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Performance Analysis of Cognitive Radio Systems
under QoS Constraints and Channel Uncertainty

Sami Akin and Mustafa Cenk Gursoy

Abstract—In this paper, performance of cognitive transmission
over time-selective flat fading channels is studied under quality
of service (QoS) constraints and channel uncertainty. Cognitive
secondary users (SUs) are assumed to initially perform channel
sensing to detect the activities of the primary users, and then
attempt to estimate the channel fading coefficients through
training. Energy detection is employed for channel sensing,
and different minimum mean-square-error (MMSE) estimation
methods are considered for channel estimation. In both channel
sensing and estimation, erroneous decisions can be made, and
hence, channel uncertainty is not completely eliminated. In this
setting, performance is studied and interactions between channel
sensing and estimation are investigated.

Following the channel sensing and estimation tasks, SUs
engage in data transmission. Transmitter, being unaware of
the channel fading coefficients, is assumed to send the data at
fixed power and rate levels that depend on the channel sensing
results. Under these assumptions, a state-transition model is
constructed by considering the reliability of the transmissions,
channel sensing decisions and their correctness, and the evolution
of primary user activity which is modeled as a two-state Markov
process. In the data transmission phase, an average power
constraint on the secondary users is considered to limit the
interference to the primary users, and statistical limitations on
the buffer lengths are imposed to take into account the QoS
constraints of the secondary traffic. The maximum throughput
under these statistical QoS constraints is identified by finding
the effective capacity of the cognitive radio channel. Numerical
results are provided for the power and rate policies.

Index Terms—Cognitive radio, quality of service constraints,
channel sensing, channel estimation, effective capacity, fixed-rate
transmissions, state-transition model.

I. INTRODUCTION

COGNITIVE radios have recently been studied intensively
as they provide strategies to use the transmission spec-

trum more efficiently by enabling the cognitive secondary
users (SUs) to use the transmission bands allocated to the
licensed primary users (PUs) while causing no or only limited
(or tolerable) interference to them. Interference is controlled
by having the cognitive SUs be aware of the environment
(e.g., through channel sensing) and adapt their transmission
strategies accordingly. An overview of cognitive radio systems
and the challenges in this area can be found in [1]-[3].
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As discussed above, the central challenge for the cognitive
SUs is to control their interference levels. In general, interfer-
ence management needs to be performed under uncertainty as
channel sensing done by the SUs may result in false alarms
and miss-detections. In such an interference limited scenario,
cognitive SUs should also satisfy their own quality of service
(QoS) requirements by transmitting at high rates and limiting
the delay experienced by the data in the buffers. This, too,
has to be achieved under channel uncertainty since wireless
channel conditions, which vary over time randomly due to
mobility and changing environment, can only be estimated
imperfectly through training techniques. Note also that pro-
viding QoS guarantees is especially more challenging for SUs
as they have to take into account both the changing channel
conditions and varying primary user activity. These consider-
ations are critical for the successful deployment of cognitive
radio systems in practice. Motivated by this, we in this paper
study the performance of cognitive transmissions in a practical
scenario in which cognitive SUs perform channel sensing and
channel estimation, and operate under QoS constraints and
also uncertainty caused by erroneous decisions in sensing and
estimation steps. Below, we delineate the operation of the
cognitive SUs.

Initially, before using the channel, SUs have to detect
the activities of the primary users. Among different channel
detection techniques, sensing-based access to the channel is
favored because of its low employment cost and compatibility
with the legacy of licensed systems [4]. The authors in [5] and
[6] developed an optimal strategy for opportunistic spectrum
access. Moreover, the authors in [7] focused on the optimal
sensing order problem in multi-channel cognitive medium
access control with opportunistic transmission, and studied the
problem of maximally utilizing the spectrum opportunities in
cognitive radio networks with multiple potential channels.

In wireless communications, as discussed above, channel
conditions vary over time, and estimation of these channel
variations is a crucial task before data transmission is per-
formed. If the channel conditions are not known a priori,
generally practical wireless systems employ training sequences
to perform channel estimation. One of the early studies on
channel training was conducted by Cavers who provided an
analytical approach to the design of pilot-assisted modulations
in [8] and [9]. These pilot-assisted transmission (PAT) strate-
gies, which multiplex known training symbols with the data
symbols, can be used for channel estimation, receiver adap-
tation, and optimal decoding [10]. We assume that, following
channel sensing, SUs perform channel estimation to learn the
channel conditions. Due to interactions and interdependencies
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between channel sensing and estimation, we are faced with a
challenging scenario. For instance, not detecting the activities
of primary users reliably can lead to degradations in the
estimation of the channel conditions, e.g., if the primary users
are active but detected as idle, the quality of the channel
estimate will deteriorate.

After performing the sensing and estimation tasks, SUs
initiate the data transmission phase. We assume that SUs
operate under QoS constraints in the form of limitations on
the buffer length. In order to identify the maximum throughput
under such constraints, we employ the effective capacity as a
performance metric [12]. Recently, effective capacity analysis
of wireless systems has attracted much interest (see e.g.,
[13] and [14]). In [15], we studied the cognitive transmission
under quality of service (QoS) constraints. In [16], by initially
performing channel sensing over multiple frequency bands to
detect the activities of primary users, we studied the perfor-
mance limits of cognitive transmission under QoS constraints
and interference limitations. In this work, SUs are assumed to
have perfect knowledge of the channel conditions.

In this paper, considering that no prior channel knowledge
is available at the secondary transmitter and the secondary
receiver, we study the effective capacity of cognitive radio
channels in order to identify the performance limits under
channel uncertainty and QoS constraints. The cognitive radio
is assumed to initially perform channel sensing, and then
estimate the channel fading coefficients, and finally perform
data transmission. The activity of primary users is modeled
as a two-state Markov process1. In this setting, we jointly
optimize the training symbol power, data symbol power and
transmission rates. More specifically, the contributions of this
paper are the following:

1) We jointly consider channel sensing and estimation, and
provide a framework through which the performance of
cognitive transmissions can be analyzed in the presence
of uncertainty caused by errors in sensing and estima-
tion.

2) We identify a state-transition model for cognitive trans-
mission by modeling the primary user activity as a two-
state Markov process, considering the reliability of the
transmissions, and taking into account the sensing and
channel estimation decisions and their correctness.

3) We determine the effective capacity of cognitive trans-
missions and obtain the maximum throughput under
QoS constraints and channel uncertainty.

4) We numerically analyze the power and rate allocation
strategies and identify the maximum throughput levels
as a function of detection and false alarm probabilities
and training power.

The organization of the rest of the paper is as follows. In
Section II, we describe the cognitive channel model. In Section
III, we discuss channel sensing and provide expressions for
the probability of detection and false alarm. In Section IV,
we describe channel training with pilot symbols and discuss

1In addition to having the assumption of no prior channel knowledge and
explicitly considering channel estimation, Markovian modeling of primary
user activity constitutes another significant departure from the setting consid-
ered in [16] where primary user activity is assumed to vary independently
from one frame to another.

Fig. 1. Transmission frame consisting of channel sensing, channel training
and data transmission. Total frame duration is 𝑇 . First 𝑁 seconds is allocated
to channel sensing. Following channel sensing, a single pilot symbol is sent in
the training phase. Under the assumption that the symbol rate is 𝐵 complex
symbols per second, a single pilot has a duration of 1/𝐵 seconds, where 𝐵
denotes the bandwidth. The remaining time of 𝑇 −𝑁−1/𝐵 seconds is used
for data transmission.

different channel estimation techniques. In Section V, we con-
struct a state transition model for cognitive radio transmission.
In Section VI, we identify the maximum throughput that the
cognitive radio channel can sustain under QoS constraints. In
Section VII, we provide the numerical results. We conclude
in Section VIII.

II. COGNITIVE CHANNEL MODEL

We consider a cognitive channel model in which a sec-
ondary transmitter sends information to a secondary receiver.
Initially, the secondary users perform channel sensing. Then,
depending on the channel sensing results, the secondary trans-
mitter selects pilot symbol and data transmission power policy.
Note that the pilot symbol is used for the estimation of the
channel fading coefficients. We assume that channel sensing,
channel estimation, and data transmission are performed in
frames of total duration 𝑇 seconds. In each frame, the first 𝑁
seconds is allocated for channel sensing. Following the chan-
nel sensing, a single pilot symbol is employed to enable the
secondary receiver to estimate the channel fading coefficient.
Then, data transmission is performed. The allocation of the
frame duration to these tasks is depicted in Figure 1.

Pilot symbol and data symbol powers, and transmission
rates depend on the channel sensing results, i.e., if the channel
is sensed to be busy (correct detection of busy case or false
alarm), the average transmission power and transmission rate
are set to 𝑃 1 and 𝑟1, respectively. If, on the other hand, the
channel is sensed to be idle (misdetection or correct detection
of idle case), the average transmission power and transmission
rate are set to 𝑃 2 and 𝑟2, respectively. Note that if 𝑃 1 = 0, the
secondary transmitter stops the transmission when the primary
users are sensed to be active.

The discrete-time channel input-output relation between the
secondary transmitter and receiver in the 𝑖𝑡ℎ symbol duration
is given by

𝑦𝑖 = ℎ𝑖𝑥𝑖 + 𝑛𝑖 𝑖 = 1, 2, ..., (1)

if the primary users are inactive. On the other hand, if the
primary users are using the channel, we have

𝑦𝑖 = ℎ𝑖𝑥𝑖 + 𝑛𝑖 + 𝑠𝑖 𝑖 = 1, 2, ..., (2)

where 𝑥𝑖 and 𝑦𝑖 denote the complex-valued channel input and
output, respectively. In (1) and (2), ℎ𝑖 represents the fading



AKIN and GURSOY: PERFORMANCE ANALYSIS OF COGNITIVE RADIO SYSTEMS UNDER QOS CONSTRAINTS AND CHANNEL UNCERTAINTY 2885

coefficient between the secondary transmitter and receiver.
The fading coefficients are zero-mean, circularly symmetric,
complex Gaussian distributed with variance 𝔼{∣ℎ𝑖∣2} = 𝜎2

ℎ.
In (1) and (2), {𝑛𝑖} is a sequence of additive thermal random
noise samples at the secondary receiver, that are zero-mean,
circularly symmetric, complex Gaussian distributed with vari-
ance 𝔼{∣𝑛𝑖∣2} = 𝜎2

𝑛 for all 𝑖. In (2), 𝑠𝑖 denotes the sum of
active primary users’ faded signals arriving at the secondary
receiver. We denote the variance of 𝑠𝑖 as 𝜎2

𝑠 . Note also that
since the bandwidth is 𝐵, symbol rate is assumed to be 𝐵
complex symbols per second.

We consider block-fading and assume that the fading co-
efficients {ℎ𝑖} stay constant within each frame of 𝑇 seconds
and change independently from one frame to another. We also
assume that the activity of the primary users stay the same in
each frame. However, a two-state Markov model is employed
to model the transitions of the activity of the primary users
between the frames.

III. CHANNEL SENSING

Energy-detection methods are considered to be well-suited
for channel sensing if the transmission policies of primary
users are not known. We can formulate the channel sensing
as a hypothesis testing problem between the noise 𝑛𝑖 and
the signal 𝑠𝑖 in noise. Since the bandwidth is 𝐵, there are
𝑁𝐵 complex symbols in a duration of 𝑁 seconds. Now, the
hypothesis testing problem can mathematically be expressed
as follows:

ℋ0 : 𝑦𝑖 = 𝑛𝑖, 𝑖 = 1, 2, ..., 𝑁𝐵

ℋ1 : 𝑦𝑖 = 𝑛𝑖 + 𝑠𝑖, 𝑖 = 1, 2, ..., 𝑁𝐵.
(3)

We assume that 𝑠𝑖 has a circularly symmetric complex Gaus-
sian distribution2 with zero-mean and variance 𝜎2

𝑠 . Further-
more, as in [18], we assume that the signal samples {𝑠𝑖} are
independent and identically distributed (i.i.d.). Under these
assumptions, the optimal Neyman-Pearson detector for the
above hypothesis problem is given by [17]

𝑌 =
1

𝑁𝐵

𝑁𝐵∑
𝑖=1

∣𝑦𝑖∣2 ≷ℋ1

ℋ0
𝜆 (4)

where 𝜆 is the detection threshold. Observing that 𝑌 is chi-
squared distributed with 2𝑁𝐵 degrees of freedom, we can
establish the probabilities of false alarm and detection as
follows:

𝑃𝑓 = Pr{𝑌 > 𝜆 ∣ ℋ0} = 1− 𝑃

(
𝑁𝐵𝜆

𝜎2
𝑛

, 𝑁𝐵

)
(5)

𝑃𝑑 = Pr{𝑌 > 𝜆 ∣ ℋ1} = 1− 𝑃

(
𝑁𝐵𝜆

𝜎2
𝑛 + 𝜎2

𝑠

, 𝑁𝐵

)
(6)

where 𝑃 (𝑥, 𝑦) denotes the regularized gamma function and
is defined as 𝑃 (𝑥, 𝑦) = 𝛾(𝑥,𝑦)

Γ(𝑦) where 𝛾(𝑥, 𝑦) is the lower
incomplete gamma function and Γ(𝑎) is the Gamma function.

2Note that if the signals are being received in a rich multipath environment
or the number of active primary users is large, the simplifying Gaussian
assumption for the distribution of 𝑠𝑖 has high accuracy. Moreover, if, for
example the primary users are employing frequency or phase modulation, 𝑠𝑖
in the presence of even a single primary user in flat fading Rayleigh channel
will be Gaussian distributed.

Above, we have considered an i.i.d. scenario. If {𝑠𝑖} are
correlated and if the correlation structure is known by the
cognitive users, then the optimal detector computes, as the test
statistic, the quadratic form y†Ky where y is the vector of
𝑁𝐵 received signal samples {𝑦𝑖}𝑁𝐵𝑖=1 , and K is a matrix that
depends on the covariance matrix of the primary user signal
samples {𝑠𝑖}𝑁𝑖=1 [17, Case III.B.4]. If {𝑠𝑖} are identically
distributed, then the false alarm and detection probabilities
are again expressed in terms of the regularized lower gamma
function and are in the same form as in (5) and (6) (see [17,
Equation III.B.96]).

In the hypothesis testing problem given in (3), another
approach is to consider 𝑌 as Gaussian distributed, which is
accurate if 𝑁𝐵 is large [18]. In this case, the detection and
false alarm probabilities can be expressed in terms of Gaussian
𝑄-functions. We would like to note that the rest of the analysis
in the paper does not depend on the specific expressions of the
false alarm and detection probabilities. However, numerical
results are obtained using (5) and (6).

A similar hypothesis-testing formulation for channel sens-
ing is also studied in [15] and is provided in this paper as well
for the completeness of the discussion.

IV. PILOT SYMBOL-ASSISTED TRANSMISSION

After channel sensing is performed, the secondary transmit-
ter sends the pilot symbol to enable the receiver to estimate
the channel fading coefficient. In this section, we consider
several channel estimation methods. As emphasized earlier,
channel estimation has dependence on channel sensing results.
Regarding the channel sensing result and its correctness, we
have the following four possible scenarios:

1) Scenario 1: Channel is busy, detected as busy (correct
detection),

2) Scenario 2: Channel is busy, detected as idle (miss-
detection),

3) Scenario 3: Channel is idle, detected as busy (false
alarm),

4) Scenario 4: Channel is idle, detected as idle (correct
detection).

Note that the secondary transmitter sends the data with average
power 𝑃 1 if the channel is sensed as busy, whereas the
transmitter sends the data with average power 𝑃 2 if the
channel is detected to be idle. Since fading stays constant in
each frame, it is enough to send only one pilot symbol in each
frame3. Therefore, the first 𝑁 seconds of a frame duration 𝑇
seconds is spared to sense the channel, a single pilot symbol
is sent following channel sensing, and (𝑇 − 𝑁)𝐵 − 1 data
symbols are transmitted after the pilot symbol4. In each frame,
the average input power is

1

𝑇

(𝑙+1)𝑇𝐵−1∑
𝑖=(𝑙𝑇+𝑁)𝐵

𝔼
{∣𝑥𝑖∣2} = 𝑃 1 𝑙 = 0, 1, 2, ..., (7)

3Since MMSE estimation depends only on the pilot power and not on
the number of pilot symbols, a single pilot symbol with optimized power is
sufficient.

4Since the symbol rate is 𝐵 symbols per second, we have (𝑇 − 𝑁)𝐵
symbols in a duration of 𝑇 − 𝑁 seconds. Among these symbols, the first
symbol is a pilot symbol and the remaining (𝑇 −𝑁)𝐵 − 1 symbols are the
data symbols.
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when activity is sensed in the channel, whereas the average
input power is

1

𝑇

(𝑙+1)𝑇𝐵−1∑
𝑖=(𝑙𝑇+𝑁)𝐵

𝔼
{∣𝑥𝑖∣2} = 𝑃 2 𝑙 = 0, 1, 2, ..., (8)

when the channel is sensed to be idle. Above, 𝑙 denotes the
frame index. From the average power constraints, we see that
the total energy allocated to the pilot and data symbols is
limited in one frame by 𝑇𝑃1 or 𝑇𝑃 2 when the channel is
busy or idle, respectively.

We assume that, depending on the capabilities of the trans-
mitters and the energy resources they are equipped with, there
exists peak constraints on the average powers, e.g.,

𝑃 1 ≤ 𝑃 𝑝𝑒𝑎𝑘 and 𝑃 2 ≤ 𝑃 𝑝𝑒𝑎𝑘. (9)

Additionally, note that the secondary transmitter transmits
with an average power 𝑃 1 in scenario 1 and with an average
power 𝑃 2 in scenario 2. In both scenarios, primary users are
active in the channel and experience interference due to the
transmission of the secondary users. In order to limit the
interference and protect the primary users, we impose the
following constraint on 𝑃 1 and 𝑃 2:

𝑃𝑑𝑃 1 + (1− 𝑃𝑑)𝑃 2 ≤ 𝑃 𝑎𝑣𝑔 (10)

where 𝑃𝑑 is the probability of detection and (1 − 𝑃𝑑) is the
probability of miss-detection, and 𝑃𝑑 and (1 − 𝑃𝑑) can be
regarded as the probabilities of scenarios 1 and 2, respectively.
In the following, we describe how 𝑃𝑎𝑣𝑔 can be related to the
interference constraints. Let us denote the fading coefficient
between the secondary transmitter and primary receiver as ℎ𝑠𝑝.
Now, the average interference experienced by the primary user
can be expressed as

𝔼{𝑃𝑑𝑃 1∣ℎ𝑠𝑝∣2 + (1− 𝑃𝑑)𝑃 2∣ℎ𝑠𝑝∣2}
=
(
𝑃𝑑𝑃 1 + (1− 𝑃𝑑)𝑃 2

)
𝔼{∣ℎ𝑠𝑝∣2} ≤ 𝐼𝑎𝑣𝑔

(11)

where 𝐼𝑎𝑣𝑔 can be regarded as the average interference con-
straint. We assume that the realizations of ℎ𝑠𝑝 are not known at
the secondary transmitter and hence the secondary transmitter
cannot adapt its transmission according to ℎ𝑠𝑝. However, if the
statistics of ℎ𝑠𝑝 (e.g., the mean of ∣ℎ𝑠𝑝∣2 is known), then the
secondary transmitter can choose 𝑃𝑎𝑣𝑔 =

𝐼𝑎𝑣𝑔

𝔼{∣ℎ𝑠𝑝∣2} in order
to satisfy (11).

Finally, we would like to note that in the perfect detection
case in which 𝑃𝑑 = 1, there are no miss-detections and (10)
specializes to 𝑃 1 ≤ 𝑃 𝑎𝑣𝑔 . Hence, expectedly, only 𝑃 1, which
is the transmission power when the channel is sensed as busy,
is affected by the interference constraints, and we have 𝑃 2 ≤
𝑃 𝑝𝑒𝑎𝑘. If 𝑃𝑑 < 1, miss-detections should also be considered.
In such cases, the secondary users do not detect the active
primary users and transmit at power 𝑃 2. Hence, 𝑃 2 should
also be considered in interference control as formulated in
(10).

A. Training Phase

In the channel training phase, the pilot symbol power is set
depending on the sensing result. If the channel is detected as

busy, the power of the pilot symbol is 𝑃𝑡𝑏 = 𝜂1𝑃 1𝑇 . On the
other hand, the pilot power is 𝑃𝑡𝑖 = 𝜂2𝑃 2𝑇 when no activity
is detected. Therefore, 𝜂1 and 𝜂2 are the fractions of the total
power allocated to the pilot symbol when channel is sensed
as busy and idle, respectively.

For the scenarios described at the beginning of this section,
the corresponding received signals in the training phase are
given by the following:

1) Scenario 1: 𝑦(𝑙𝑇+𝑁)𝐵 = ℎ𝑙
√
𝑃𝑡𝑏 + 𝑛(𝑙𝑇+𝑁)𝐵 +

𝑠(𝑙𝑇+𝑁)𝐵 ,
2) Scenario 2: 𝑦(𝑙𝑇+𝑁)𝐵 = ℎ𝑙

√
𝑃𝑡𝑖 + 𝑛(𝑙𝑇+𝑁)𝐵 +

𝑠(𝑙𝑇+𝑁)𝐵 ,
3) Scenario 3: 𝑦(𝑙𝑇+𝑁)𝐵 = ℎ𝑙

√
𝑃𝑡𝑏 + 𝑛(𝑙𝑇+𝑁)𝐵 ,

4) Scenario 4: 𝑦(𝑙𝑇+𝑁)𝐵 = ℎ𝑙
√
𝑃𝑡𝑖 + 𝑛(𝑙𝑇+𝑁)𝐵 .

Above, ℎ𝑙 denotes the channel fading coefficient in the 𝑙𝑡ℎ

block. The fading coefficients are estimated via MMSE es-
timation, which provides the following estimates for each
scenario:

Scenario 1: ℎ̂𝑙,𝑚−𝑚𝑚𝑠𝑒 =
√
𝑃𝑡𝑏𝜎

2
ℎ

𝑃𝑡𝑏𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

𝑦(𝑙𝑇+𝑁)𝐵,

(12)

Scenario 2: ℎ̂𝑙,𝑚−𝑚𝑚𝑠𝑒 =
√
𝑃𝑡𝑖𝜎

2
ℎ

𝑃𝑡𝑖𝜎2
ℎ + 𝜎2

𝑛

𝑦(𝑙𝑇+𝑁)𝐵, (13)

Scenario 3: ℎ̂𝑙,𝑚−𝑚𝑚𝑠𝑒 =
√
𝑃𝑡𝑏𝜎

2
ℎ

𝑃𝑡𝑏𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

𝑦(𝑙𝑇+𝑁)𝐵,

(14)

Scenario 4: ℎ̂𝑙,𝑚−𝑚𝑚𝑠𝑒 =
√
𝑃𝑡𝑖𝜎

2
ℎ

𝑃𝑡𝑖𝜎2
ℎ + 𝜎2

𝑛

𝑦(𝑙𝑇+𝑁)𝐵. (15)

From above, we see that the estimate expressions in scenarios
1 and 3 in which the channel is detected as busy are the
same. So are the expressions in scenarios 2 and 4 in which
the channel is detected as idle. Hence, the receiver has two
estimation rules depending on whether the channel is sensed
as busy or idle. Note that the MMSE formulation is obtained
under the assumption that the primary users’ signal 𝑠 is
Gaussian distributed with mean zero and variance 𝜎2

𝑠 . It is also
important to note that the above MMSE estimates are affected
by the channel sensing results. For instance, in scenario 2, the
channel is busy but the receiver senses the channel as idle.
Based on this sensing result, the receiver assumes that the
noise variance is 𝜎2

𝑛 rather than the actual value 𝜎2
𝑛 + 𝜎2

𝑠 ,
and multiplies the observation 𝑦(𝑙𝑇+𝑁)𝐵 by

√
𝑃𝑡𝑖𝜎

2
ℎ

𝑃𝑡𝑖𝜎2
ℎ+𝜎

2
𝑛

instead

of
√
𝑃𝑡𝑖𝜎

2
ℎ

𝑃𝑡𝑖𝜎2
ℎ+𝜎

2
𝑛+𝜎

2
𝑠
. Hence, in the computation of the MMSE

estimate, the receiver treats its channel sensing decision as
the true decision. Hence, if the sensing decision is erroneous,
the MMSE estimate is obtained for a mismatched channel.
For this reason, we call these estimates as mismatched MMSE
estimates and use the subscript 𝑚 − 𝑚𝑚𝑠𝑒. Note that from
the receiver’s perspective, the variance of the noise is random
taking two possible values, 𝜎2

𝑛 and 𝜎2
𝑛 + 𝜎2

𝑠 . In the presence
of uncertainty in the noise statistics, the true MMSE estimate
is given by the following result.

Theorem 1: Given the channel sensing decision and the
observation 𝑦 in the training phase, the receiver obtains the
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MMSE estimate through the following formulation:

ℎ̂𝑚𝑚𝑠𝑒 = 𝔼{ℎ∣𝑦} (16)

= Pr{𝜎2 = 𝜎2
𝑛 ∣ 𝑦}

√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛

𝑦

+ Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠 ∣ 𝑦}
√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

𝑦 (17)

where Pr{𝜎2 = 𝜎2
𝑛 ∣ 𝑦} =

Pr{𝜎2=𝜎2
𝑛}𝑓(𝑦∣𝜎2=𝜎2

𝑛)
𝑓(𝑦) and similarly

Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠 ∣ 𝑦} =
Pr{𝜎2=𝜎2

𝑛+𝜎2
𝑠}𝑓(𝑦∣𝜎2=𝜎2

𝑛+𝜎
2
𝑠)

𝑓(𝑦) . In
the above formulation, the probability expressions are given
by (18) and (19) on the next page, and probability density
functions are given by

𝑓(𝑦∣𝜎2 = 𝜎2
𝑛) =

1

𝜋(𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛)
𝑒
− ∣𝑦∣2

𝑃𝑡𝜎
2
ℎ
+𝜎2

𝑛 (20)

𝑓(𝑦∣𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠) =
1

𝜋(𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠)

𝑒
− ∣𝑦∣2

𝑃𝑡𝜎
2
ℎ
+𝜎2

𝑛+𝜎2
𝑠 (21)

𝑓(𝑦) = Pr{𝜎2 = 𝜎2
𝑛}𝑓(𝑦∣𝜎2 = 𝜎2

𝑛)

+ Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠}𝑓(𝑦∣𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠)
(22)

In (18) and (19), 𝑃𝑑 and 𝑃𝑓 denote the detection and false-
alarm probabilities, respectively, and 𝑎 and 𝑏 are the transition
probabilities in the two-state Markov model of the primary
user activity (depicted in Fig. 3 and described in detail in
Section V). Note also that 𝑃𝑡 denotes the power of the pilot
symbol and is equal to 𝑃𝑡𝑏 if the channel is detected busy and
equal to 𝑃𝑡𝑖 is the channel if detected idle.

Proof: See Appendix A. □
It can be immediately seen that as in the mismatched

MMSE case, we again have two estimation rules depending
on the channel sensing result. Note that the statistical char-
acterization (e.g., finding the variance or more generally the
distribution) of the MMSE estimate in Theorem 1 is a difficult
task and can only be done through numerical analysis. It
is also computationally intensive for the receiver to obtain
this estimate. Another strategy is to obtain the linear MMSE
estimate. Note that given the observation 𝑦, the linear MMSE
estimate ℎ̂𝑙−𝑚𝑚𝑠𝑒 is given by (24) on the next page, where
Pr{𝜎2 = 𝜎2

𝑛} and Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠} are given in (18) and
(19). Similarly, as in Theorem 1, 𝑃𝑡 is either equal to 𝑃𝑡𝑏 or
𝑃𝑡𝑖 depending whether the channel is detected as busy or idle.

It is interesting to note that if channel sensing results are
perfect, i.e., 𝑃𝑑 = 1 and 𝑃𝑓 = 0, all estimation methods
discussed above converge.

B. Data Transmission Phase

Now, we can express the fading coefficients as follows

ℎ𝑙 = ℎ̂𝑙 + ℎ̃𝑙 (25)

where ℎ̃𝑙 is the estimation error. Consequently, the input-
output relationship in the data transmission phase of the 𝑙𝑡ℎ

frame can be written as

𝑦𝑖 = ℎ̂𝑙𝑥𝑖+ ℎ̃𝑙𝑥𝑖+𝑛𝑖+𝑠𝑖 (𝑙𝑇 +𝑁)𝐵+1 ≤ 𝑖 ≤ (𝑙+1)𝑇𝐵−1
(26)

if the channel is busy, and

𝑦𝑖 = ℎ̂𝑙𝑥𝑖+ ℎ̃𝑙𝑥𝑖+𝑛𝑖 (𝑙𝑇 +𝑁)𝐵+1 ≤ 𝑖 ≤ (𝑙+1)𝑇𝐵−1
(27)

if the channel is idle.

Note that the mismatched MMSE estimates in (12) –
(15) and linear MMSE estimate in (24) can be written as
ℎ̂ = 𝐾𝑦 where 𝐾 is a constant that depends on the channel
sensing result and 𝑦 is the received signal in the training
phase. Since 𝑦 is a Gaussian random variable, ℎ̂𝑙 and ℎ̃𝑙
are zero-mean circularly symmetric complex Gaussian random
variables in these cases. The variance of the channel estimates
is 𝜎2

ˆℎ
= 𝐾2

𝔼{∣𝑦∣2}. In particular, we have the following
variance expressions for the mismatched MMSE estimates in
different scenarios:

Scenario 1: 𝜎2
ˆℎ𝑙,𝑚−𝑚𝑚𝑠𝑒

=
𝑃𝑡𝑏𝜎

4
ℎ

𝑃𝑡𝑏𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

,

Scenario 2: 𝜎2
ˆℎ𝑙,𝑚−𝑚𝑚𝑠𝑒

=
𝑃𝑡𝑖𝜎

4
ℎ

(𝑃𝑡𝑖𝜎2
ℎ + 𝜎2

𝑛)
2

(
𝑃𝑡𝑖𝜎

2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

)
,

Scenario 3: 𝜎2
ˆℎ𝑙,𝑚−𝑚𝑚𝑠𝑒

=
𝑃𝑡𝑏𝜎

4
ℎ

(𝑃𝑡𝑏𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠)

2

(
𝑃𝑡𝑏𝜎

2
ℎ + 𝜎2

𝑛

)
,

Scenario 4: 𝜎2
ˆℎ𝑙,𝑚−𝑚𝑚𝑠𝑒

=
𝑃𝑡𝑖𝜎

4
ℎ

𝑃𝑡𝑖𝜎2
ℎ + 𝜎2

𝑛

.

In all scenarios, the variance of the estimation error in both
mismatch and linear MMSE can be written as

𝜎2
˜ℎ𝑙

= (1 − 2𝐾
√

𝑃𝑡)𝜎
2
ℎ + 𝜎2

ˆℎ𝑙
. (28)

Again, 𝑃𝑡 is either 𝑃𝑡𝑏 or 𝑃𝑡𝑖 depending on whether the
channel is sensed as busy or idle, respectively. In true MMSE,
since the estimate and error are uncorrelated, we have 𝜎2

˜ℎ𝑙
=

𝜎2
ℎ − 𝜎2

ˆℎ𝑙
.

V. STATE TRANSITION MODEL

In this section, we construct a state-transition model for
cognitive transmission. In order to identify this model, we
first consider the transmission rates that can be supported
by the channel. In the presence of channel uncertainty, it
is generally difficult to characterize the channel capacity,
which is the maximum transmission rate at which reliable
communications can be established [19]. Therefore, most
studies work with lower bounds on the channel capacity. One
common technique employed in deriving an achievable rate
expression is to regard the error in the channel estimate as
another source of Gaussian noise. Since Gaussian noise is
the worst uncorrelated noise, this assumption leads to a lower
bound [20]. On the other hand, the achievable rate expressions
obtained using this approach are good measures of the rates
supported in communication systems that operate as if the
channel estimate were perfect (i.e., in systems where Gaussian
codebooks designed for known channels are used, and scaled
nearest neighbor decoding is employed at the receiver) [21].

Considering the channel estimation results and interference
𝑠 caused by the primary users, we have the following achiev-
able rate expressions as lower bounds to the instantaneous
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Pr{𝜎2 = 𝜎2
𝑛} =

{
𝑎𝑃𝑓

𝑎𝑃𝑓+𝑏𝑃𝑑
if the channel is detected busy

𝑎(1−𝑃𝑓 )
𝑎(1−𝑃𝑓 )+𝑏(1−𝑃𝑑)

if the channel is detected idle
(18)

Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠} =

{
𝑏𝑃𝑑

𝑎𝑃𝑓+𝑏𝑃𝑑
if the channel is detected busy

𝑏(1−𝑃𝑑)
𝑎(1−𝑃𝑓 )+𝑏(1−𝑃𝑑)

if the channel is detected idle
(19)

ℎ̂𝑙−𝑚𝑚𝑠𝑒 =
𝔼{ℎ𝑦∗}
𝔼{∣𝑦∣2}𝑦 =

√
𝑃𝑡𝜎

2
ℎ

𝔼{∣𝑦∣2}𝑦 (23)

=

√
𝑃𝑡𝜎

2
ℎ

Pr{𝜎2 = 𝜎2
𝑛}𝔼{∣𝑦∣2 ∣ 𝜎2 = 𝜎2

𝑛}+ Pr{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠}𝔼{∣𝑦∣2 ∣ 𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠}
𝑦

=

√
𝑃𝑡𝜎

2
ℎ

Pr{𝜎2 = 𝜎2
𝑛}(𝑃𝑡𝜎2

ℎ + 𝜎2
𝑛) + Pr{𝜎2 = 𝜎2

𝑛 + 𝜎2
𝑠}(𝑃𝑡𝜎2

ℎ + 𝜎2
𝑛 + 𝜎2

𝑠)
𝑦 (24)

channel capacities in the above four scenarios:

Scenario 1: 𝑅1 =
(𝑇 −𝑁)𝐵 − 1

𝑇
log
(
1 + SNR1∣𝑤𝑙∣2

)
Scenario 2: 𝑅2 =

(𝑇 −𝑁)𝐵 − 1

𝑇
log
(
1 + SNR2∣𝑤𝑙∣2

)
Scenario 3: 𝑅3 =

(𝑇 −𝑁)𝐵 − 1

𝑇
log
(
1 + SNR3∣𝑤𝑙∣2

)
Scenario 4: 𝑅4 =

(𝑇 −𝑁)𝐵 − 1

𝑇
log
(
1 + SNR4∣𝑤𝑙∣2

)
(29)

where

SNR1 =
𝑃𝑑𝑏𝜎

2
ˆℎ𝑙

𝑃𝑑𝑏𝜎2
˜ℎ1

+ 𝜎2
𝑛 + 𝜎2

𝑠

, SNR2 =
𝑃𝑑𝑖𝜎

2
ˆℎ𝑙

𝑃𝑑𝑖𝜎2
˜ℎ2

+ 𝜎2
𝑛 + 𝜎2

𝑠

SNR3 =
𝑃𝑑𝑏𝜎

2
ˆℎ𝑙

𝑃𝑑𝑏𝜎2
˜ℎ3

+ 𝜎2
𝑛

, and SNR4 =
𝑃𝑑𝑖𝜎

2
ˆℎ𝑙

𝑃𝑑𝑖𝜎2
˜ℎ4

+ 𝜎2
𝑛

.

(30)

These lower bounds are obtained by assuming that ℎ̃𝑙𝑥𝑖 and 𝑠𝑖
are Gaussian distributed which is the worst-case noise. Above,
we have defined ℎ̂𝑙 = 𝑤𝑙𝜎ˆℎ𝑙

. Note that 𝑤𝑙 is a standard
complex Gaussian random variable with zero mean and unit
variance, i.e., 𝑤𝑙 ∼ 𝒞𝒩 (0, 1), in mismatched and linear
MMSE. Hence, 𝑧𝑙 = ∣𝑤𝑙∣2 has an exponential distribution
with mean 1. 𝑃𝑑𝑏 and 𝑃𝑑𝑖 are the data symbols powers when
the channel is busy and idle, respectively, and they can be
written as

𝑃𝑑𝑏 =
𝑃 1𝑇 − 𝑃𝑡𝑏

(𝑇 −𝑁)𝐵 − 1
and 𝑃𝑑𝑖 =

𝑃 2𝑇 − 𝑃𝑡𝑖
(𝑇 −𝑁)𝐵 − 1

. (31)

While the receiver attempts to learn the channel through
training, we assume that the transmitter is unaware of the
channel conditions and transmits the information at fixed rates
𝑟1 and 𝑟2, depending on the channel being sensed as busy
or idle, respectively. Therefore, the transmission rate is 𝑟1
in scenarios 1 and 3, and 𝑟2 in scenarios 2 and 4. If these
rates are below the achievable rate expressions provided in
(29), i.e., if 𝑟1 < 𝑅1, 𝑅3 or 𝑟2 < 𝑅2, 𝑅4, the transmission is
considered to be in the ON state and reliable communication
is achieved at these rates. On the other hand, if 𝑟1 ≥ 𝑅1, 𝑅3 or
𝑟2 ≥ 𝑅2, 𝑅4, then we assume that outage occurs and reliable

Fig. 2. State transition model for the cognitive radio channel. The numbered
label for each state is given on the bottom-right corner of the box representing
the state.

communication can not be achieved. In such a case, the
channel is in the OFF state. To ensure the reception of correct
data, a simple automatic repeat request (ARQ) mechanism
needs to be incorporated in the communication protocol in
the OFF state.

From the above discussion, we see that we in each scenario
have two states, namely ON and OFF, depending on whether
or not the fixed-transmission rate exceeds the instantaneous
rate that the channel can support. Therefore, overall we have
eight states. Fig. 2 depicts the state transition model for the
cognitive radio transmission considering all possible scenarios
related to the channel sensing decisions and their correctness,
and the reliability of the transmissions. The labels for the
states are provided on the bottom-right corner of the box
representing the state.

The transition probabilities in this state-transition model de-
pend on the channel fading coefficients, the fixed transmission
rates, and the primary user activity. Recall that we consider
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Fig. 3. Two-state Markov model for the primary user activity.

block-fading and assume that the fading coefficients stay con-
stant throughout the frame and change independently from one
frame to another. We also assume that primary user activity
does not change within each frame. However, we employ
a two-state Markov model to describe the transition of the
primary user activity between the frames. This Markov model
is depicted in Fig. 3. Busy state indicates that the channel is
occupied by the primary users, and idle state indicates that
there is no primary user present in the channel. Probability of
transitioning from busy state to idle state is denoted by 𝑎, and
the probability of transitioning from idle state to busy state is
denoted by 𝑏. Note that, by our assumption, state transitions
happen every 𝑇 seconds, which is the frame duration.

Next, we determine the state transition probabilities. Let us
first consider in detail the probability of staying in the topmost
ON state in Fig. 2. This probability, denoted by 𝑝11, is given
by (37) on the next page where

𝛼1 =
2

𝑟1𝑇

(𝑇−𝑁)𝐵−1 − 1

SNR1
, (38)

𝑃𝑑 is the probability of detection in channel sensing, 𝑟1 is
the fixed transmission rate in scenario 1, and 𝑅1(𝑙) denotes
the achievable rate expression in scenario 1 in the 𝑙𝑡ℎ frame.
In deriving (37) on the next page, (33) is obtained by using
the chain rule of probability5 and noting the following facts.
Channel being busy in the 𝑙𝑡ℎ frame depends only on channel
being busy in the (𝑙−1)𝑡ℎ frame and not on the other events in
the condition. Moreover, since channel sensing is performed
individually in each frame without any dependence on the
channel sensing decision and primary user activity in the
previous frame, channel being detected as busy in the 𝑙𝑡ℎ frame
depends only on the event that the channel is actually busy
in the 𝑙𝑡ℎ frame. Finally, the event {𝑟1 < 𝑅1(𝑙)} is related to
the channel fading coefficients and hence possibly depends on
the event {𝑟1 < 𝑅1(𝑙− 1)} through the dependence of fading
coefficients between frames. (34) follows by realizing that the
first probability in (33) is equal to (1 − 𝑎), the probability
of staying in the busy state in the Markov model given for
primary user activity, and noticing that the second probability
is equal to 𝑃𝑑, the detection probability in channel sensing.
(35) is obtained by noting that the event {𝑟1 < 𝑅1(𝑙) =

5Consider the events 𝐴,𝐵, 𝐶, and 𝐷. Using the chain rule, the conditional
probability Pr(𝐴

∩
𝐵

∩
𝐶

∩ ∣ 𝐷) can be written as Pr(𝐴
∩

𝐵
∩

𝐶
∩ ∣

𝐷) = Pr(𝐴 ∣ 𝐷)× Pr(𝐵 ∣ 𝐴∩
𝐷)× Pr(𝐶 ∣ 𝐴∩

𝐵
∩

𝐷).

(𝑇−𝑁)𝐵−1
𝑇 log

(
1 + SNR1∣𝑤𝑙∣2

)} is equivalent to the event
{𝑧𝑙 > 𝛼1} where 𝑧𝑙 = ∣𝑤𝑙∣2 and 𝛼1 is defined in (38).
(36) follows from the fact that 𝑧𝑙 and 𝑧𝑙−1 are independent
due to the block-fading assumption. Finally, (37) is obtained
by noting that fading coefficients and their estimates are
identically distributed in each frame and hence the index 𝑙
in 𝑧𝑙 can be dropped.

Similarly, the probabilities for transitioning from any state
to state 1 (topmost ON state) can be expressed as

𝑝𝑏1 = 𝑝11 = 𝑝21 = 𝑝31 = 𝑝41 = (1− 𝑎)𝑃𝑑 Pr {𝑧 > 𝛼1} ,
𝑝𝑖1 = 𝑝51 = 𝑝61 = 𝑝71 = 𝑝81 = 𝑏𝑃𝑑 Pr {𝑧 > 𝛼1} .

(39)

Note that we have common expressions for the transition
probabilities in cases in which the originating state has a busy
channel (i.e., states 1,2,3, and 4 ) and in cases in which the
originating state has an idle channel (i.e., states 5,6,7, and 8).

In a similar manner, the remaining transition probabilities

are given by (40) on the next page, where 𝛼2 = 2
𝑟2𝑇

(𝑇−𝑁)𝐵−1 −1
SNR2

,

𝛼3 = 2
𝑟1𝑇

(𝑇−𝑁)𝐵−1 −1
SNR3

, and 𝛼4 = 2
𝑟2𝑇

(𝑇−𝑁)𝐵−1 −1
SNR4

. Note that since
𝑏 ∈ {1, 2, 3, 4} is the index of the states with busy channels,
we above have, for instance, 𝑝𝑏2 = 𝑝12 = 𝑝22 = 𝑝32 = 𝑝42.

Now, we can easily see that the 8×8 state transition matrix
can be expressed as

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝1,1 . . 𝑝1,8
. .

𝑝4,1 . . 𝑝4,8
𝑝5,1 . . 𝑝5,8
. .

𝑝8,1 . . 𝑝8,8

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝𝑏1 . . 𝑝𝑏8
. .

𝑝𝑏1 . . 𝑝𝑏8
𝑝𝑖1 . . 𝑝𝑖8
. .

𝑝𝑖1 . . 𝑝𝑖8

⎤⎥⎥⎥⎥⎥⎥⎦ . (41)

Note that 𝑅 has a rank of 2. Finally, we also note that 𝑇𝑟1
and 𝑇𝑟2 bits are transmitted and received in the ON states 1
and 5, and 3 and 7, respectively, while the transmitted number
of bits is assumed to be zero in the OFF states (i.e., in states
2, 4, 6, and 8).

VI. EFFECTIVE CAPACITY

In this section, we identify the maximum throughput that
the cognitive radio channel with the aforementioned state-
transition model can sustain under statistical QoS constraints
imposed in the form of buffer or delay violation probabilities.
Wu and Negi in [12] defined the effective capacity as the
maximum constant arrival rate that can be supported by a
given channel service process while also satisfying a statistical
QoS requirement specified by the QoS exponent 𝜃. If we define
𝑄 as the stationary queue length, then 𝜃 is defined as the decay
rate of the tail distribution of the queue length 𝑄:

lim
𝑞→∞

log Pr(𝑄 ≥ 𝑞)

𝑞
= −𝜃. (42)

Hence, we have the following approximation for the buffer vi-
olation probability for large 𝑞𝑚𝑎𝑥: Pr(𝑄 ≥ 𝑞𝑚𝑎𝑥) ≈ 𝑒−𝜃𝑞𝑚𝑎𝑥 .
Therefore, larger 𝜃 corresponds to more strict QoS constraints,
while the smaller 𝜃 implies looser constraints. In certain
settings, constraints on the queue length can be linked to
limitations on the delay and hence delay-QoS constraints. It is
shown in [13] that Pr{𝐷 ≥ 𝑑𝑚𝑎𝑥} ≤ 𝑐

√
Pr{𝑄 ≥ 𝑞𝑚𝑎𝑥} for
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𝑝11 = Pr
{

channel is busy and is detected busy,
and 𝑟1 < 𝑅1(𝑙) in the 𝑙𝑡ℎ frame

∣∣∣ channel is busy and is detected busy,
and 𝑟1 < 𝑅1(𝑙 − 1) in the (𝑙− 1)𝑡ℎ frame

}
(32)

= Pr
{

channel is busy
in the 𝑙𝑡ℎ frame

∣∣∣ channel is busy
in the (𝑙− 1)𝑡ℎ frame

}
× Pr

{
channel is detected busy

in the 𝑙𝑡ℎ frame

∣∣∣ channel is busy
in the 𝑙𝑡ℎ frame

}
× Pr {𝑟1 < 𝑅1(𝑙) ∣ 𝑟1 < 𝑅1(𝑙 − 1)} (33)

= (1− 𝑎)𝑃𝑑 Pr {𝑟1 < 𝑅1(𝑙) ∣ 𝑟1 < 𝑅1−1(𝑙)} (34)

= (1− 𝑎)𝑃𝑑 Pr {𝑧𝑙 > 𝛼1 ∣ 𝑧𝑙−1 > 𝛼1} (35)

= (1− 𝑎)𝑃𝑑 Pr {𝑧𝑙 > 𝛼1} (36)

= (1− 𝑎)𝑃𝑑 Pr {𝑧 > 𝛼1} (37)

For all 𝑏 ∈ {1, 2, 3, 4} and 𝑖 ∈ {5, 6, 7, 8},
𝑝𝑏2 = (1− 𝑎)𝑃𝑑 Pr {𝑧 ≤ 𝛼1} , 𝑝𝑖2 = 𝑏𝑃𝑑 Pr {𝑧 ≤ 𝛼1} ,
𝑝𝑏3 = (1− 𝑎)(1 − 𝑃𝑑) Pr {𝑧 > 𝛼2} , 𝑝𝑖3 = 𝑏(1− 𝑃𝑑) Pr {𝑧 > 𝛼2} ,
𝑝𝑏4 = (1− 𝑎)(1 − 𝑃𝑑) Pr {𝑧 ≤ 𝛼2} , 𝑝𝑖4 = 𝑏(1− 𝑃𝑑) Pr {𝑧 ≤ 𝛼2} ,
𝑝𝑏5 = 𝑎𝑃𝑓 Pr {𝑧 > 𝛼3} , 𝑝𝑖5 = (1− 𝑏)𝑃𝑓 Pr {𝑧 > 𝛼3} ,
𝑝𝑏6 = 𝑎𝑃𝑓 Pr {𝑧 ≤ 𝛼3} , 𝑝𝑖6 = (1− 𝑏)𝑃𝑓 Pr {𝑧 ≤ 𝛼3} ,
𝑝𝑏7 = 𝑎(1− 𝑃𝑓 ) Pr {𝑧 > 𝛼4} , 𝑝𝑖7 = (1− 𝑏)(1− 𝑃𝑓 ) Pr {𝑧 > 𝛼4} ,
𝑝𝑏8 = 𝑎(1− 𝑃𝑓 ) Pr {𝑧 ≤ 𝛼4} , 𝑝𝑖8 = (1− 𝑏)(1− 𝑃𝑓 ) Pr {𝑧 ≤ 𝛼4} ,

(40)

constant arrival rates, where 𝐷 denotes the steady-state delay
experienced in the buffer. In the above formulation, 𝑐 is a pos-
itive constant, 𝑞𝑚𝑎𝑥 = 𝑔𝑑𝑚𝑎𝑥 and 𝑔 is the source arrival rate.
Therefore, effective capacity provides the maximum arrival
rate when the system is subject to statistical queue length or
delay constraints in the forms of Pr(𝑄 ≥ 𝑞max) ≤ 𝑒−𝜃𝑞𝑚𝑎𝑥

or Pr{𝐷 ≥ 𝑑max} ≤ 𝑐 𝑒−𝜃𝑔 𝑑𝑚𝑎𝑥/2, respectively. Since the
average arrival rate is equal to the average departure rate when
the queue is in steady-state [22], effective capacity can also
be seen as the maximum throughput in the presence of such
constraints.

The effective capacity for a given QoS exponent 𝜃 is given
by

− lim
𝑡→∞

1

𝜃𝑡
log𝑒 𝔼{𝑒−𝜃𝑆(𝑡)} ≜ −Λ(−𝜃)

𝜃
(43)

where Λ(𝜃) = lim𝑡→∞ 1
𝑡 log𝑒 𝔼{𝑒𝜃𝑆(𝑡)} is a function that

depends on the logarithm of the moment generating function
of 𝑆(𝑡), 𝑆(𝑡) =

∑𝑡
𝑘=1 𝑟(𝑘) is the time-accumulated service

process, and {𝑟(𝑘), 𝑘 = 1, 2, . . . } is defined as the discrete-
time, stationary and ergodic stochastic service process. Note
that the service rate is 𝑟(𝑘) = 𝑇𝑟1 if the cognitive system is in
state 1 or 5 at time 𝑘. Similarly, the service rate is 𝑟(𝑘) = 𝑇𝑟2
in states 3 and 7. In all the OFF states, fixed transmission rates
exceed the instantaneous achievable rates, and outage occurs.
Therefore, the service rates in these states are effectively zero.

In the next result, we provide the effective capacity for the
cognitive radio channel and state transition model described
in the previous section.

Theorem 2: For the cognitive radio channel with the state
transition model given in Section V, the normalized effective
capacity in bits/s/Hz is given by (44) on the next page where
𝑇 is the frame duration over which the fading stays constant,
𝑟1 and 𝑟2 are fixed transmission rates, and 𝑝𝑏𝑘 and 𝑝𝑖𝑘 for
𝑘 = 1, . . . , 8, 𝑏 = 1, 2, 3, 4, and 𝑖 = 5, 6, 7, 8 are the transition
probabilities expressed in (39) and (40).

Proof: In [23, Chap. 7, Example 7.2.7], it is shown for

Markov modulated processes that

Λ(𝜃)

𝜃
=

1

𝜃
log𝑒 𝑠𝑝(𝜙(𝜃)𝑅) (45)

where 𝑠𝑝(𝜙(𝜃)𝑅) is the spectral radius or the maximum of
the absolute values of the eigenvalues of the matrix 𝜙(𝜃)𝑅,
𝑅 is the transition matrix of the underlying Markov process,
and 𝜙(𝜃) = diag(𝜙1(𝜃), . . . , 𝜙𝑀 (𝜃)) is a diagonal matrix
whose components are the moment generating functions of
the processes in 𝑀 states (𝑀 = 8 in our case). The rates
supported by the cognitive radio channel with the state tran-
sition model described in the previous section can be seen as
a Markov modulated process and hence the setup considered
in [23] can be immediately applied to our setting. Note that
the transmission rates are non-random and fixed in each
state in the cognitive channel. More specifically, the possible
rates are 𝑇𝑟1, 𝑇𝑟2, and 0 for which the moment generating
functions are 𝑒𝜃𝑇𝑟1 , 𝑒𝜃𝑇𝑟2 , and 1, respectively. Therefore, we
have 𝜙(𝜃) = diag{𝑒𝜃𝑇𝑟1, 1, 𝑒𝜃𝑇𝑟2, 1, 𝑒𝜃𝑇𝑟1, 1, 𝑒𝜃𝑇𝑟2, 1}. Then,
using (41), we can write

𝜙(𝜃)𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙1(𝜃)𝑝𝑏1 . . 𝜙1(𝜃)𝑝𝑏8
. .

𝜙3(𝜃)𝑝𝑏1 . . 𝜙3(𝜃)𝑝𝑏8
𝜙4(𝜃)𝑝𝑏1 . . 𝜙4(𝜃)𝑝𝑏8
𝜙5(𝜃)𝑝𝑖1 . . 𝜙5(𝜃)𝑝𝑖8

. .
𝜙8(𝜃)𝑝𝑖1 . . 𝜙8(𝜃)𝑝𝑖8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)

Since 𝜙(𝜃)𝑅 is a matrix with rank 2, we can readily obtain (47)
on the next page using the results in [24]. Then, combining
(47) with (45) and (43), we obtain the expression inside the
maximization on the right-hand side of (44). Note that this
expression is the effective capacity for given values of fixed
transmission rates 𝑟1 and 𝑟2 and of average power levels 𝑃 1

and 𝑃 2, and can be maximized by choosing the optimal values
of 𝑟1 and 𝑟2 over the optimized power allocation policy. This
maximization leads to the effective capacity formula given in
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𝑅𝐸(SNR, 𝜃) = max
𝑟1,𝑟2≥0

𝑃 1≤𝑃𝑝𝑒𝑎𝑘 and 𝑃 2≤𝑃𝑝𝑒𝑎𝑘

𝑃𝑑𝑃 1+(1−𝑃𝑑)𝑃 2≤𝑃𝑎𝑣𝑔

− 1

𝜃𝑇𝐵
log𝑒

(

1

2

[
(𝑝𝑏1 + 𝑝𝑖5)𝑒

−𝜃𝑇𝑟1 + (𝑝𝑏3 + 𝑝𝑖7)𝑒
−𝜃𝑇𝑟2 + 𝑝𝑏2 + 𝑝𝑏4 + 𝑝𝑖6 + 𝑝𝑖8

]
+

1

2

{[
(𝑝𝑏1 − 𝑝𝑖5)𝑒

−𝜃𝑇𝑟1 + (𝑝𝑏3 − 𝑝𝑖7)𝑒
−𝜃𝑇𝑟2

+ 𝑝𝑏2 + 𝑝𝑏4 − 𝑝𝑖6 − 𝑝𝑖8

]2
+ 4

(
𝑝𝑖1𝑒

−𝜃𝑇𝑟1 + 𝑝𝑖3𝑒
−𝜃𝑇𝑟2 + 𝑝𝑖2 + 𝑝𝑖4

)
× (𝑝𝑏5𝑒−𝜃𝑇𝑟1 + 𝑝𝑏7𝑒

−𝜃𝑇𝑟2 + 𝑝𝑏6 + 𝑝𝑏8
)} 1

2

)

(44)

𝑠𝑝(𝜙(𝜃)𝑅) =
1

2

[
𝜙1(𝜃)𝑝𝑏1 + ...+ 𝜙4(𝜃)𝑝𝑏4 + 𝜙5(𝜃)𝑝𝑖5 + ...+ 𝜙8(𝜃)𝑝𝑖8

]
+

1

2

{[
𝜙1(𝜃)𝑝𝑏1 + ...+ 𝜙4(𝜃)𝑝𝑏4 − 𝜙5(𝜃)𝑝𝑖5 − ...− 𝜙8(𝜃)𝑝𝑖8

]2

+ 4
(
𝜙1(𝜃)𝑝𝑖1 + ...+ 𝜙4(𝜃)𝑝𝑖4

)(
𝜙5(𝜃)𝑝𝑏5 + ...+ 𝜙8(𝜃)𝑝𝑏8

)} 1
2

=
1

2

[
(𝑝𝑏1 + 𝑝𝑖5)𝑒

𝜃𝑇𝑟1 + (𝑝𝑏3 + 𝑝𝑖7)𝑒
𝜃𝑇𝑟2 + 𝑝𝑏2 + 𝑝𝑏4 + 𝑝𝑖6 + 𝑝𝑖8

]
+

1

2

{[
(𝑝𝑏1 − 𝑝𝑖5)𝑒

𝜃𝑇𝑟1 + (𝑝𝑏3 − 𝑝𝑖7)𝑒
𝜃𝑇𝑟2 + 𝑝𝑏2 + 𝑝𝑏4 − 𝑝𝑖6 − 𝑝𝑖8

]2

+ 4

(
𝑝𝑖1𝑒

𝜃𝑇𝑟1 + 𝑝𝑖3𝑒
𝜃𝑇𝑟2 + 𝑝𝑖2 + 𝑝𝑖4

)(
𝑝𝑏5𝑒

𝜃𝑇𝑟1 + 𝑝𝑏7𝑒
𝜃𝑇𝑟2 + 𝑝𝑏6 + 𝑝𝑏8

)} 1
2

. (47)

(44). Note also that we have normalized the effective capacity
expression in (44) by 𝑇𝐵 to have it in the units of bits/s/Hz.
□

Remark 1: If sensing is perfect with no errors, i.e., 𝑃𝑑 = 1
and 𝑃𝑓 = 0, the transition probabilities, 𝑝𝑏3, 𝑝𝑏4, 𝑝𝑏5, 𝑝𝑏6 and
𝑝𝑖3, 𝑝𝑖4, 𝑝𝑖5, 𝑝𝑖6 in the effective capacity expression in (44) all
become zero. If we further assume that the primary user activ-
ity changes independently from one state to another across the
frames and set 𝑎 = 1−𝑏 in the two-state Markov model in Fig.
3, then the objective function in the maximization in (44) sim-
plifies to − 1

𝜃𝑇𝐵 log𝑒
(
𝑝𝑏1𝑒

−𝜃𝑇𝑟1 + 𝑝𝑖7𝑒
−𝜃𝑇𝑟2 + 𝑝𝑏2 + 𝑝𝑖8

)
.

Note also that if sensing is perfect, then, as also discussed
below in the numerical results, it can be easily seen that
the optimal power levels are 𝑃 1 = 𝑃 𝑎𝑣𝑔 and 𝑃 2 = 𝑃 𝑝𝑒𝑎𝑘
whenever 𝑃 𝑎𝑣𝑔 < 𝑃 𝑝𝑒𝑎𝑘 . Therefore, the effective capacity in
this case is characterized by obtaining the optimal fixed rate
values 𝑟1 and 𝑟2 that maximize the above simplified objective
function.

VII. NUMERICAL RESULTS

In this section, we present the numerical results. In our
simulations, we assume that the fading coefficients are zero-
mean Gaussian random variables with unit variance, 𝜎2

ℎ = 1.

Unless stated otherwise, we also assume 𝑇 = 0.1 seconds,
𝑁 = 0.01 seconds, 𝐵 = 1000 Hz, 𝜎2

𝑛 = 1, 𝜎2
𝑠 = 1, 𝜃 = 0.1,

𝑎 = 0.9, 𝑏 = 0.1, and 𝜂1 = 𝜂2 = 0.1, and we consider
that mismatch MMSE with estimates given in (12) – (15) is
employed in the training phase. Moreover, we set 𝑃 𝑝𝑒𝑎𝑘 = 10
dB.

In Figure 4, we display the optimal effective capacity as a
function of the probability of detection, 𝑃𝑑, for different values
of 𝑃𝑎𝑣𝑔 . As expected, with increasing 𝑃𝑎𝑣𝑔 , the effective
capacity value increases. Note also that probability of false
alarm 𝑃𝑓 is displayed in the second half of Fig. 4. It is clear
that the maximum effective capacity values are obtained when
𝑃𝑑 is close to 0.9. As 𝑃𝑑 further increases and approaches
1, we notice in the lower plot in Fig. 4 that false-alarm
probability increases to 1 as well. Hence, the secondary users
start to regard the channel busy all the time and performance
degradations are experienced because of not being able to take
advantage of idle channel states. In Fig. 5, the optimal values
of 𝑃 1 and 𝑃 2 for different values of 𝑃𝑎𝑣𝑔 are displayed
again as a function of 𝑃𝑑. Recall that 𝑃 1 and 𝑃 2 are the
transmission power levels when the channel is sensed as busy
and idle, respectively. First, we note that generally the power
levels increase with increasing detection probability values.
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Fig. 4. Upper Figure: Effective capacity vs. detection probability 𝑃𝑑 for
different values of 𝑃𝑎𝑣𝑔 . Lower Figure: False alarm probability 𝑃𝑓 vs. 𝑃𝑑.
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Fig. 5. Optimal values of 𝑃1 and 𝑃2 vs. detection probability 𝑃𝑑 for different
values of 𝑃𝑎𝑣𝑔.

Also, we see in the figure that 𝑃 2 is generally larger than
𝑃 1. Hence, more power is allocated to cases in which the
channel is detected as idle. As 𝑃𝑑 increases, we note from (10)
that the constraint on 𝑃 2 relaxes since 𝑃 2 is multiplied by a
smaller weight (1−𝑃𝑑). Consequently, 𝑃 2 increases. Indeed,
as 𝑃𝑑 → 1, the only constraint on 𝑃 2 is 𝑃 2 ≤ 𝑃 𝑝𝑒𝑎𝑘 = 10
dB. Hence, the optimal value is 𝑃 2 = 𝑃 𝑝𝑒𝑎𝑘, and we actually
observe in the figure that all 𝑃 2 curves converge to 10 dB
as 𝑃𝑑 approaches 1. On the other hand, as 𝑃𝑑 → 1, (10)
becomes 𝑃 1 ≤ 𝑃 𝑎𝑣𝑔 . Since 𝑃 𝑎𝑣𝑔 < 𝑃 𝑝𝑒𝑎𝑘 = 10 dB, the
only active constraint on 𝑃 1 is 𝑃 1 ≤ 𝑃 𝑎𝑣𝑔 and it is noted in
the figure that 𝑃 1 approaches the optimal value 𝑃 𝑎𝑣𝑔 as 𝑃𝑑
increases to 1. On the other hand, we interestingly observe
that for relatively low values of 𝑃 𝑎𝑣𝑔 (e.g., 𝑃 𝑎𝑣𝑔 = 0, 2 dB),
we have 𝑃 1 = 0 if 𝑃𝑑 is below a certain threshold. Hence, no
transmission is performed when the channel is sensed as busy.
As 𝑃𝑑 further decreases and approaches 0, the secondary users
always miss the primary user activities, and (10) becomes
𝑃 2 ≤ 𝑃 𝑎𝑣𝑔 , which is, similarly as discussed above, is the
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Fig. 6. Optimal values of 𝑟1 and 𝑟2 vs. detection probability 𝑃𝑑 for different
values of 𝑃𝑎𝑣𝑔 .
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Fig. 7. Effective capacity vs. 𝜂2, the fraction of total power allocated to the
pilot symbol when the channel is sensed as idle, for different values of 𝑃𝑎𝑣𝑔.
𝜂1 is kept fixed at 0.1.

only active constraint for 𝑃 2. Indeed, 𝑃 2 curves approach the
corresponding 𝑃 𝑎𝑣𝑔 values as 𝑃𝑑 → 0.

In Fig. 6, we show the optimal fixed transmission rates 𝑟1
and 𝑟2 as a function of 𝑃𝑑 for different values of 𝑃 𝑎𝑣𝑔 . Note
that the optimal transmission rates are obtained at optimal
power levels. We observe that 𝑟2, the transmission rate when
the channel is detected as idle, is larger than 𝑟1. In general,
we note similar trends as in Fig. 5.

In Fig. 7, we plot the effective capacity as a function of 𝜂2,
the fraction of the total power allocated to the pilot symbol
when the channel is sensed as idle. We assume 𝜂1 = 0.1.
We again consider the average power levels of 𝑃 𝑎𝑣𝑔 = 0, 2,
and 5 dB. Interestingly, we observe that the optimal value
of 𝜂2 is 0.1 regardless of the average power level when the
value of 𝜂1 is fixed at 0.1. In this figure, we have 𝑃𝑑 = 0.92
and 𝑃𝑓 = 0.24. In Fig. 8, effective capacity vs. 𝜂2 is again
plotted but this time for different 𝜂1 values. Here, we see that
the optimal value of 𝜂2 is 0.1 when 𝜂1 = 0.1, 0.3, or 0.5.
In Fig. 9, the symmetric scenario is considered and effective
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pilot symbol when the channel is sensed as idle, for different values of 𝜂1.
𝑃 𝑎𝑣𝑔 = 5 dB.
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Fig. 9. Effective capacity vs. 𝜂1, the fraction of total power allocated to the
pilot symbol when the channel is sensed as busy, for different values of 𝜂2.
𝑃 𝑎𝑣𝑔 = 5 dB.

capacity is plotted as a function of 𝜂1 for different values of
𝜂2. In this figure, we have the optimal fraction as 𝜂1 = 0.13
regardless of the values of 𝜂2. These numerical results suggest
a certain level of decoupling between the optimal choices of
the fractions of power allocated to training when channel is
sensed as busy or idle.

Finally, we consider the case in which 𝜂1 = 𝜂2 = 𝜂, i.e.,
fraction of power allocated to the pilot symbols is assumed to
be the same regardless of the sensing result. In Fig. 10, we
plot 𝜂 vs. 𝑃𝑑, and observe that the fraction of power allocated
to training increases with increasing 𝑃𝑑. This behavior can
be attributed to the observation that as 𝑃𝑑 increases, the
available transmission power levels 𝑃 1 and 𝑃 2 also increase
as evidenced in Fig. 5. Therefore, the transmitter at these
increased power levels can afford higher percentage of the
available power to be allocated to training. In addition, this
increase in training power results in much better channel
estimates as the uncertainty in additive disturbance has already
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Fig. 10. 𝜂 = 𝜂1 = 𝜂2, the fraction of total power allocated to the pilot
symbol, vs detection probability 𝑃𝑑. 𝑃 𝑎𝑣𝑔 = 5 dB.
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Fig. 11. Effective Capacity vs. 𝑃𝑎𝑣𝑔 when 𝑚 − 𝑚𝑚𝑠𝑒 and 𝑙 − 𝑚𝑚𝑠𝑒
estimation techniques are employed.

diminished with higher reliability in sensing.
Heretofore in the numerical results, we have assumed that

mismatched MMSE is employed at the receiver. In Figs. 11
and 12, we compare the effective capacity values obtained
using mismatched MMSE and linear MMSE techniques. In
Fig. 11, we plot the effective capacity vs. 𝑃 𝑎𝑣𝑔 curve. We
notice that linear MMSE provides a slightly better perfor-
mance for low 𝑃 𝑎𝑣𝑔 . The performance gap vanishes as 𝑃 𝑎𝑣𝑔
increases. In Fig. 12, a similar conclusion is also reached. In
this figure, we also observe that linear MMSE provides gains
especially when the detection probability 𝑃𝑑 is high. Note that
this is another interesting observation indicating the strong
interactions between channel sensing and channel estimation.

VIII. CONCLUSION

In this paper, we have analyzed the effective capacity of
cognitive radio channels in the presence of QoS constraints,
channel uncertainty, and transmission power limitations. We
have considered a system model in which the cognitive SUs
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Fig. 12. Effective capacity vs. detection probability 𝑃𝑑 for different values of
𝑃𝑎𝑣𝑔 when 𝑚−𝑚𝑚𝑠𝑒 and 𝑙−𝑚𝑚𝑠𝑒 estimation techniques are employed.

initially perform channel sensing and estimation, and subse-
quently transmit data. Channel sensing is done through energy
detection and is formulated as a hypothesis testing problem.
We have considered different estimation techniques, namely,
mismatched MMSE, linear MMSE, and MMSE, in the training
phase. In this setting, we have identified the interactions
between channel sensing and estimation. In particular, we have
noted that sensing errors lead to degradations in the estimation
results. We have also shown that imperfections in sensing
complicate MMSE estimation, and suboptimal techniques such
as mismatched and linear MMSE enable tractable analysis.

In the data transmission phase, we have assumed that the
transmitter, not being aware of the channel conditions, send
the data at fixed power and rate. We have further assumed that
these transmission parameters depend on whether the channel
is sensed as busy or idle. For this cognitive operation, we
have constructed a state-transition model by considering the
reliability of the transmissions, channel sensing decisions and
their correctness, and the evolution of primary user activity
which is modeled as a two-state Markov process. We have
formulated the transition probabilities in this model. Then,
for the constructed state-transition model, we have obtained
an expression for the effective capacity and identified the
maximum throughput in the presence of buffer constraints. We
have performed a numerical analysis and shown the impact of
several parameters such as detection and false probabilities,
average power constraints, training power value, on the per-
formance. We have determined the optimal transmission power
and rate levels. We have also compared the performances of
linear and mismatched MMSE estimation methods.

APPENDIX

A. Proof of Theorem 1

In the cognitive scenario we are considering, the signal
received by the receiver in the training phase is

𝑦 =

{ √
𝑃𝑡ℎ+ 𝑛+ 𝑠 if the channel is busy√
𝑃𝑡ℎ+ 𝑛 if the channel is idle

. (48)

Note that we assume that 𝑛 and 𝑠 are independent complex
Gaussian random variables with zero-mean and variances 𝜎2

𝑛

and 𝜎2
𝑠 , respectively. Therefore, the variance of the noise

component6 is either 𝜎2
𝑛+𝜎2

𝑠 or 𝜎2
𝑛, depending on whether the

channel is busy or idle. Since the receiver does not perfectly
know the state of the primary user activity and only has a guess
through channel sensing, the noise variance, 𝜎2, is random
taking two values: 𝜎2

𝑛+𝜎2
𝑠 and 𝜎2

𝑛. Now, the MMSE estimate
in the presence of uncertainty in the noise statistics is obtained
as follows:

ℎ̂𝑚𝑚𝑠𝑒 = 𝔼{ℎ∣𝑦} (49)

= 𝑃 (𝜎2 = 𝜎2
𝑛 ∣ 𝑦)𝔼{ℎ ∣ 𝑦, 𝜎2 = 𝜎2

𝑛}
+ 𝑃 (𝜎2 = 𝜎2

𝑛 + 𝜎2
𝑠 ∣ 𝑦)𝔼{ℎ ∣ 𝑦, 𝜎2 = 𝜎2

𝑛 + 𝜎2
𝑠}
(50)

= 𝑃{𝜎2 = 𝜎2
𝑛 ∣ 𝑦}

√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛

𝑦

+ 𝑃{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠 ∣ 𝑦}
√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ + 𝜎2

𝑛 + 𝜎2
𝑠

𝑦. (51)

Above, (50) is obtained by using the following property of
conditional expectation: 𝔼{𝑋 ∣ 𝑌 } = 𝔼{𝔼{𝑋 ∣ 𝑌, 𝑍} ∣ 𝑌 }
where the outer expectation on the right-hand side is with
respect to the conditional distribution of 𝑍 given 𝑌 . In our
setting, 𝑍 is the noise variance. Hence, the above formulation
indicates that we can find the MMSE estimate by evaluat-
ing the average of the MMSE estimates with fixed noise
variances with respect to the conditional distribution of the
noise variance given the observation. This is indeed what
is done in (50). (51) is obtained by noting that once the
noise variance is fixed, the MMSE estimates in a Gaussian
setting are given by 𝔼{ℎ ∣ 𝑦, 𝜎2 = 𝜎2

𝑛} =
√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ+𝜎

2
𝑛
𝑦 and

𝔼{ℎ ∣ 𝑦, 𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠} =
√
𝑃𝑡𝜎

2
ℎ

𝑃𝑡𝜎2
ℎ+𝜎

2
𝑛+𝜎

2
𝑠
𝑦.

Next, we provide the expressions for the conditional prob-
abilities using Bayes’ rule:

𝑃{𝜎2 = 𝜎2
𝑛 ∣ 𝑦} =

𝑃{𝜎2 = 𝜎2
𝑛}𝑓(𝑦∣𝜎2 = 𝜎2

𝑛)

𝑓(𝑦)
,

𝑃{𝜎2 = 𝜎2
𝑛 + 𝜎2

𝑠 ∣ 𝑦} =
𝑃{𝜎2 = 𝜎2

𝑛 + 𝜎2
𝑠}𝑓(𝑦∣𝜎2 = 𝜎2

𝑛 + 𝜎2
𝑠)

𝑓(𝑦)
.

Given the value of the noise variance 𝜎2, 𝑦 is conditionally
Gaussian distributed with zero mean and variance 𝜎2, as
can be immediately seen from the relations in (48). These
conditional Gaussian distributions are provided in (20) and
(21) in Section IV-A. 𝑓(𝑦) is the average of the conditional
distributions and hence is given by (22). The prior probability
of the noise variance depends on the channel sensing result.
For instance, let us assume that the channel is detected as
busy. Then, 𝑃{𝜎2 = 𝜎2

𝑛} can be obtained as in (55) on the
next page. Note that having 𝜎2 = 𝜎2

𝑛 means that there are
no primary users in the channel and hence channel is idle.
By our assumption, channel is detected as busy. Therefore,
𝑃{𝜎2 = 𝜎2

𝑛} is equal to the conditional probability 𝑃{channel
is idle ∣

channel
is detected busy}. Then, the expression in (55) is obtained by
noting that 𝑃{channel

is idle } = 𝑎
𝑎+𝑏 and 𝑃{channel

is busy} = 𝑏
𝑎+𝑏 , which can

be derived easily from the two-state Markov chain used for pri-

6Noise component is 𝑛 + 𝑠 when the channel is busy, and 𝑛 when the
channel is idle.
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𝑃{𝜎2 = 𝜎2
𝑛} = 𝑃{channel

is idle ∣ channel
is detected busy} (52)

=
𝑃{channel

is idle }𝑃{ channel is
detected busy ∣ channel

is idle }
𝑃{ channel is

detected busy}
(53)

=
𝑃{channel

is idle }𝑃{ channel is
detected busy ∣ channel

is idle }
𝑃{channel

is idle }𝑃{ channel is
detected busy ∣ channel

is idle }+ 𝑃{channel
is busy}𝑃{ channel is

detected busy ∣ channel
is busy}

(54)

=
𝑎
𝑎+𝑏𝑃𝑓

𝑎
𝑎+𝑏𝑃𝑓 +

𝑏
𝑎+𝑏𝑃𝑑

=
𝑎𝑃𝑓

𝑎𝑃𝑓 + 𝑏𝑃𝑑
(55)

mary user activity, and by realizing that 𝑃{ channel is
detected busy ∣ channel

is idle }
is the false alarm probability 𝑃𝑓 and 𝑃{ channel is

detected busy ∣ channel
is busy} is

the detection probability 𝑃𝑑. The expressions in (18) and (19)
for the other cases are obtained using a similar approach.
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