
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2009

Using Hadoop as a Grid Storage Element
Brian Bockelman
University of Nebraska - Lincoln, bbockelman2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Bockelman, Brian, "Using Hadoop as a Grid Storage Element" (2009). CSE Conference and Workshop Papers. Paper 157.
http://digitalcommons.unl.edu/cseconfwork/157

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/157?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F157&utm_medium=PDF&utm_campaign=PDFCoverPages


Using Hadoop as a Grid Storage Element

Brian Bockelman
Postdoc Researcher, Holland Computing Center, University of Nebraska, Lincoln, NE
68588-0150, USA

E-mail: bbockelm@cse.unl.edu

Abstract. Hadoop is an open-source data processing framework that includes a scalable, fault-
tolerant distributed file system, HDFS. Although HDFS was designed to work in conjunction
with Hadoop’s job scheduler, we have re-purposed it to serve as a grid storage element by adding
GridFTP and SRM servers. We have tested the system thoroughly in order to understand its
scalability and fault tolerance. The turn-on of the Large Hadron Collider (LHC) in 2009 poses
a significant data management and storage challenge; we have been working to introduce HDFS
as a solution for data storage for one LHC experiment, the Compact Muon Solenoid (CMS).

1. Introduction
The Large Hadron Collider in Geneva, Switzerland is not only a unique experiment for
investigations in particle physics, but also presents an exceptional computing challenge for those
tasked with recording and processing huge amounts of data. When originally tasked with the
problem, the four detector experiments on the LHC decided to take a decentralized processing
approach through using grid computing. The grid formed to handle this task is the Worldwide
LHC Computing Grid (WLCG).

At the Holland Computing Center in Nebraska, we have established a Tier-2 site for the CMS
experiment. A Tier-2 site is primarily an analysis and simulation site for physicists. The site
currently has about 200TB of storage and will grow to 400TB during 2009. The heaviest usage
of the storage system comes from transferring data from a Tier-1 site (such as FNAL in the US)
and from running I/O-intensive analysis jobs. The downloads are expected to sustain 5 Gbps
and burst at 9 Gbps. The analysis jobs read at a rate of a few MB/s, but currently have a
huge number of random read operations. The compute cluster is approximately 1,000 cores; as
certain analysis jobs are CPU-bound, the cluster needs a few million I/O operations per minute.

Since the LHC experiments formed the WLCG, several Internet-based companies have
emerged as having far larger data needs. Google grew from processing 100 TB of data a day
in 2004 [1] to processing 20 PB a day [2]. As a comparison, the CMS estimated 2009 needs
for total tape space are 25PB [3]. Google, Yahoo, Facebook, and others have approached the
large data processing challenge with a processing model called MapReduce. If a user casts
their problem into the MapReduce paradigm (loosely borrowed from functional programming),
they will be able to scale the problem from a laptop to a cluster of 2,000 machines. A
MapReduce implementation needs both an intelligent job scheduler and a very scalable, fault-
tolerant distributed file system.

While Google’s MapReduce implementation is proprietary, other large companies use an
open-source implementation called Hadoop [4]. Hadoop is a product of the Apache Software

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

c© 2009 IOP Publishing Ltd 1



Foundation; the primary contributor is Yahoo. The largest Hadoop cluster is approximately
14PB of online disk in 4,000 machines. Hadoop is meant to work on thousands of commodity
machines and therefore the Hadoop distributed file system (HDFS) has been designed to treat
hardware failure as a normal occurrence that should be worked around. The reputation for
scalability and fault-tolerence led us to evaluate and integrate HDFS at a large scale at our site.

The architecture of HDFS (and the GoogleFS, which HDFS is based on) is covered in [5, 6].
It is composed of many datanodes containing storage and a single namenode, which handles
the namespace and its serialization. Any metadata operations goes to the namenode; all data
movement goes through one of the datanodes. The I/O operations scale based on the datanode
hardware capabilities. The files are broken up into 64MB chunks called “chunks” and distributed
amongst the datanodes based on a given policy. The namenode is a clever design which keeps
all metadata in memory, allowing it to scale well in terms of operations per second, but has the
drawback that the number of files is limited by the machine’s RAM.

2. Adopting Hadoop for the WLCG
Hadoop and HDFS are designed for processing and storing large volumes of data for web
companies. Each Hadoop instance is usually run by the same company using it; transfers
between Hadoop installs primarily happen within the same datacenter (or at least the same
administrative domain). On the other hand, grid computing emphasizes the ability to transfer
data between sites using common protocols; each site is under a different administrative domain
and possibly using a completely different underlying storage system.

On the WLCG, the protocol used for WAN data transfers is GridFTP [7] and the protocol
used for metadata operations is SRM [8]; both are necessary for interoperability between site
storage and the grid. In addition, most grid users expect an efficient way for jobs to access data
within the site’s storage system. These three needs were addressed in the following way:

• For local access, HDFS has a binding for Linux called FUSE [9]. FUSE allows one to write a
mountable file system in userspace (greatly simplifying the development of a file system and
removing the need for custom kernels). Hence, worker nodes can mount HDFS and users
access it in a similar manner to a NFS server. This transforms HDFS into more “normal
looking” file system for users, as opposed to a more specialized data storage system. In the
process of testing and deploying FUSE at a large scale, we have contributed back several
bug reports and improvements. To our knowledge, we are the largest and heaviest user of
FUSE, as none of the physics applications use the native Hadoop API.

• For SRM access, we have utilized the Berkeley Storage Manager (BeStMan) SRM server [10].
BeStMan’s gateway mode implements all of the SRM calls utilized by CMS and ATLAS
(but not all the SRM protocol functionalities). This stripped-down implementation has an
advantage in that it can be used on any POSIX-like file system; other implementations
of the SRM protocol are often tied to a specific storage system. The FUSE mounts which
provide data access to jobs on worker nodes also provide metadata access to the SRM server.
Hence, we were able to use BeStMan to provide SRM access to HDFS without any initial
modifications.

• For GridFTP, we selected the Globus GridFTP server. The Globus server is in wide use
elsewhere, and allows for pluggable modules to be implemented to interact with a storage
system. Unlike SRM, GridFTP actually writes data in and out of HDFS. Because HDFS
only supports appends, and not random writes, we had to implement in-memory data re-
ordering and write an interface module between GridFTP and HDFS’s C bindings.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

2



Figure 1. Network graph from a CMS user application; this graph is an aggregate for the HDFS
cluster. The read rate peaks at around 8GB/s. This graph was recorded while the system was in
production. The user’s application had a very large readahead (10MB; the currently used one is
64KB), which causes an impressive network rate but doesn’t happen for normal configurations.
The readahead value is the minimum network transfer size used by the filesystem; it is an effective
way to reduce latency in sequential reads, but the buffer thrashes constantly for random read
workloads.

3. Performance Aspects of Hadoop
This section deals with the performance aspects of the Hadoop install at Nebraska. We currently
have a dedicated Hadoop namenode (a machine with similar hardware to our worker nodes), a
SRM server virtualized in a Xen machine, and 5 dedicated GridFTP servers. There are three
datanode types: those having a single 80GB hard drive, those having two 1.5TB hard drives,
and two Sun X4500 “Thumpers” with 48TB each. Except for the thumpers, each datanode has
a 1Gbps network connection (non-blocking); the Thumpers have 4Gbps each.

Figure 1 shows the network rate (peaking at 8GB/s) from a user application reading from
Hadoop. Figure 2 shows the namenode metadata operation rate we have observed in production;
we have measured about 450 metadata operations / second through tests for “open” operations,
and much higher for mixed workflows. Figure 3 shows the aggregate number of I/O operations
per minute. This translates into 60 IOPS per hard drive (our cluster has approximately 330 hard
drives), which is roughly the limit for the consumer-class harddrives that are contained in the
majority of the cluster. All three measurements we show have been observed in production, but
for unusual workflows. We have significant headroom with respect to performance for normal
day-to-day operations, and believe we can scale further with more drives.

4. Hadoop Reliability and Manageability
As a CMS T2, Nebraska needs to provide more than just a highly-scalable Grid storage element.
A storage element provides essential data to jobs; storage that can provide gigabytes a second
under test condition is useless if it is not highly available under production. The SE must prove
itself in terms of:

• Reliability. Even when reliable hardware is used (unless very expensive hardware is used),
the system as a whole would be unreliable if it depended on every piece of hardware being
available at all times. HDFS provides reliability by having the namenode track every block’s

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

3



Figure 2. A graph derived from the logs of the Hadoop namenode. Each bar shows the number
of times a certain operation is performed in a minute. The peak rate is 338 operations / second.
During the time period shown, the load was primarily generated by a grad student working with
many small files (about 64KB); it was not artificially generated. The CMS workflows use 2GB
files, and do not have such a load on the metadata server.

Figure 3. The number of data operations per minute delivered by the cluster. This graph
shows the busiest day we’ve recorded during production. 1.2M I/O operations per minute is
20,000 IOPS; this is about 60 IOPS per hard drive. This is approximately the hardware limit
for the class of hard drives we utilize.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

4



location and replicate blocks as soon as they are lost. HDFS keeps a checksum of each block
and performs background checksums on blocks on each datanode. The namenode is not
currently highly available, but this can be mitigated by using more reliable hardware and
RAIDs (this is an actively worked-on area).

• Manageability. Common management tasks must either be automated or simple. HDFS
has a built-in tool to distribute a pool’s data to others in order to allow it to be taken
offline. It has a command-line tool that tells the admin the system is corrupt if a file block
has no physical replicas. Hadoop has hooks for site monitoring tools such as Ganglia and
JMX.

• Support. Other storage solutions have a close working relationship with CMS. With HDFS,
CMS has no ability to influence development priorities of core developers or steer the file
system’s development. We feel this is mitigated by a few facts. HDFS has a large active
development team which addresses bugs quickly when they are discovered; if a bug critically
affects the T2, it would affect larger deploys which do employ developers. We find that
HDFS covers CMS’s core needs - no feature development is critically needed; we have been
running the current install at the desired scale for months. Finally, if an unmet need does
appear, there are companies such as Cloudera which provide paid support for Hadoop.

5. Conclusions and Future Directions
We have successfully adopted and used Hadoop’s Distributed File System at our CMS site. We
believe this shows HDFS is a viable alternative for a grid SE, especially in terms of scalability,
reliability, and managability. While it has scaled well in our testing, there are improvements
we would like to pursue. MapReduce provides capabilities CMS currently lacks; even without
using the MapReduce framework, job scheduling ideas could be reused. CMS splits tasks on the
submit side, and is unaware of the optimal splits on the remote cluster. Hadoop’s scheduler tries
to collocate the jobs and data; a MapReduce job might be able to schedule 70% or greater of its
jobs so inputs are on local disk. Currently, this only happens in about 2% of the jobs. By using
MapReduce - or a data-aware batch scheduler - CMS could drastically reduce its networking
footprint.

There are desired improvements in HDFS and its grid adaptation which would have
appreciable improvements at our site:

• Decreasing the memory footprint of GridFTP servers. As we re-order data from multiple
streams in memory, we pay a significant penalty in memory per GridFTP process. We wish
to explore other transport layers, such as UDT instead of TCP, which scale better and do
not require multiple streams to achieve high throughput.

• Providing a strong security system. Currently, the security model is similar to NFS: it
depends on anyone already inside the cluster’s private network being trusted. There is
no encryption or strong authentication. This is something that Hadoop hopes to address
(perhaps by integration with Kerberos) in the 6-8 month timeframe.

• Implementing datacenter-aware policies. The Holland Compute Center has datacenters
in two cities. A Hadoop instance is not currently optimized to understand the network
topology characteristic of having two datacenters; we would like to see it optimized for data
placement and access policies that understands having a segmented cluster.

Acknowledgments
Acknowledgements. This work was jointly funded by the Open Science Grid, funded jointly by
DOE and NSF. This work was completed utilizing the Research Computing Facility with the
associated USCMS Tier-2 site at the University of Nebraska - Lincoln. The requirements for a

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

5



grid SE was provided by USCMS, and other USCMS Tier-2 sites provided valuable testing for
the Hadoop installation packages.

References
[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Proceedings

of USENIX OSDI’04, pages 137–150, 2004.
[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, 2008.
[3] D Espriu. Computing resources scrutiny group. Technical Report CERN-RRB-2008-106, CERN, Geneva,

Oct 2008.
[4] Apache hadoop, 2009. http://hadoop.apache.org/.
[5] Dhruba Borthakur. Hdfs architecture, 2009. http://hadoop.apache.org/core/docs/r0.20.0/hdfs design.html.
[6] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. 19th ACM Symposium

on Operating Systems Principles, October 2003.
[7] I Mandrichenko, W Allcock, and T Perelmutov. Gridftp v2 protocol description, 2005.

http://www.ggf.org/documents/GFD.47.pdf.
[8] A Sim and A Shoshani et al. The storage resource manager interface specification version 2.2, 2008.

http://www.ggf.org/documents/GFD.129.pdf.
[9] Filesystem in userspace, 2009. http://fuse.sourceforge.net.

[10] A Shoshani et al. Storage resource managers: Recent international experience on requirements and multiple
co-operating implementations. In 24th IEEE Conference on Mass Storage Systems and Technologies. IEEE
Computer Society, September 2007.

SciDAC 2009 IOP Publishing
Journal of Physics: Conference Series 180 (2009) 012047 doi:10.1088/1742-6596/180/1/012047

6


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2009

	Using Hadoop as a Grid Storage Element
	Brian Bockelman




