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Human immunodeficiency virus type 1 (HIV-1) strains isolated from the central nervous system (CNS) may
represent a subgroup that displays a host cell tropism different from those isolated from peripheral blood and
lymph nodes. One CNS-derived isolate, HIV-lSFl28A, which can be propagated efficiently in primary
macrophage culture but not in any T-cell lines, was molecularly cloned and characterized. Recombinant viruses
between HIV-lSF128A and the peripheral blood isolate HIV-lSF2 were generated in order to map the viral
gene(s) responsible for the macrophage tropism. The env gene sequences of the two isolates are about 91.1%
homologous, with variations scattered mainly in the hypervariable regions of gpl20. Recombinant viruses that
have acquired the HIV-lSF128A env gene display HIV-lSFl28A tropism for macrophages. Furthermore, the
gpl20 variable domains, V1l V2, V4, and V., the CD4-binding domain, and the gp4l fusion domain are not
directly involved in determining macrophage tropism.

Acquired immunodeficiency syndrome (AIDS) is a disease
caused by the human immunodeficiency virus (HIV). In-
fected individuals often develop neurological disorders in
addition to severe immune dysfunctions (23, 29). These
diseases include encephalopathy, dementia, and vacuolar
degeneration of the spinal cord (8). In many cases, infectious
HIV has been isolated from brain tissues or cerebrospinal
fluid of patients (15, 22), and the types of brain cells that
have been shown to be infected by HIV include macro-
phages (16, 34), endothelial cells, and glial cells (20, 26, 34).
Furthermore, HIV strains recovered from brain tissue can
be distinguished from peripheral blood isolates by their
ability to infect different cell types and in their sensitivity to
serum neutralization (4, 6). These findings suggest that
brain-derived isolates represent a distinct subgroup of HIV
with differential properties, particularly cellular tropism.
An HIV type 1 isolate (HIV-lSF128A) recovered at autopsy

from the spinal cord of an HIV-1-infected individual with
dementia displays biologic and serologic properties charac-
teristic of brain-derived isolates (6). HIV-lSF128A does not
grow in any cultured T-cell lines, such as HUT 78, CEM, or
Jurkat, or in the monocytic cell line U937 but can be
propagated efficiently in peripheral blood mononuclear cells
(PBMC) or primary macrophages. The viral gene(s) respon-
sible for these distinct biological properties and host-range
specificities of HIV-lSF128A has not been defined. Thus, a
detailed molecular characterization of this isolate should
generate valuable information concerning the regulation of
viral replication and pathogenesis.

MATERIALS AND METHODS

Cell cultures. Phytohemagglutinin (3 [Lg/ml)-stimulated
PBMC from HIV-1-seronegative individuals were prepared
on Ficoll-Hypaque gradients as described elsewhere (10) and
propagated in RPMI 1640 medium containing 10% heat-
inactivated (56°C for 30 min) fetal calf serum, glutamine (2

* Corresponding author.

mM), penicillin (100 U/ml), streptomycin (100 ,ug/ml),
and 5% interleukin-2 (Pharmacia ENI Diagnostic, Inc.,
Silver Spring, Md.). Purified CD4+ cells were prepared by
the panning procedure with Leu 3a monoclonal antibodies
(Becton Dickinson, Mountain View, Calif.) as described
previously (35) and maintained in the same medium. The
HUT 78 cell line (obtained from the American Type Culture
Collection, Rockville, Md.) was maintained in the same
medium without interleukin-2. Primary monocytes were
obtained from Ficoll-Hypaque gradient-purified PBMC by
the plastic adherent technique (6, 13). Adherent cells were
cultured for 10 to 12 days in RPMI 1640 medium supple-
mented with 10% fetal calf serum, 5% heat-inactivated
human serum, and 1% antibiotics to allow differentiation into
macrophages. Human rhabdomyosarcoma (RD-4) cells were
obtained from the American Type Culture Collection and
maintained as monolayer cultures in Dulbecco's modified
Eagle medium supplemented with 10% fetal calf serum and
antibiotics.

Virus. HIV-1SF2, our prototype peripheral blood isolate
(formerly called AIDS-associated retrovirus ARV-2), was
recovered by cocultivation of mitogen-stimulated PBMC
from seronegative donors with PBMC from a patient with
oral candidiasis (21). HIV-lSF2 had been molecularly cloned
and sequenced (25, 33); the molecular clone is biologically
active (19). HIV-lSF128A was obtained by cocultivation of
PBMC from seronegative donors with spinal cord tissue
obtained at autopsy from an HIV-1-positive patient with
dementia (6, 20). Both isolates were grown to high titers in
PBMC, reaching levels of reverse transcriptase (RT) activity
of >106 cpm/ml. Culture fluids were then filtered through
0.45-,m-pore-size filters and frozen at -70°C in 1-ml ali-
quots.
HIV infection and transfection. Human PBMC, CD4+

cells, HUT 78 cells, and primary macrophages were infected
with HIV-1 inocula of equal RT level (106cpm/ml) as de-
scribed previously (6, 10). Transfection of HIV-1 DNA into
human PBMC and the RD-4 cell line by the DEAE-dextran
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TABLE 1. Comparison of host range properties of HIV4lSF2mc
and HIV-1SF128A

Replication' in:
Strain or clone Initial source

PBMC HUT 78 cells MW

HIV4lSF2mcb PBMC 1,150.0 1,155.0 1.0
HIV-lSF128A Spinal cord 797.0 1.0 616.0

tissue

RHIV-1 521.0 2.0 121.0
RHIV-2 224.0' 1.0 116.0
RHIV-3 463.0 1.0 309.0
RHIV-4 738.0 609.0 2.0
RHIV-5 328.0' 2.0 125.0
RHIV-6 585.0 48.0 1.0

a Replication of recombinant viruses was determined as described in
Materials and Methods. Virus replication was measured by levels of RT
activity (103 cpm/ml) detected in culture supernatants 3- to 4-day intervals.
For replication in PBMC, RT activity at 10 days postinfection is shown. For
replication in HUT 78 cells and primary macrophages (M*). RT values at 15
days postinfection are shown. All data shown are representative of three
independent experiments.

b mc, Molecular clone.
' Replication of RHIV-2 and RHIV-5 in PBMC reached RT titers of >5 x

10' cpm/ml at 12 days postinfection.

and calcium phosphate precipitation methods, respectively,
was performed as described previously (19).

Cloning of HIV-lSF12SA provirus. In order to clone the
proviral genome, PBMC from a seronegative donor were
infected with HIV-1SF128A. At 10 days postinfection, about
108 cells from infected cultures were collected, washed, and
disrupted, and the viral DNA was isolated by the Hirt
extraction procedure (14). The Hirt method-extracted DNA
was then digested with Sacl and fractionated on a 10 to 40%
sucrose gradient, and each fraction was then tested for
hybridization with an HIV-lsF2 probe. Positive fractions
were then isolated and cloned into a SacI-cut lambda Wes
vector (18). A recombinant library of about 5 x 105 phages
was then screened with the HIV-lSF2 probe (25) for positive
clones by standard techniques (32).

Nucleotide sequence accession number. The sequence data
presented in this article have been submitted to the GenBank
and EMBL data bases under the accession number M38673.

RESULTS
Biologic properties of HIV-lSFS28A. In contrast to the

peripheral blood HIV-1 isolate, HIV-lSF2, the brain-derived
HIV-lSF128A strain does not productively infect the HUT 78
T-cell line but replicates efficiently in primary macrophages
(Table 1). High levels of RT activity were detected in
supernatants of infected macrophages for over 35 days in
culture. Furthermore, HIV-lSF128A is not highly cytopathic
for CD4+ lymphocytes and does not down-modulate the
CD4 receptor molecule upon infection of these cells (6).
These biologic features of HIV-lSF128A are characteristic of
brain-derived HIV-1 isolates (6).

Characterization of the HIV-lSFa28A clone. Several positive
clones were identified from the recombinant library, and one
of them, which encompasses a 9-kb viral insert, was then
characterized further. This clone contains the entire viral
genome except for part of the long terminal repeat (LTR).
Thus, this clone is not biologically active. Restriction endo-
nuclease digestion mapping of the HIV-lSF128A was per-
formed and compared with mapping of HIV-WSF2. The two
viruses share many restriction enzyme sites. Both HIV-

A
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FIG. 1. Schematic representation of the genomes of HIV-lSF2,
HIV-lSFl28A, and their recombinant clones. (A) Restriction enzyme
map of HIV-lSF128A in comparison with the map of HIV-lsF2. The
restriction map of HIV-lSF2 has been determined previously (33).
(B) Structures of HIV-lSF2/HIV-lSFl28 recombinant clones. These
clones were constructed by using specific restriction enzymes as
described in the text.

1SF128A and HIV-lSF2 have common unique EcoRI, BssHII,
StuI, and XhoI sites (Fig. 1A). The coding sequences across
the BssHII, Stul, and XhoI sites were all conserved. These
sites were then subsequently used for generation of recom-
binant clones between HIV-lSF2 and HIV-lSF128A (Fig. 1B).
The minor restriction enzyme site differences between the
two strains included two extra Hindlll sites in the env gene
of HIV-lSF128A that were not present in HIV-1SF2. Con-
versely, HindIll sites in the gag gene and 5' end of the env
gene of HIV-lSF2 were not found in HIV-lSF128A. Differ-
ences were also observed with other enzyme sites such as
BglII and PvuII (data not shown). However, no substantial
changes in genomic organization between HIV-lSF128A and
HIV-lSF2 were found.
Sequence analysis of HIV 1SF128A env and nef genes. Since

the 3' half of the viral genome encompassing the env and nef
genes could be the critical region that affects viral growth
and cellular tropism (5, 11, 24, 36), we determined the
genomic sequence of this region. The nucleotides and the
predicted amino acid sequences of the env and nef genes
were then compared with those of HIV-1SF2. The differences
in sequence between the two isolates are summarized in
Table 2. The env genes show an overall homology in
nucleotide sequence of 91.1% and an amino acid homology
of 85.1%. As expected, the variations are much greater in
gpl20 than in gp4l. Most of the changes in gpl20 reside in
the hypervariable V1, V2, and V4 domains, as well as in the
CD4-binding domain (amino acids 411 to 464) (Fig. 2).
Substitutions, deletions, and insertions were also observed,
especially in the beginning of the CD4-binding domain,
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TABLE 2. Sequence homology between HIV-1SF2m.c
and HIV-lsF128A

Gene or % Homology
gene

segment Nucleotides Amino acids

Total env 91.1 85.1
gpl2O 88.7 80.9
gp4l 94.7 91.3

nef 96.0 90.4

where there is a stretch of nine amino acid insertions. In
addition, changes in the putative gp4l fusion domain were

noted (amino acids 519 to 546). Three independent env gene
clones of HIV-lSF128A were sequenced, and all of these
changes in the variable, CD4-binding, and fusion domains
were conserved among all three clones (data not shown).
Comparison of the nef sequences revealed a 96% nucleo-

tide homology and a 90.4% amino acid homology between
the two isolates. However, a stretch of 45 duplicated amino
acids is found in the HIV-lSF128A nef sequence at the
beginning of the LTR in the U3 region (Fig. 3). This
duplication makes the HIV-lSF128A nef protein 251 amino
acids long, whereas the HIV-1sF2 nef protein is only 210

amino acids long. This nef duplication could have occurred
during viral replication or during cloning. However, nef
duplication has also been observed in another brain isolate of
HIV-1 (2). The biological significance of this duplication is
currently not known.

Generation of recombinant clones between HIV-lSF128A and
HIV-lSF2. In order to locate the gene(s) that is responsible
for the specific cellular tropism for HIV-1SF128A, a series of
recombinants were generated between HIV-lSF128A and
HIV-lSF2 (Fig. 1B). These clones were made by using the
BssHII, StuI, XhoI, and MstII restriction enzyme sites. The
RHIV-1 clone expresses all of the HIV-lSF128A genes by
using the HIV-lsF2 LTR. This clone was made by exchang-
ing the complete genomes, except the LTRs, of the two
viruses. A second recombinant clone, RHIV-2, was gener-
ated by replacing the BssHII-XhoI fragment of HIV-lsF2
with that of HIV-lSF128A. This fragment extends from the
end of the 5' LTR to the 5' region of nef and contains
complete gag, pol, vif, env, tat, vpr, vpu, and rev genes of
HIV-lSF128A. The resulting clone expresses all HIV-1SF128A
genes except the nef gene which encodes a hybrid protein
with the first 34 amino acids from HIV-lSF128A and the rest
of the protein from HIV-lSF2. A third clone, RHIV-3, was

generated by replacing a 2.8-kb StuI-SstI fragment of HIV-

*

SF128A env 1

SF2 env 1

$ * V2

107 IISLWDQSLKPCVKLTPLCVTLNCTDNLDLRNDTNTNDTNATSSSLRGETGEIKNCSFNITTSIRDKVQKEYALFYKLDIVPI NNNNTTYRLINCNTSTIT
107 -------------------------- -gka----ss-wkeeik -----------------i---n---rn--v---dnasttt-y-n----h--r-v--

Stu I

i * * * * * * * * * $
208 QACPKVSFEPIPIHYCTPAGFAILKCNDKKFNGKGPCKNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSDNFTNNAKTIIVQLNESVVINCTRPNNNTRKSIN
206

Mst II
*V3 * * * * 1, * * * * V4

314 IGPGRAIYTTGAIIGDIRQAHCTLNKTQWDNTLRQIAIKLREQFKN KTISFKQSSGGDPEIVMQSFNCGGEFFYCNTTKLFNSTWNDTRLFNSTWNNTIGSNNTE
312 ------fh---r------k---nisra--n---e--vk------g-n---v-n-----------h----r---------q---n--rlnhtegtkg-d-

CD4 binding domain V5 gp4l *

419 GNITLPCRIKQIINMWQEVGKAMYAPPIRGQIRCSSNITGLLLTRDGGETNET TEVFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTRAKRRVVQREKR AVGI
411 -i----------------------g----s---------------stnvtnd------------------------i------i---k---------------v

Fusion domain Mst II.* * * * * * * 1* * *
GAVFLGFLGAAGSTMGAASVALT QARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARVLAVERYLRDQQLLGIWGCSGKLICTTTVPWNASWSNKSLDK
-- --------------v-lt----------------------------------------------------------------------a------------ed

* $ * * * * * * * * *

IWNN. MWEREIDNYTSLIYTLIEESQNQQEKNEQELLELDKWASLWTWFDITNWLWYIKI.IMIVGGLVGLRIVF. LSIVNRVRQGYSPLSFQTHLPIPRGH
--------a---------nt-----------------------------n--s---------------------------------------------r--v---pD

523
515

629
621

* * * * * * * * * * *

735 DRPDGIEEEGGERDRDRSVRLVDGFLALIWDDLRSLCLFSYHRLRDLLLIAARIVELLGRRGWEVLKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVV
727 ------------------------------e----------r-----------t--i--h----a-----s-----i---------w--------t---------a

* $

841 QRAFRAILHIPRRVRQGLERALL
833 ---y------h--i------1--

FIG. 2. Alignment of the env proteins of HIV-1SF2 and HIV-lSF128A. The translated amino acid sequences of HIV-1SF128A gpl60 are shown
on the upper line of each pair of lines, and the sequences of HIV-lSF2 are shown on the lower line of each pair. Dashes represent sequence
homology between the two sequences, and differences are shown with lowercase letters. Hypervariable regions (27) are marked with heavy
lines, the putative CD4-binding domain (9, 17) is marked by heavy dotted lines, and the gp4l fusion domain (3, 12) is boxed. Restriction
enzyme sites that were used to generate HIV-lSF2/HIV-lsFl28A recombinant clones are indicated by arrows.
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*

SF128A nef 1
*

MGGKWSKRSMGGWSTIRERMKQ

Xho I

* I * * *
AEPAADGVGAASRDLEKHGAITSSNTAATNADCAWLEAQEEEEVG

SF2 nef 1 ----------a-----rraepr ---------v----------------------------------

LTR (U3)
* * * * *

68 FPVRPQVPLRPMTYKGALDLSHFLKEKGGLEGLIYSQKRQDILDLWVHHTQGYFPDWQNYTPGPGIRYPLT

72 ---------------a---i--------------w--r--e-----iy-----------------------

Duplication

* * * * * -* *
139 FGWLEGLIYSQKRQDILDLWVHHTQGYFPDWQNYTPGPGIRYPLTFGWCFKLVPVEPGQVGKANEGENNSL

---------ek-ee---------

* * *

210 LHPMSLHGIEDPEKEVLMWKFDSSLAFHHRARELYPEYYKNC

------- rm--a ---- v-r - --k---- - - - -h----- d-

FIG. 3. Alignment of the nef proteins of HIV-1SF2 and HIV-lSF128A. The translated amino acid sequence of HIV-lSF128A nef is shown on
the upper line of each pair of lines, and the sequence of HIV-lSF2 is shown on the lower line of each pair. Dashes represent sequence
homology, and differences are shown with lowercase letters. The arrow indicates the beginning of the LTR sequence. The heavy line indicates
a stretch of 45 amino acids representing a direct repeat which is found only in HIV-lSF128A. The XhoI site that was used to generate
HIV-lSF2/HIV-lSF128A recombinant clones is indicated by an arrow.

1SF2 with that of HIV-lSF128A. This clone expresses all the
genes of HIV-lSF2 origin except the nefgene, which is from
HIV-lSF128A, and a hybrid env gene. The resulting envelope
glycoprotein consists of 210 amino acids at the amino
terminus encoded by the HIV-lSF2 sequence and the rest of
the protein encoded by the HIV-lSF128A sequence. A fourth
clone, RHIV-4, was generated by replacing the HIV-lSF2 nef
XhoI-SstI fragment with that of HIV-lSF128A. This clone
expresses a hybrid nef protein with the first 34 amino acids
from HIV-lSF2 and the rest from HIV-lSF128A. A fifth clone,
RHIV-5, was generated by exchanging a StuI-XhoI fragment
between the two viruses. The resulting clone expresses a
hybrid env and a hybrid nef protein. The hybrid envelope
glycoprotein is identical to the one expressed by RHIV-3,
with the HIV-1SF2 sequence encoding the first 210 amino
acids and the rest of the protein encoded by HIV-lSF128A.
The hybrid nef protein is also identical to the one expressed
by RHIV-2, with the first 34 amino acids from HIV-lSF128A
and the rest from HIV-lSF2. Finally, a sixth clone that
involved the replacement of a 658-bp MstII env fragment
from HIV-1sF2 with the same fragment from HIV-lSF128A,
was constructed. This region includes the V4 and V5 do-
mains of gp120 (27), the CD4-binding domain (9. 17), and the
fusion domain of gp41 (3, 12).

Replicative properties of HIV-lSFl28A and HIV-1sF2 recom-
binant viruses. Plasmid DNA containing the various recom-
binant clones was transfected into normal human PBMC or
the human rhabdomyosarcoma RD-4 cell line (19). All clones
yielded viruses upon transfection, and the progeny HIV-1
strains produced were then tested for their biologic proper-
ties by infection of HUT 78 T cells or primary peripheral

blood macrophages. Infection of PBMC served as a control,
and all recombinant viruses grew to comparable titers in
human PBMC within 10 to 12 days postinfection. As ex-
pected, HIV-1SF2 replicated well and produced high-titered
progeny virus in HUT 78 cells; moreover, as reported
previously (4, 6), it did not productively infect peripheral
blood macrophages (Table 1). In contrast, RHIV-1, RHIV-2,
RHIV-3, and RHIV-S all infected and replicated well to high
titers in peripheral blood macrophages, but none of these
recombinant viruses could infect HUT 78 cells. These clones
thus reflect the biological properties of the parental virus,
HIV-lSF128A, particularly its macrophage tropism. The re-
sults indicate that clones that had acquired the HIV-lSF128A
env gene sequence encoding amino acids 211 onward as well
as sequences encoding the first 34 amino acids of the nef
protein produced viruses that were macrophage tropic. The
only clones that retained the HIV-lSF2 T-cell-tropic pheno-
type were RHIV-4 and RHIV-6. RHIV-4 contains an HIV-
1SF128A fragment coding for only the nef gene, and RHIV-6
contains the C terminus of gpl20 and the fusion domain of
gp4l from HIV-lSF128A. RHIV-6, however, replicates with
slower kinetics in HUT 78 cells (Table 1). In contrast to
HIV-1SF2, which replicated rapidly in HUT 78 cells (peak
RT activity at 12 days postinfection), this recombinant virus
reached peak RT activity (>500 x 103 cpm/ml) at 20 to 25
days postinfection.

DISCUSSION

Our results demonstrate that no genomic structural differ-
ences between HIV-lSF128A and HIV-lSF2 are responsible

143

* *

169

VOL. 64, 1990

1.

 by on F
ebruary 7, 2009 

jvi.asm
.org

D
ow

nloaded from
 

http://jvi.asm.org


6152 LIU ET AL.

for the different cellular tropisms displayed by the two
HIV-1 isolates. The replicative properties of our recombi-
nant clones indicate that the env gene product from amino
acid 211 onward and the first 34 amino acids of the nef
protein contain determinants responsible for T-cell and/or
macrophage tropism. Much of the variation in env between
HIV-lSF128A and HIV-1SF2 is located within the hypervari-
able regions and the CD4-binding domain. Within the first 34
amino acids of the nef protein, there is a deletion of 4 amino
acids in HIV-lSF128A (alanine, glutamic acid, proline, and
arginine), in addition to 4 amino acid changes (alanine,
valine, and two arginines). The four amino acid deletions
occur in a region reported to be duplicated in other HIV-1
strains recovered from brain tissue (2; W. O'Brien, Y.
Koyanagi, J. Zack, and I. S. Y. Chen, VIth Int. Conf. AIDS,
abstr. no. SA1, 1990). Since none of these molecularly
cloned brain-derived isolates have been found to be biolog-
ically active, the functional significance of genomic alter-
ations in this particular region of the nef gene cannot be
addressed directly. The nef protein has been reported to be
a negative regulatory protein (1, 24, 28), but its functional
domains have not been defined. In view of the observation
that there are no differences in viral production between
HIV-1SF2 and HIV-1SF128A upon transfection into PBMC,
we assume that the functions contained within the first 34
amino acids of the nef protein of HIV-lSFl28A and HIV-lSF2
are similar. We conclude, therefore, that the env gene
contains the major determinants of T-cell and/or macrophage
tropism.

Previous studies with recombinant viruses generated be-
tween HIV-1 strains with different biologic properties have
implied a role for the env gene in determining host cell
tropism (5, 11, 36). However, the exchanged regions contain
other viral genes, such as tat, rev, and vpu. The present
study was conducted with recombinant viruses by exchang-
ing only the env-nefregion. Our finding that the RHIV-3 and
RHIV-5 viruses, which contain the V1 and V2 regions of the
env gene from HIV-1SF2, still display the macrophage tro-
pism characteristic of HIV-lSF128A excludes the possibility
that these regions play a role in determining this cellular
tropism. Furthermore, the observation that RHIV-6 is un-
able to productively infect primary macrophages indicates
that the V4 and V5 domains of gpl20, the CD4-binding
domain, and the fusion domain of gp4l do not contain the
viral determinants of macrophage tropism. The region en-
coding these domains, however, is necessary for efficient
infection of the HUT 78 T-cell line. Substitution of this
region (MstII-MstII fragment) in HIV-lSF2 with correspond-
ing sequences from HIV-1SF128A resulted in a recombinant
virus (RHIV-6) that replicates with slower kinetics in HUT
78 cells (Table 1). This observation could reflect the fact that
multiple determinants are involved in infection of T-cell
lines. An earlier report by Cordonnier et al. (7) had indicated
that a single amino acid substitution at three positions in the
CD4-binding domain can eliminate the infectivity of the
U937 monocytic cell line but retain the infectivity of a T-cell
line. However, our sequence analysis of the CD4 domain,
especially at those three positions, of HIV-lSF128A indicated
that the isoleucine at position 427, lysine at 528, and glu-
tamine at 429 are identical to the corresponding amino acids
found in HIV-1sF2. Thus, some other portion of the envelope
gene must be involved in efficient replication of HIV-1.

In conclusion, our studies with recombinant viruses fur-
ther demonstrate that a StuI-MstII fragment of the envelope
glycoprotein gene of HIV-lSF128A encoding the V3 domain
(30, 31) or the MstII-XhoI fragment encoding the C terminus

of gp4l helps to determine the macrophage tropism of
HIV-lSF128A. A StuI-XhoI fragment encoding the envelope
glycoprotein of HIV-lSF2 from amino acid 211 onward
contains determinants for T-cell tropism. Further fine map-
ping with recombinants between HIV-lsFl28A and HIV-lSF2
in the env gene should define the specific domain(s) respon-
sible for the differential infectivity of macrophage and T-cell
lines by HIV-1.
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