � 1015 molecules/cm2, confirming the possibility of using thiol-terminated dyes for ZnO-based DSSC
devices. The energy level diagram, based on UPS and absorbance spectroscopy, indicates that the LUMO
of this dye is lower in energy than the ZnO conduction band edge, providing minimal enthalpic driving
force for photovoltaic electron injection. However, optimization of thiol-functionalized Ru dyes could
result in competitive ZnO-based DSSCs.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Leading organic photovoltaic technologies include conjugated
polymer [1,2] and dye-sensitized solar cells (DSSCs) [3]. The latter
contain dye-coated metal oxide electrodes, with titanium dioxide
most commonly used. Its advantages include processability into
high surface area nanocrystalline electrodes [4], covalent attach-
ment of dyes via carboxylate, phosphonate, and hydroxylate link-
ers [5–8], and energy level matching with adsorbed dyes for
efficient electron ejection [9,10]. In the latter case, it is desirable
for the conduction band of the metal oxide to be at an optimal en-
ergy relative to the lowest unoccupied molecular orbital (LUMO) of
the dye.

Titanium dioxide-based DSSCs have shown tremendous prom-
ise, with conversion efficiencies greater than 11% [5]. Jose et al.
[11] reviewed the use of other metal oxide electrodes that could
potentially lead to greater efficiencies. Zinc oxide and titanium
dioxide are wide gap semiconductors with bandgaps of ca.
3.2 eV. However, a potential advantage of ZnO over TiO2 is that
its electron mobility is greater than that of commonly used anatase
TiO2 [11,12].

Various experiments, including ones in our laboratories, have
demonstrated that underivatized alkanethiols chemisorb onto zinc
oxide [13–21], and quantum mechanical modeling confirms
chemisorption [22]. In contrast, however, FTIR measurements on
ZnO nanotips indicate an absence of hexanethiol adsorption [23].

While it is clear in the case of TiO2 that carboxylate and phospho-
nate linkers are suitable for DSSC applications, chemistries to at-
tach dyes to nanoparticulate ZnO are much less developed.

While a variety of studies have investigated the bonding of
Ru-based dyes to TiO2 via carboxylic acid groups, very little work
has been performed related to dye adsorption on ZnO. Ohlsson
et al. [24] compared the affinity of variously functionalized dyes
to TiO2 and ZnO electrodes. Using UV–vis spectroscopy, they found
that 4-phenylazo-benzenethiol and cis-ruthenium-bis[2,20-bipyri-
dine]-bis[4-thiopyridine] exhibited greater adsorption on ZnO than
on TiO2. They also measured greater adsorption of thiol-functional-
ized dyes on ZnO compared to carboxylic acid-functionalized dyes.
No spectroscopic information or conclusions were provided on
how the dyes bonded to the ZnO electrodes.

Using X-ray photoelectron spectroscopy (XPS), this Letter pro-
vides the first spectroscopic proof that thiol-derivatized Ru(II) dyes
chemisorb on ZnO nanoparticles via Zn–S bonds and demonstrates
that they adsorb with adequate packing density to make them use-
ful for DSSC applications. Ultraviolet photoelectron spectroscopy
(UPS) is used to determine the work function of ZnO functionalized
with cis-ruthenium-bis[2,20-bipyridine]-bis[4-thiopyridine] and
the ionization energy of the highest occupied molecular orbital
(HOMO) of the adsorbed dye. The resulting energy level diagram
indicates that the LUMO lies at a lower energy than the ZnO
conduction band edge. Implications of this with respect to DSSC
performance are discussed.

2. Experimental

The thiol-derivatized Ru dye, cis-ruthenium-bis[2,20-bipyri-
dine]-bis[4-thiopyridine], was synthesized according to Ref. [24].
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ZnO nanorods (Nanocerox, Inc.), with typical diameters of 50–
100 nm and lengths of 100–700 nm, were dried overnight in vac-
uum at 200 �C. Three hundred and fifty milligrams of the dried
nanorods were suspended by ultrasonication in 40 ml of 95% eth-
anol/5% H2O for 10 min. Three hundred and fifty milligrams of
the dye was added while stirring the suspension under argon,
and it was stirred for an additional hour. The product was collected
by filtration, washed with 300 ml of 100% ethanol, dried at 110 �C
for 10 min, and stored in a desiccator. Control ZnO samples, with-
out the addition of Ru dye, were prepared using the same
procedure.

Samples for XPS and UPS were prepared by dispersing 60 mg of
dye-functionalized or control ZnO in 30 ml of 95% ethanol/5%
water and ultrasonicating for 5 min. This was then poured onto a
copper coupon (1 cm2, pre-cleaned with dilute hydrochloric acid,
methanol, and distilled water) in a Gooch crucible. The solution
was allowed to evaporate/drain through the crucible overnight,
resulting in a uniform coating. The coupons were attached to sam-
ple stubs using electrically conductive silver paint. For UPS of the
Ru dye (without ZnO), the sample was prepared by spin-coating
an indium tin oxide (ITO) substrate with a 1 mg/ml ethanolic solu-
tion at 1000 rpm for 60 s. This gave a film thickness of 200–400 Å,
as determined from profilometry.

Details of the XPS and UPS experiments using MgKa X-rays
(hm = 1253.6 eV) and He I light (hm = 21.22 eV) have been previ-
ously described [20,25]. Photoelectrons were detected normal to
the sample, and pass energies of 5 and 20 eV were used for UPS
and XPS, respectively. The HOMO–LUMO gap was determined by
measuring the long wavelength threshold of the UV–vis absor-
bance spectrum of a spin-coated Ru dye film on a quartz slide, with
a clean quartz slide used as a reference. In this case, the Ru dye was
spin-coated twice at 800 rpm for 60 s using a 20 mg/ml ethanolic
solution.

3. Results and discussion

Figure 1 shows XPS of the S2p region of the thiol-functionalized
Ru dye adsorbed on ZnO and 1-dodecanethiol on ZnO. The latter

sample was prepared as described in Ref. [20]. In both cases, the
peak binding energy is 163.6 eV, indicating that the thiol groups
bind similarly. Alkanethiols, such as DDT, are known to bind to zinc
oxide via formation of Zn–S bonds [20], and it is concluded that the
dye binds to the nanorods via these covalent linkages. Elemental
analysis of the ZnO/Ru dye films using C1s, S2p, N1s and Ru3d tran-
sitions yields C/S, S/Ru, and N/S atomic ratios of 28 ± 3, 2.1 ± 0.2,
and 3.1 ± 0.3, respectively. Except for the high carbon content due
to adventitious carbon, these are consistent with the expected ra-
tios. The S/Zn atomic ratio, obtained from the S2p and Zn3p transi-
tions, is 0.07 ± 0.01. Experiments, using the same type of ZnO
nanorods, indicate that saturation monolayer coverage of metha-
nethiol and 1-dodecanethiol has an S/Zn ratio of 0.14 ± 0.1 [20].
These results demonstrate that the dye adsorbs on the ZnO nano-
rods at half the thiol group coverage, undoubtedly due to its larger
size. Assuming that 1-dodecanethiol adsorbs with a similar packing
density as 1-octadecanethiol [18] on oxidized Zn, an approximate
surface density of 1 � 1015/cm2 of dye molecules is indicated. This
is similar in density to thiols self-assembled on Au(1 1 1) [26] and
is consistent with adsorption not being on minority sites. Further-
more, it is larger than the coverage of Ru(II) bipyridine complexes
adsorbed on polycrystalline anatase TiO2, reported to be ca.
9 � 10�11 mol/cm2 (i.e., 5 � 1013 molecules/cm2) [27].

Figure 2 displays UPS spectra of the Ru dye-functionalized ZnO
nanoparticle sample, a ZnO control and spin-coated Ru dye. In all
cases, the large peak in the energy range of 19–21 eV is due to non-
specific secondary electrons. For the ZnO control, no peaks are ob-
served below 8 eV, but the ionization threshold (work function) is
6.9 ± 0.2 eV. For the Ru dye-functionalized ZnO sample, a broad
feature is observed at ca. 6.8 eV, with a threshold (HOMO edge)
of 6.0 ± 0.2 eV. The spin-coated dye has distinct valence features
at 6.9 and 8.2 eV. The HOMO contains strong contributions from
the Ru orbitals, as discussed for related dyes [28]. UPS yields the
energies of the valence states but does not directly give the ener-
gies of unoccupied orbitals. As for other bipyridine-containing Ru
dyes, the lowest energy unoccupied states are expected to consist
of contributions from the bipyridine p orbitals [29]. The LUMO en-
ergy may be estimated by combining the HOMO–LUMO gap with
the HOMO threshold.

Figure 3 shows the UV–vis absorption spectrum of the Ru dye
film with maxima at 298 nm (4.1 eV) and 420 nm (2.9 eV). The
spectrum contains several peaks, including one having kmax at
420 nm (2.9 eV). This is likely not the metal-to-ligand charge trans-
fer (MLCT) transition, consisting of excitation from the Ru 4d to li-
gand p* orbitals, since this normally occurs at longer wavelengths
for bipyridyl-containing Ru-based dyes [25,30]. The MLCT transi-
tion is evidently not fully resolved and is contained in the broad
band at longer wavelengths, with its maximum in the shoulder
near 550 nm (2.2 eV). The long wavelength threshold, approximat-
ing the dye’s HOMO–LUMO gap, is 657 ± 5 nm (1.9 eV). Note that
there are some assumptions in equating this threshold with the
bandgap. Firstly, it would be preferable to use the UV–vis spectrum
for dye adsorbed on ZnO; attempts to obtain a reliable background-
corrected spectrum failed because of difficulty in preparing a
reference with exactly the same ZnO thickness. However, recent
theoretical work by De Angelis et al. [31] has investigated the
HOMO–LUMO gap of isolated Ru(II)-polypyridyl molecular dyes
compared to ones interacting with nanoparticulate titanium diox-
ide. The results indicate that estimates of energy level alignment
for non-interacting dye and TiO2 are similar to those for the cou-
pled system. Assuming a similar situation holds for the dye and
ZnO, the error involved in using the dye film to estimate the
HOMO–LUMO gap is minimal. A second assumption is that the
optical bandgap is identical to the actual HOMO–LUMO gap. The
latter is somewhat larger since it accounts for electron–hole inter-
action of the excited dye [32,33].

Figure 1. MgKa XPS of the S2p region of ZnO (control), 1-dodecanethiol (DDT)
functionalized ZnO, and Ru dye-functionalized ZnO. The chemical structure of the
thiol-derivatized dye is included.
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Figure 4 displays the energy level diagram for the Ru dye ad-
sorbed on ZnO nanorods. The known bandgap of ZnO (ca. 3.2 eV
[34]) has been used to establish the energy of the conduction band
edge (CBE) relative to the valence band edge (VBE). However, it is
concluded from Figure 4 that the LUMO edge is located 0.4 eV
below the ZnO CBE. The energy of the most populated vibrational
excited state may be estimated by adding the maximum of the
UV–vis absorbance spectrum for the MLCT transition to the HOMO
energy. This places it 3.8 eV below the vacuum level, which is
slightly below the ZnO CBE.

Asbury et al. [35] have discussed factors that influence efficient
electron transfer from an adsorbed dye’s excited state to nanocrys-
talline semiconductor thin films. The enthalpic driving force and
injection rate generally increase as the energy difference between

the adsorbate excited state and the CBE increases. The benchmarks
for DSSC performance are devices made from TiO2 functionalized
with the Ru dye ‘N3’. Alignment of its LUMO with the TiO2 CBE
has been the subject of several investigations [25,29,35–37], and
the LUMO peak (comprised of vibrational levels of the ligand p*
electronic state) is believed to be at least several tenths of an eV
above the CBE.

Ohlsson et al. [24] measured the photoelectrochemical perfor-
mance of the thiol-derivatized dye on ZnO and noted that, while
it exhibited photon-to-charge carrier conversion, its performance
was less than that of other dyes evaluated. The present study sug-
gests that alignment of the LUMO peak with the CBE provides less

Figure 2. He I UPS of unfunctionalized ZnO (darker curve), Ru dye-functionalized
ZnO (lighter curve), and a spin-coated film of the Ru dye (dashed curve). The spectra
are plotted with respect to the ionization energy. Zero on this scale corresponds to
the vacuum level. (a) Shows the entire spectra, and (b) shows expansion of the
valence region.

Figure 3. UV–vis absorbance spectrum of a spin-coated film of the Ru dye on a
quartz substrate. A similar quartz substrate was used as the reference. The inset
shows expansion of the long wavelength threshold region.

Figure 4. Energy level diagram obtained by combining the UPS results with the
known bandgap of ZnO and the HOMO–LUMO gap of the Ru dye, estimated from
the UV–vis spectrum. A depiction of the LUMO and its estimated position is
included.
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enthalpic driving force for electron injection compared to N3 on
TiO2. However other factors contribute to the efficiencies of DSSCs,
including energy level matching between the dye and redox cou-
ple, electron transport through the photoelectrode, and back-trans-
fer [38] from the electrode to the dye. Another factor may be the
weak molar absorptivity of this dye [24]. Jose et al. [39] have also
shown that the spatial proximity of the LUMO of the dye to the
anchoring groups affects injection efficiency. Therefore, it is possi-
ble that less than optimal spatial overlap is also a factor.

While the dye studied in this Letter is not optimal for DSSC per-
formance, these experiments indicate that thiol linkages are suit-
able candidates for covalently attaching Ru dyes to ZnO
electrodes. The large packing density suggests that tuning of the
electronic structure of the LUMO of the dye, such that it is at higher
energy than the CBE of the ZnO particles and located on the thiol
groups, would result in competitive DSSC performance.

4. Conclusions

This Letter demonstrates that thiol-derivatized Ru-based dyes
chemisorb on ZnO electrodes via the formation of Zn–S bonds.
The packing density is sufficiently high to warrant serious
consideration of this surface functionalization for practical devices.
However, overlap of the dye’s LUMO with the ZnO conduction
band, for the particular dye evaluated, is not optimized for photo-
voltaic performance. Because of the possible benefits of ZnO as an
alternative to TiO2 electrodes, it is worthwhile to pursue the design
and synthesis of other thiol-functionalized dyes for DSSC applica-
tions. Experimental and theoretical studies in our laboratories are
underway to investigate other thiol-functionalized Ru dyes and
to evaluate the relative importance of effects such as the proximity
of the LUMO of the dye to the thiol groups.
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