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Part Three

WAVE MOTION AND SOUND

20

Wave Motion

20-1 Vibrating Bodies and Wave Motion

Wave motion is an important method of transferring energy from one place
* to another without involving the actual transfer of matter. When a pebble
is dropped into a still pool, some of the kinetic energy of the pebble is used
to generate the ripples which spread out in all directions over the surface
of the pool. When the ripples pass by a floating object, such as a bit of
cork, the cork bobs up and down, having acquired its kinetic energy of
vibration from the ripple system. The ripples thus serve to deliver some
of the energy of the pebble to the distant cork. Although the ripple system
is seen to move, there is no net flow of the water, for the cork simply bobs
up and down and does not move in the direction of the ripples. Since the
cork merely provides visible evidence of the behavior of the water, we may
infer that the motion of the water is one of vertical oscillation, while the
motion of the wave is horizontal; that is, the oscillations of the water are
transverse to the direction of propagation of the wave. A wave motion in which
the vibrations of the medium are perpendicular to the direction of propaga-
tion is called a transverse wave. The waves set up in a taut string when
one end of the string is vibrated in simple harmonic motion are transverse
waves.

A second type of wave motion may be demonstrated by the use of a
long helical spring. If such a spring is suspended with its axis vertical, and
one end of the spring is caused to oscillate in the vertical direction, these
oscillations are transmitted down the spring as a succession of compressions
and rarefactions of the spring. The direction of oscillation of any part of
the spring is parallel to its axis and therefore parallel to the direction of
propagation of the disturbance. A wave motion in which the oscillations
of the medium are parallel to the direction of propagation of the wave is
called a longitudinal wave.

367



368 WAVE MOTION §20-1

Both transverse and longitudinal waves may be propagated within a
continuous medium, provided that the medium has appropriate elastic
properties. For the transmission of a longitudinal wave, a displacement
of one element of the medium in the direction of propagation must be
capable of exerting a force on an adjacent element. In a solid, this type
of stress-strain relationship is described by Young’s modulus of elasticity,
while in a fluid medium the bulk modulus is the means through which the
displacement of one volume element generates a force on an adjacent
element. Thus both solids and liquids may transmit longitudinal waves,

The transmission of a transverse wave in a continuous medium requires
the existence of a shear modulus, for the displacement of one part of the
medium in a direction perpendicular to the direction of propagation must
generate a force on an adjacent element which is transverse to the direction
of propagation. Gases are not capable of exerting shearing forces, hence
they cannot transmit transverse waves. Since sound is a wave motion
generated by a vibrating body and transmitted through air, we must infer
that sound waves are longitudinal waves.

20-2 Equation of Wave Propagation

When a wave is propagated in an elastic medium, each particle of the
medium vibrates in simple harmonic motion. The frequency f of each
vibrating particle is the same as the frequency of the source of vibration.
Just as in the case of simple harmonic motion, it is sometimes convenient
to describe this oscillation by its period T, or its angular frequency . 1f
we examine the appearance of the wave in space at any one instant of time,
the displacements of the particles of the medium from their equilibrium
positions follow a sine or cosine function of the space coordinates. The
adjacent particles of the medium are out of phase with each other. The
wavelength X is the distance between two successive crests, or two successive
troughs, or between any two successive particles whose simple harmonic
motion is at the same phase angle. We may relate the velocity v at which
the wave is propagated to the wavelength A and the period T' by observing
that in the time of one period the wave has advanced by a distance of one
wavelength. Thus

= X, (20-1)

N>

for the frequency is the reciprocal of the period: f = 1/T.
When a wave moves to the right a small distance Az in a time Af, as
shown in Figure 20-1, a point P may be displaced upward to a new position
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P’, while a second point Q is displaced downward to a new position Q’.
The particles at P and @ are therefore clearly out of phase with each other.

The general equation of simple harmonic motion was given in Chapter
12 as

y = A sin (ot + ¢),

\
\\\ Amplh‘ude
\-

-

L

Fig. 20-1 When a wave moves to the right a distance Az, the point Q of the medium is
displaced downward to @', while the point P is displaced upward to P’.

where A is the amplitude of the motion, and the angular frequency w is
given by
2

w=27rf=F-

Substituting for w, we find
. [ 2nt
y = A sin (7 + ¢'> (20-2)

as another form of the general equation of simple harmonic motion; that is,
this equation describes the simple harmonic motion of any one particle
when suitable values are inserted for the parameters A, T, and ¢. As we
have seen, the phase of a particle along a wave depends upon its position.
The phase changes at a regular rate with displacement along the wave,
and in a distance of one wavelength the phase changes in amount by 2.
For a wave which is moving to the right, we may set
27z

4=

in Equation (20-2) to obtain

t
y = A sin 2x (E’ — %) (20-3)
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For a particular instant of time ¢, fixed in value, we observe that the dis-
placement y of a particle from its equilibrium position is given by a sine
curve of amplitude 4. The displacement of a point at any position along
the wave is repeated a distance A farther along. If the position z is held
fixed, the value of the displacement y at this point in space varies period-
ically, repeating its motion after a time interval T'; this is the period of its
motion.

Let us consider the direction in which the wave described by Equation
(20-3) is propagated. When we watch the motion of a system of ripples
we can tell which way the wave is going by noting the translational motion
of a particular high light of one of the ripples of the system. At the position
of the high light, the displacement of the water from its equilibrium position
is always the same. Thus the high light is a position of constant phase
angle. In Equation (20-3) a constant phase angle is represented by a
constant value of the quantity within the parentheses. Thus Equation
(20-3) must describe a wave of amplitude 4 which moves in the direction
of increasing x; that is, the wave must move to the right. If, instead of
the minus sign in the parentheses, we had written a plus sign, it would have
been necessary for « to decrease as t increased in order to keep the value
of the parentheses constant. The wave would then have moved to the left.

The speed of the wave represented by Equation (20-3) may be obtained
by noting that, if ¢ is increased by one period T', the wave need have moved
a distance of one wavelength A in that time for the parentheses to remain
at constant value. Thus the speed of the wave is given by Equation (20-1).
The speed v represented by the equation v = A/T is called the phase velocity
of the wave, for it represents the speed of points of constant phase.

Equation (20-3) is a general equation of wave motion and is used much
as one uses the general equation for a straight line in analytic geometry.
Specific cases of wave motion are described by substituting appropriate
numbers for 4, A, and T into the general equation.

ITlustrative Example. A sine wave of amplitude 1 m and of wavelength 4 m
is moving to the right with a speed of 2 m/sec. Find the displacement of a point
25 cm to the left of the origin when ¢ = 1.5 sec.

A sine wave moving to the right is described by the equation

y = Asin 27 AN
T A

As indicated in the problem, 4 = 1 m, A = 4 m; T may be obtained from the
equation

4m

so that T = = 2 sec,

- 2 m/sec
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We wish to find ¥ when £ = —0.25m and ¢ = 1.5 sec.

equation, we have

Substituting into the

1m X sin 27 <lé5 se¢ —0.25 m)

«
Il

sec 4m

13
Im X sin27 | —
war (1)

= 1m X sin 292°
= —0.93 m.

20-3 Huygens’' Principle

When 3 source of waves is placed in a uniform continuous medium, waves
spread out from the source in all directions. The locus of points of constant
phase is a spherical surface, just as the locus of points of constant phase in
a two-dimensional ripple is a circle. Such a wave in a continuous medium

A’
r
A C \\ C
L] ~
0 VAt
B
14
B D D
Fig. 20-2 Huygens’ construction Fig. 20-3 Huygens' construction
for determining the position of wave for determining C’D’, the new

front AB after a time interval At.
A’B’ s the new position of the wave
front.

position of the plane wave front
which started at CD at a time At
earlier.

is called a spherical wave. We may restrict the spherical wave from a
distant source by means of appropriate apertures so that only a very small
portion of the wave passes through the aperture. In this case we may
approximate the wave front by a plane surface. Such a wave is referred
to as a plane wave.

The progress of a wave under a variety of conditions can be predicted
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with the aid of a principle first enunciated by the Dutch physicist Christian
Huygens (1629-1695). According to Huygens' principle, each point in a
wave front can be considered as a source of waves, and the new position that
the wave front will occupy after the lapse of a small time interval Af can
be found by drawing the envelope to all of the small waves from all of the
individual points on the initial wave front at the beginning of this time
interval. To illustrate the use of Huygens’ principle, let us consider the
progress of a spherical wave front from a point source O, as shown in Figure
20-2. If the arc of circle AB represents the position of a section of the wave
front at a certain time ¢, each point on the wave front is imagined to emit
spherical waves which are of radius v At at time ¢ + At. The new wave
front A’B’ is the envelope of all these small spheres. The same type of
construction can be used to find the subsequent position of any type of
wave front. Figure 20-3 shows a plane wave front CD progressing with
speed v. The new position of the wave front after a short time interval
At is C'D’, the envelope of all the small waves, each of radius » At emitted
by each of the points on the wave front CD.

20-4 Reflection of a Wave

When a wave which is traveling in one medium reaches the surface of a
second medium, part of the wave is reflected back into the first medium, and
the rest penetrates into the second medium and is said to be refracted into
the second medium. Let us suppose
that a plane surface S separates twa
media I and IT in which the velocities
of propagation of the wave are »; and
vs respectively, as shown in Fig.
ure 20-4.

The position of the reflected
wave and the direction of its motion
relative to that of the incident wave
can be found with the aid of Huygens’
principle. The angle that each inci-
dent wave front makes with the sur-
face is called the angle of incidence 1,
while the angle each reflected wave
front makes with the surface is the angle of reflectionr. A line drawn in the
direction of motion of the wave is called a ray; a ray is perpendicular to a
wave front. A line drawn perpendicular to the interface between the two
media is called a normal. Thus the angle of incidence is equal to the angle
between the incident ray and the normal, while the angle of reflection is
the angle between the reflected ray and the normal. Figure 20-5 shows

Fig. 20-4 Reflection and refraction of
a plane wave at a surface separating
two media.
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the plane wave advancing toward the surface S at an angle of incidence 7.
Let us consider the plane wave front represented by the line AB such that
the point A has just reached the surface S, while B is still moving toward
it; The angle between AB and the surface S is the angle 7. If the surface
had not been there, the wave front AB would have advanced to the position
A’C in a time At. But as the different parts of the wave front reach the
surface, each point on the surface, such as 4, ¢, f, g, h, . . . C, becomes a
source of waves. By the time the point B on the incident wave front
reaches the position C on the surface S, the Huygens wavelet which started

Fig. 20-5 Huygens' construction for determining the position and direction of motion
of the wave front reflected by surface S. AB is the incident wave front and CD is the
reflected wave front.

from A has grown to radius AD. Similarly, the wavelet initiated at point e
when the incident wave front struck the surface has grown to radius ee’,
and so on. The envelope De'f’g’h’C tangent to these spherical wave fronts
is the plane wave front reflected by the surface. The angle of reflection »
is the angle between C'D and the surface S. Since the velocity of propaga-
tion is a property of the medium and is the same for the incident and
reflected waves, we see from the construction that the angle of incidence is
equal to the angle of reflection. The direction of the reflected wave is in-
dicated by the arrows on the rays AD, e¢’, and so on. The reflected waves
appear to originate somewhere behind the reflecting surface.

If a wave from some point source P strikes a flat surface and is re-
flected from it, the reflected wave will appear to come from a point P’
behind the surface. This point P’ is the image of P and is located directly
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behind the surface so that the surface is the perpendicular bisector of the
line PP’, as shown in Figure 20-6. An observer in the region QQ" who
wishes to determine the source of the waves does so by extending the direc-
tion of the rays reaching him in the

Q backward direction until they inter-

sect in a point. The direct rays PQ
Q and PQ’ thus appear to originate at
point P, while the reflected rays CQ

P and C'Q’ appear to originate at the
point P’, the image point. It may
be readily shown from the construc-
tion that the distance OP is equal to
the distance OP’ by making use of

ol ¢ o the fact that the angle of incidence
(6 kgt acrs 7z is equal to the angle of reflection.

/ / The walls of a room usually act

////,’ as mirrors for the sounds produced

/7 in the room. In rooms of average

4 size these reflections add to the

p'¥ intensity of the sounds. In a large

auditorium the reflected sound may
Fig. 20-6 Tmage formation by a plane reach the hearer a.considerabl'e time
mirror; P is the image of P. after he has received the directly

transmitted sound. In the case of
speech this effect may be very objectionable; in the case of music the over-
lapping of different sounds may be pleasing to the ear.

If a taut string is struck a blow near one end, a single pulse is formed
which travels down the string toward the other end, as shown in Figure
20-7(a). When the pulse strikes the wall at the end of the string, it is re-
flected so that both the direction of propagation and the direction of the
deflection are opposite to that of the original pulse as shown in Figure
20-7(b). If we regard the upward deflection of the string as positive, the
downward deflection of the reflected pulse is negative, and we may describe
the alteration in the sense of the pulse by saying that a phase change of
180° occurs on reflection.

Another way of viewing the phenomenon of reflection is to imagine
that the surface from which a wave is reflected is truly a mirror, as in
Figure 20-7(c), and that all events which occur in fact on the left-hand side
are reproduced in the opposite sense on the right-hand, or image, side.
Thus if an upward pulse is initiated at the point P of a real string, a down-
ward pulse is initiated at the image point P’ of the image string. Both
pulses may be imagined to move toward and through the wall at the same
speed. When the two pulses reach the wall, the two opposite deflections
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cancel, and there is no deflection of the string, in agreement with the physi-
cal restriction that the string is tied to the wall. We may imagine that the
image pulse then passes through the wall and becomes visible as a real
reflected pulse, as in Figure 20-7(d).

W J\

—_—

(b)

(c)—/\ - .*E

—_—

\\ I’
[
vy
(Y

(a) —— -1\

Fig. 20-7 Change of phase of a pulse on reflection from a wall.

20-5 Standing Waves

When a particle is simultaneously subjected to two vector displacements,
its resultant displacement is the vector sum of the two individual displace-
ments. At a point in a medium where the paths of two waves intersect, the
medium is simultaneously displaced by the two waves, so that its resultant
displacement is the vector sum of the individual displacements. This is
known as the principle of superposition. We have already utilized the con-
cept of superposition in the last paragraph of the preceding section.

When a wave strikes a reflecting surface normally, that is, at zero
angle of incidence, the wave is reflected back at the same angle, and con-
sequently along the same line. If a continuous wave is propagated in this
medium, the incident and reflected waves will interfere with each other.
If the two waves traveling in opposite directions through the medium have
the same wavelength and the same amplitude, their effect is to set up steady
vibrations, called standing waves.

The existence of standing waves may be demonstrated analytically by
use of the general equation of wave motion. Two waves of the same wave-
length, velocity, and amplitude, moving in opposite directions, may be
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represented by the equations

¢
Y1 =ASII]21F<E+§>

for the wave moving to the left, and

14 x
=Asin27r|{— ——
Ya sin T(T )\)

for the wave moving to the right. The resultant displacement y of the
medium by the simultaneous application of these two waves is the sum of
the deflections due to the individual waves. Thus

Y = y1 + Ya.
From trigonometry we recall that
sin (x &= y) = sin x cos y == cos x sin ¥.

Applying this formula to the equations for y; and ¥., and adding to find y,
we obtain
— 24 cos 2r © sin 27
y = COS 27 N sin 2w T (20-4)
Unlike Equation (20-3), the above equation no longer displays a wave in
motion, for there is no longer a moving point of constant phase. Instead
we see that the amplitude of vibration of a point in the medium of co-

ordinate x is given by the factor multiplying sin 2= T and is given by
24 cos 27 % . The amplitude of vibration varies from place to place on the

string, and, at positions separated by half a wavelength, the amplitude of
the vibration is zero. Points of zero vibration are called nodes. Midway
between two nodes the vibration is a maximum, at points called loops or
antinodes. From the above equation we note that two successive nodes are
separated by a distance of half a wavelength.

If two wave motions are simultaneously imposed on a string by attach-
ing identical tuning forks to its opposite ends, or, more simply, by attaching
a vibrating tuning fork to one end of the string while the other end is
attached to a rigid reflecting wall, the conditions for the generation of
standing waves are fulfilled. If the string is properly adjusted, it appears
to vibrate in segments. Since the eye cannot follow the vibrations with
sufficient rapidity, an observer sees the string clearly where it is moving
slowly and sees a blur where it is moving rapidly. Consequently, the
observer sees only the envelope within which all vibrations take place,
described by the function

y = :i:2AcosQ1r§-
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Fig. 20-8 Method of adding two waves
of equal wavelengths and equal ampli-
tudes traveling in opposite directions to

produce a stationary wave.

STANDING WAVES 377

The addition of two waves of
equal amplitude and wavelength
traveling in opposite directions
is 1llustrated graphically in Fig-
ure 20-8. The dashed lines in-
dicate the individual waves
moving in opposite directions,
while the heavy lines show the
sum of the two waves.

If a source of sound of
constant frequency and inten-
sity 1s operated in a room, the
walls, floor, and ceiling of the
room are reflectors of sound
waves, and standing waves are
set up in the room. At some
positions in the room, the

Fig. 20-9 Standing wave
pattern of a vibrating
plate.

sound intensity is a minimum; these are the nodes of the standing wave
pattern. At other positions in the room, the intensity is a maximum;

these are the positions of the antinodes.

The vibrations of tuning forks, of strings in musical instruments, of
air columns such as those in organ pipes, and of bars and plates can all be
analyzed into sets of standing waves in the substance. To detect the
standing waves on a vibrating plate, sand or fine powder is sprinkled onto
the plate. The standing wave pattern obtained on a horizontal plate under
one specific set of conditions is shown in Figure 20-9. Each particular
standing wave pattern is called a mode of vibration and is excited at a
particular frequency. If a structure, or part of a structure, is subjected to
vibration at its own resonant frequency, a standing wave pattern is gener-
ated. At the position of an antinode, the structure is subjected to alter-
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nating strains; it experiences large alternating stressés, and is likely to
crack. This process is known as fatigue failure. Cracks which develop in
strange places in old automobile fenders can often be explained by this
mechanism,

20-6 Diffraction of Waves

Many common phenomena, such as the bending of sound waves around
obstacles and the spreading of sound waves after passing through a small
aperture, are examples of the diffraction of waves. We use the term ‘‘dif-
fraction” to describe wave phenomena in which the wave front is limited,
as by a barrier or an aperture. Diffraction phenomena occur with all types
of wave motion and may be most readily understood through the applica-

2 Screen -,
S Y T 7 7
\\\ \‘ l / //
\ \\ ,’ //
AN \ J / Fig. 20-10 Shallow rectangular tank
\ \ / / for demonstrating wave phenomena.
Y I g p
NN Y/ - Side view showing source of light S
.\ / _4—Partition
N / under the glass bottom of the tank,
S AT;?E B for projection of wave phenomena.
Water X 4 (X
\\ 74 Glass
Ay
Y
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tion of Huygens’ principle. When the size of a barrier is small compared
to the incident wavelength, the wave bends around the barrier. If the
barrier is large compared to the wavelength, the barrier seems to cast a
sharp shadow. Thus sound waves, whose length ranges from a few centi-
meters to many meters, may be heard in all parts of a room when sound
comes in through an open window. Light coming through the same
window direetly illuminates only a small part of a room, for the wavelength
of light is in the neighborhood of 5 X 107% ¢m. We may infer that man’s
physical size determines his use of sound as a communication medium and
light as a means of localizing objects in space, for sound waves bend easily
around man-sized objects, while light waves cast sharp shadows of these
objects. The ability to produce diffraction effects is one of the criteria
used to determine whether we are dealing with a wave phenomenon.

A simple method for demonstrating the diffraction of waves is illus-
trated in Figure 20-10. A shallow glass tank containing water to a depth
of about 1 in. is illuminated from a light source S below the tank. Waves,
in the form of ripples, may be generated in the tank by an oscillating source,
which forms cireular ripples when the source is a small rod, while plane
waves are generated by a flat stick. The progress of a wave can be followed
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by viewing its image on a screen. Photographs obtained with such a ripple
tank are shown in Figure 20-11. The photograph is brightest where the
layer of water is thinnest, as in the trough of a ripple, while the darkest
regions correspond to the crest of a ripple. The distance between two
successive bright bands is the wavelength. In Figure 20-11(a) a plane wave
is shown incident upon an aperture of nearly the same width as the wave-

(b)

Fig. 20-11 (a) Diffraction of plane waves through an aperture (8-10 mm) in a metal
barrier. (b) Diffraction of plane waves round an obstacle about 20 mm wide and
production of diffraction fringes. (Courtesy the Ealing Corporation.)

length of the ripples. The waves are diffracted into the shadow area beyond
the aperture. In Figure 20-11(b) the waves are diffracted into the shadow
area behind a barrier. If we think of each point on the wave front of the
incident plane wave as a source of circular wavelets, whose effects must be
added in accordance with their phase relationships by the principle of
superposition, we may account for these diffraction phenomena. We will
consider diffraction effects in a quantitative way in Chapter 40, Light as
a Wave Motion.

20-7 Refraction of a Wave

When a wave traveling in a medium I, in which its velocity is v;, reaches
an interfacg S between the first medium and a second in which the wave
velocity is vy, part of the wave enters the second medium at an angle /,
called the angle of refraction. 'We may determine the relationship between
the angle of incidence ¢ and the angle of refraction »’ with the aid of Huy-
gens’ principle, as illustrated in Figure 20-12. Suppose that the incident



380 WAVE MOTION §20-7

wave is a plane wave, and that a portion of a wave front is represented by
the line AB. The point A on the wave front has just reached the surface S.
The position of the wave front in medium II, after a time interval Af when
the part of the wave front at B has reached the interface at C, may be found
from Huygens’ construction. From A as center we draw a spherical wave
front of radius v, Af. Carrying out this construction for all points on the

Fig. 20-12 Huygens’ construction for determining the position and direction of motion
of a plane wave front after refraction from medium I into medium II. AB is the incident
wave front; EC is the refracted wave front.

incident wave front, we find the refracted wave front to be along the line
EC, and the direction of propagation of the refracted plane wave front is
normal to the wave front, or along the direction ff’. If the speed of the
wave v, in medium IT is greater than the speed of the wave »; in medium I,
then the transmitted part of the wave will be bent away from the normal.
From the figure we find

BC = U1 At,
AE = Vg At,
sin 7 = BC/AC,

sin?’ = AE/AC,
from which Np=——— =—; (20-5)

that is, the ratio of the sine of the angle of incidence to the sine of the angle
of refraction is constant for all plane waves transmitted from medium I to
medium II. This constant is represented by the symbol n,, called the
relative index of refraction of the two media.

If a wave is refracted into a medium in which its speed v, is less than
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the speed vy in the first medium, the wave will be bent toward the normal:
that is, the angle " will be smaller than the angle of incidence , according
to Equation (20-5).

20-8 Surface Waves on Water

The speed of surface waves on water depends upon the depth and the wave-
length. Where the wavelength is very short and the water is deep compared
to the wavelength, the waves are called ripples and are propagated by a
combination of surface tension and the force of gravity with a velocity ©

given by

(g)\ N 21T>% 20.6)

v=\—+— -
2 Ap ’ (

where g is the acceleration of gravity, A is the wavelength, 7T is the surface
tension, and p is the density of the liquid. Equation (20-6) is sometimes
used to determine the surface tension of a liquid of known density by meas-
uring the speed of propagation of ripples.

When the wavelength is long, the surface tension may be neglected in
comparison with the effect of gravity. The speed of propagation then
depends on the wavelength and the depth and is given by

A 2rD\*
v = (g— tanh WT> ’ (20-7)

™

where D is the depth of the water and the symbol tanh means hyperbolic
tangent and is a symbol for the expression

¥

e — e
tanhx=ﬁ-
e +¢é

T

Equation (20-7) may be approximated for short waves in deep water,
when the depth is greater than half a wavelength, by the expression

A %
P = (g—T) s (20-8)

so that the speed depends directly on the square root of the wavelength.
The appropriate approximation to Equation (20-7) for long waves in
shallow water, where the wavelength is greater than about 25 times the
depth, is

v = (¢gD)*. (20-9)

Equation (20-9) is of great interest in determining the depth and the
character of beaches, and it accounts for the riffled nature of the water
above a reef. As a wave passes from one medium to a second in which it
travels with a lower speed, the wave is refracted, and, in addition, its wave-
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length is changed in accordance with Equation (20-1), the frequency
remaining constant. Since the water is shallow over a reef, the wave veloc-
ity, and therefore the wavelength, is reduced. In the invasion of North
Africa in World War 1I, the nature of the shore line and the location of
invasion beaches was determined by measurement of the wave velocity of
water waves along the coast line by observation from the air.

The motion of water waves is complex and cannot be adequately
covered here. The motion of small volume elements of the water is circular
or elliptical rather than purely longitudinal or transverse, and extends in
depth beneath the surface, but at a depth of one wavelength the amplitude
is less than 1/500 of the amplitude at the surface. Generally speaking,
there is no translational motion of the water in a water wave. When the
depth of water is too shallow for wave propagation, the energy of the waves
is converted into translational energy of water, giving rise to the familiar
breakers and surf along the shore line.

Ocean waves are generated by winds and storms at sea. Since the
waves travel at much greater speed than the storm, wave observation
stations have been set up along the coasts of Britain to determine the
direction from which the waves come and the amplitude with which
waves reach the coast. By comparing data from several stations, the
progress of storms at sea can be followed, and useful weather information
can be transmitted to ships at sea.

20-9 Transverse Waves

The waves transmitted down a string are transverse waves. If a slotted
board is passed over a vibrating string, the slot will permit passage of the
waves when it is parallel to the direction of vibration of an element of the
string, but it will prevent passage of the waves when it is perpendicular to
the direction of vibration. A transverse wave motion in which all of the
vibrations of the medium are in the same direction is said to be polarized.
From an experimental point of view, a wave is said to be polarized if a slit
or slitlike device can be found which will permit passage of the wave in one
orientation, but which will forbid passage of the wave in a second orienta-
tion at right angles to the first. Since a longitudinal wave will pass through
a slit, however oriented, longitudinal waves are not polarized. The wave
propagation in air, which we call sound, must be a longitudinal wave
motion, by virtue of the fact that air does not possess a shear modulus.
Sound waves in air are not polarized and are not polarizable.

If a wire is given an impulsive blow, the deflection of the wire is trans-
mitted as a single pulse down the wire, with a speed », and the pulse may
be assumed to retain its shape as it moves. Any short section of the de-
flected part of the wire may be approximated by the are of a circle. To
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analyze the motion we imagine that the deflected portion of the wire is
stationary, and that the wire moves past a template of the form of the
pulse in a direction opposite to the motion of the pulse with a speed v, as
shown in Figure 20-13(a). If the mass per unit length of the wire is m, the
mass of a short section of the wire, whose arc is of radius  and which sub-
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Fig. 20-13

tends an angle Af at the center of its circle of curvature, is mr A6. The
centripetal force F required to keep this element of wire moving in a
circular arc is

A6 v?
Fomrary
r
From Figure 20-13(b) the required centripetal force is supplied by the
radial components of the tension S in the wire at both ends of the circular
arc. For small angles these are given by

F=2S%=SAO.

Thus we have mAfv® = S Af,
or v = (S/m)*. (20-10)

Hiustrative Example. A long steel wire under a tension of 10° dynes has
one end attached to a prong of a tuning fork which vibrates with a frequency
of 128 vib/sec. The linear density of the wire is 0.03 gm/cm. Determine (a) the
speed of the transverse wave in the wire and (b) the wavelength of this wave.

The speed of the wave in the wire can be obtained from Equation (20-10),

which yields
13
» = MS‘_ = 1,830 cm/sec.
0.03 gm/em
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Solving Equation (20-1) for A, we get
A=2
. f

from which A= @ cm = 14.3 em.
128

20-10 Longitudinal Waves

Waves can be set up in any elastic body by producing some disturbance
at a point in the body. For example, consider a helical spring stretched
between two fixed points A and B, as shown in Figure 20-14, and suppose
that we compress a small section of the spring near the bottom by taking
one of its coils and pushing it down. When this coil is released, it will be

A,
—
/ . . -
= Fig. 20-14 Setting up a longitudi-
e nal wave in a coiled spring stretched
- between two points 4 and B. (a)
_{; Portion of spring C near the bottom

is compressed. (b) Compression C
has moved up the spring and is
followed by an extension E below
it. (¢) and (d) Compressions C and
extensions £ moving up the spring.

= -
(a) (b) (c) (d)

pulled up by the coil above it and pushed up by the coil below. The dis-
placed coil will move up to its equilibrium position and will continue on
upward because of its inertia. Thus the compressed region of the spring
will be displaced upward, and an extension will appear in the part of the
spring which formerly was in compression. While the compressions and
extensions of a coil spring move along the spring, the individual coils
vibrate up and down with simple harmonic motion; the vibration is parallel
to the direction of propagation of the wave, so that the wave is longitudinal.

The wave motion in air is also a longitudinal wave. Let us consider
the wave in air produced by the vibratory motion of a stick, as shown in
Figure 20-15. When the end of the stick moves to the right, the air next
to it is compressed; this, in turn, produces a compression in the next layer
of air, and so on, so that a compression travels out from the vibrating stick.
While the compression is moving out to the right, the end of the stick starts

7
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moving back, leaving a rarefaction, or region of reduced pressure, on its
right. The adjacent layer of air starts moving back, so that the rarefaction
travels out from the vibrating stick. This succession of compressions and
rarefactions traveling out from the stick constitutes a longitudinal wave in
air. The layers of air vibrate with the same frequency as the stick.

o HIINI
-] [T

| Rarefaction | Compressi
L2

Fig. 20-15 (a) Compression in the air produced by the motion of the end of the rod
to the right, followed by (b) a rarefaction produced by the motion of the end of the rod
to the left. (c) Longitudinal wave in air consists of a series of compressions and rare-
factions moving outward with velocity v.

v

The changes in pressure which occur during the compressions and
rarefactions are generally very small in comparison with the atmospheric
pressure. A graphical method for representing the wave is shown in

Rarefaction Compression
Fig. 20-16 Representation of

a longitudinal wave.

)

A
Wavelength

.

<

Figure 20-16, in which the change in pressure from normal atmospheric
pressure is plotted along the vertical axis, and the position where this
pressure difference exists is plotted along the horizontal axis. The section
of the curve below the axis represents the rarefaction, Whlle the section
above the axis represents the compression.
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It may be shown that the speed of propagation of a longitudinal wave
within a fluid medium is given by the equation

v = (B/p)*, (20-11)

where B is the bulk modulus of the fluid and p is its density. Although
there is a temperature gradient between a compression and a rarefaction,
the conductivity of a gas is so low, and the distance between them, which
is a half wavelength, is so long, that very little heat can be transmitted in
the available time of half a period. The processes of compression and
rarefaction in a sound wave are practically adiabatic at audio frequencies.
Hence we must use the value for the adiabatic bulk modulus in Equation
(20-11). This is given by

Badisbatioo = 7P, (20-12)

where v is the ratio of the specific heats of the gas and P is its pressure.
Thus the speed of propagation of longitudinal waves in gases is given by

P 1%
v = <7—> . (20-13)
p

From the general gas law
PV = nRT,

where #n is the number of moles of the gas, and R is the gas constant per
mole. If a mass m of a gas of molecular weight M is enclosed in a container,
the number of moles of gas within the container is given by

m
n = —-

M

If we substitute this expression into the gas law and rearrange terms, we
find that
P RT

m/V M

H

and, since the term on the left-hand side of the above equation is equal to
P/p, we may substitute this result into Equation (20-13) to obtain

(WRT>% (20-14)
1) = —_—— - -
M

Thus the velocity of sound in a gas depends upon the absolute temperature
T, but is independent of the pressure of the gas. The velocities of propaga-
tion of longitudinal waves in several substances are given in Table 20-1.
A longitudinal wave is transmitted in a wire or rod with a speed
given by
v = (Y/p)*%, (20-15)
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TABLE 20-1 SPEED OF SOUND (Longitudinal Waves)

Substance Temperature in °C Speed in meters per sec
Air 0 331.46
Hydrogen 0 1,262
Carbon dioxide 0 258.0
Water 15 1,447
Sea water 13 1,492
Glass 0 5,500
Steel 4,700-5,200

where Y is Young’s modulus. In many problems in engineering design, it
is important to know Young’s modulus for a particular substance at
elevated and reduced temperatures. One of the simplest methods for
making this determination is to measure the velocity of propagation of a
longitudinal wave in the substance at the desired temperature, and to
apply Equation (20-15) to this measurement.

Problems

20-1. A steel wire is stretched between two pegs 80 cm apart under a tension
of 10% dynes. The linear density of the wire is 0.25 gm/em. Determine the
speed of a transverse wave in this wire.

20-2. One end of a horizontal string is attached to a prong of an electrically
driven tuning fork which is vibrating with a frequency of 256 vib/see, while the
other end passes over a pulley and has a weight of 6 1b attached to it. The weight
of 1 ft of string is 0.02 lb. (a) Determine the speed of transverse waves in the
string. (b) Determine the wavelength of the waves set up in the string.

20-3. A copper wire 2 m long whose mass is 8 gm has one end attached to a
fixed post and the other end attached to a prong of a tuning fork which vibrates
with a frequency of 1,000 cycles/sec. A standing wave is set up in the wire, and
the distance between the nodes is 8.0 cm. Determine (a) the wavelength of the
transverse wave in the wire, (b) the speed of the wave, and (¢) the tension in
the wire.

20-4. A stone is dropped in a well, and the sound of the stone’s splash is
heard 4.0 sec later. How deep is the well?

20-5. A steel pipe 200 ft long is struck at one end. A person at the other
end hears the sound that traveled through the pipe and also the sound that
traveled through the air. Determine the time interval between the two sounds.

20-6. (a) Determine the index of refraction of hydrogen with respect to air
for a sound wave. (b) Determine the index of refraction of glass with respect to
air for a sound wave. A glass partition 0.5 em thick separates a volume of air
from a volume of hydrogen, each at atmospheric pressure. A sound wave from
the air strikes the glass surface at an angle of 3° with respect to the normal.
Determine the angle at which the sound wave is refracted (c) into the glass and
(d) into the hydrogen.
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20-7. Derive an equation similar to Equation (20-4) which displays the
existence of standing waves by beginning with the cosine representation of a wave

y = A cos 2w Lz,
T A

20-8. Show that Equation (20-3) satisfies an equation of the form
9%y 1 9%
9zt o? 92
which is called the wave equation.

20-9. A standing wave is set up in a string. The distance between the nodes
is 50 cm, and the measured width of the vibration at the antinodes is 10 cm. The
standing wave pattern is set up by a tuning fork which vibrates at a frequency
of 100 cycles/sec. (a) Rewrite Equation (20-4), substituting appropriate numeri-
cal values. (b) Find the width of the vibration pattern in the string at a distance
of 20 ¢cm from a node.

20-10. A transverse wave in a string is represented by the equation

xz = 5 cos (30t — 15y),

where all dimensions are in cgs units. Find (a) the direction of propagation of
the wave, (b) the wavelength, (¢) the frequency, and (d) the velocity.

20-11. A wind blows from the north at a speed of 50 ft/sec. In what direc-
tion should a beamed source of sound be pointed for the sound to travel due east?

20-12. Assume a ship to have vertical sides near the water line. (a) Find the
natural frequency of vibration of a ship of cross-sectional area A and mass M
when floating in water of density p. (b) When the ship is at anchor in deep water,
what is the wavelength of ocean waves which will excite the ship to resonance?

20-13. A plane wave of length 25 cm, velocity 100 cm/sec, and having an
amplitude of 5 cm, is propagated in the —z direction. At time ¢ = 0, a point at
the origin of coordinates experiences its maximum positive displacement. (a)
Find the displacement of a point whose coordinates are (0,5 cm) when ¢ = 5 sec.
{b) Find the displacement of a point whose coordinates are (+5 em, —3 cm)
when ¢ = 8 sec.

20-14. A wave motion is deseribed by the equation

Yy = 10sin<2t — br 4 561>
(a) In which direction and along which coordinate axis is the wave moving?
(b) Is the wave longitudinal or transverse? (c) What is the frequency? (d) The
wavelength? (e) the velocity? (f) At ¢t = 0 what is the displacement and the
direction of motion of a point located at z = 0?
20-15. The motion of a vibrating string is given by

2 .
Yy = 3cos%xsm1rt.

Find the velocity of the segment of the string located at z = 2.5 whent = 0.5 sec.
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