2014

Antiproliferative activity of novel imidazopyridine derivatives on castration-resistant human prostate cancer cells

Sakthivel Muniyan
University of Nebraska Medical Center

Yu-Wei Chou
University of Nebraska Medical Center

Matthew A. Ingersoll
University of Nebraska Medical Center

Alexus Devine
Clark Atlanta University

Marisha Morris
Clark Atlanta University

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/nasapub

http://digitalcommons.unl.edu/nasapub/159

This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Antiproliferative activity of novel imidazopyridine derivatives on castration-resistant human prostate cancer cells

Sakthivel Muniyan, Yu-Wei Chou, Matthew A. Ingersoll, Alexus Devine, Marisha Morris, Valerie A. Odero-Marah, Shafiq A. Khan, William G. Chaney, Xiu R. Bu, Ming-Fong Lin

*Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
b Kaohsiung Chang Gang Memorial Hospital, Kaohsiung, Taiwan, ROC
c Department of Chemistry, Clark Atlanta University, Atlanta, GA, USA
d Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, USA
e Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
f Laboratory for Electro-Optical Materials & NASA Center for High Performance Polymers and Composites, Clark Atlanta University, Atlanta, GA, USA
g Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
h Department of Surgery/Urology, University of Nebraska Medical Center, Omaha, NE, USA
i School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC

Corresponding author. Address: Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA. Tel.: +1 402 559 6658; fax: +1 402 559 6650.

E-mail address: mlin@unmc.edu (M.-F. Lin).

Article info

Article history:
Received 18 May 2014
Received in revised form 28 June 2014
Accepted 3 July 2014

Keywords:
Prostate cancer
Imidazopyridine
Androgen receptor
P38/PI3K/Akt
p66Shc

Abstract

Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa.

© 2014 Elsevier Ireland Ltd. All rights reserved.

Introduction

Prostate cancer (PCa) is the second leading cause of cancer deaths in United States men [1]. Androgen-deprivation therapy (ADT) has been the mainstay of treatment towards patients with metastatic PCa [2,3]. Although most of PCa respond well to ADT initially, most PCa relapse and become the castration-resistant (CR) PCa [2,3]. CR PCa is lethal with about 18-month median survival time [4]. Currently, chemotherapy is the standard-of-care treatment for CR PCa. Nevertheless, it only provides a minimal improvement in survival. Hence, the prime need is to identify a novel therapeutic agent to improve the efficacy of CR PCa treatment.

Imidazopyridine derivatives are a class of novel compounds which have aromatic aldehydes and a pyridine group, and possess medicinal importance [5–7]. Recent studies show imidazopyridine derivatives exhibit potent antitumor activity against breast and pancreatic cancers [8,9]. Nevertheless, no report is currently available on the antiproliferative effect of imidazopyridine derivatives on CR PCa. Therefore, the present study is undertaken to synthesize a series of novel imidazopyridine derivatives and to investigate their antiproliferative effect against a panel of PCa cancer cell lines including both AR-positive and AR-negative AI PCa cells which...
exhibit diverse phenotypes of CR Pca. Our results show that imidazopyridine derivatives inhibit CR Pca cell proliferation, decrease migration and in vitro tumorigenicity. Our data, to the best of our knowledge, is the first report that clearly shows the potential of this family of compounds to serve as effective molecules towards CR Pca treatment by inhibiting AR and PI3K/Akt signaling.

Materials and methods

Materials

RPMI 1640, Keratinoocyte SFM medium, gentamicin, and l-glutamine were from Invitrogen (Carlsbad, CA, USA). Fetal bovine serum (FBS) and charcoal/dextran-treated FBS were purchased from Atlanta Biologicals (Lawrenceville, GA, USA). Polyclonal antibodies (Abs) recognizing all three isoforms of Src protein were obtained from Upstate (Lake Placid, NY, USA). Anti-cyclin B1, anti-cyclin D1, anti-AR, anti-Bax, anti-Bcl2, anti-PCNA, anti-p53, anti-PSA and horseradish peroxidase-conjugated anti-mouse, anti-rabbit, anti-goat IgG Abs and Akt inhibitor (MK2206) were all from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-phospho-Akt (Ser473) and anti-Akt Abs were from Cell Signaling Technology (Beverly, MA, USA). Anti-actin Ab and DHT were obtained from Sigma (St. Louis, MO, USA). P13K inhibitor (LY294002) was obtained from Calbiochem (San Diego, CA, USA).

Synthesis of imidazopyridines

The synthesis of the imidazopyridine compounds were essentially followed the protocol described in our previous publication [7]. All the reactions were performed in flame-dried glassware under the nitrogen environment using freshly diluted solvents. All the chemicals and solvents were used as received. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded with TMS as an internal standard for all the experiments. The C, H, and N contents were obtained through combustion analysis. All the chemicals and solvents were used as received. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded with TMS as an internal standard for all the experiments. All the chemicals and solvents were used as received. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded with TMS as an internal standard for all the experiments. All the chemicals and solvents were used as received. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra were recorded with TMS as an internal standard for all the experiments. All the chemicals and solvents were used as received.
were removed and attached cells were fed with fresh regular medium with or without respective compounds. 2 ml of fresh medium containing respective compound were added into each well on days 5 and 8. On day 10, the attached cells were stained with 0.2% crystal violet solution containing 50% methanol.

The anchorage-independent growth of cells was determined by soft agar analysis with modifications [18]. Briefly, 5 x 10^5 cells were seeded in 0.25% agarose on the top of a base layer containing 0.3% agarose. One day after seeding, cell clumps containing more than one cell were excluded from the study, and the cells were fed with fresh medium containing respective treatment compounds once in every 3 days. The colony number was counted after 4 weeks of incubation at 37 °C. Alternatively, the colonies were stained with 0.1% crystal violet solution containing 20% methanol and counted.

Statistical analysis

Each set of experiments was performed in duplicate or triplicate, as specified in the figure legend or experimental design, repeated at least two or three times as independent experiments. The mean and standard error values of experimental results were calculated. A student-t test was used for comparison between each group. p < 0.05 was considered statistically significant [18]. The relationship between the relative ratios of cell proliferation and the dosage of compounds was evaluated by their correlation coefficient (r). The correlation was considered significant when the p-value was less than 0.05.

Results

Anti-proliferative effect of imidazopyridine derivatives on LNCaP C-81 PCa cells

To determine the anti-proliferative effect of imidazopyridine derivatives, a cell proliferation assay was initially performed in LNCaP C-81 PCa cells because these cells exhibit many biochemical properties of the advanced CR PCa phenotype [12–14]. After 72 h treatment with 10 μM imidazopyridine derivatives in the regular cell culture medium, all three compounds PHE, AMD and AMN reduced cell proliferation by an average of 42%, 53% and 18%, respectively (Fig. 2A). The antiproliferative activity of these compounds respectively correlated with decreased protein levels of proliferation markers cyclin B1, cyclin D1 and PCNA in those cells (Fig. 2B). In AMD-treated LNCaP C-81 cells, AR protein level was also decreased and tumor suppressor p53 and proapoptotic protein Bax were elevated (Fig. 2B). Since AMD exhibited the highest inhibitory activity among the three compounds examined, AMD compound was used for further experiments.

Dose- and time-dependent effects of AMD on LNCaP C-81 cells

We examined the dose-dependent effect of AMD on LNCaP C-81 cells. Upon treated with 0–10 μM AMD for 72 h, cell growth was analyzed. In regular culture media, AMD inhibited LNCaP C-81 cell growth in a dose-dependent manner (Fig. 2C). 10 μM AMD inhibited 54% cell growth and were used in future experiments.

To determine the kinetic effect of AMD, at each time point, cells in triplicates from each group were harvested and cell number was evaluated. The mean and standard error values of experimental results were calculated. A student-t test was used for comparison between each group. p < 0.05 was considered statistically significant [18]. The relationship between the relative ratios of cell proliferation and the dosage of compounds was evaluated by their correlation coefficient (r). The correlation was considered significant when the p-value was less than 0.05.

Antiproliferative effect of AMD on AR-positive and AR-negative PCa cells in comparison with immortalized normal prostate epithelial cells

The growth suppressive efficacy of 10 μM AMD was evaluated in a panel of AI cells including both AR-positive (LNCaP C-81 and MDA PcA2b AI) and AR-negative (PC-3 and DU145) PCa cells. Significant growth inhibition on all PCa cells tested was observed at 10 μM AMD (Fig. 2E). Notably, 10 μM AMD had only approximately 10% effect on the proliferation of immortalized normal prostate epithelial RWPE1 and PZHPV-7 cells (Fig. 2E). Together, our results showed that AMD exhibits potent inhibitory activity on AI PCa cell growth, but not normal prostate epithelia.

Comparative effects of AMD and DME in LNCaP C-81 cells

To improve the efficacy of AMD on inhibiting AI PCa cell growth, the amino functional group of AMD was modified and a new derivative DME was obtained (Fig. 1). Preliminary experiments revealed that 10 μM DME of 72 h-treatment decreased LNCaP C-81 cell proliferation by up to 88% (p < 0.001 vs. control, data not shown); while AMD inhibited cell growth by about 55% (data not shown and Fig. 2A). We then examined the dose-dependent effect of DME on LNCaP C-81 cells for 72 h. Our results showed both AMD and DME inhibit cell growth in a dose-dependent manner (Fig. 3A vs. 2C). In regular culture media, the efficacy of growth inhibition by DME was about two fold that of AMD (Fig. 3) with IC50 value of about 3.9 μM and 7.5 μM, respectively.

We analyzed the effect of AMD and DME in a SR medium containing 1 nM DHT, which mimics the clinical condition under androgen deprivation treatment. The same trend of dose-dependent inhibition was observed despite the inhibitory activity was decreased (Fig. 3B). In SR conditions, DME inhibited cell growth with IC50 of 6.3 μM, comparing with 11.4 μM of AMD. We thus performed further studies on AMD and DME at 10 μM in SR condition for clinical relevance.

Effects of AMD and DME on cell migration and in vitro tumorigenicity

The effects of AMD and DME on PCa cell migration were assessed by a wound healing assay with PC-3 cells as the model system since C-81 cells exhibit slow-migration (data not shown). As shown in Fig. 4A, both AMD and DME significantly inhibited PC-3 cell migration. After 12 h, 50–60% of the wound area remained open in AMD- and DME-treated cells, while the wound in solvent-treated control group was completely closed (p < 0.01 with control).

To explore the anti-tumorigenic potential of AMD and DME, a clonogenic assay was performed on LNCaP C-81 cells. As shown in Fig. 4B, after 10 day-treatment, both AMD and DME inhibited clonogenic growth. In comparison, DME inhibited clonogenic growth at all cell densities examined, while AMD had less inhibitory activity with colonies clearly seen in 2000 cells/well. Nevertheless, the size of AMD-treated colony was dramatically reduced, much smaller than controls.

An in vitro anchorage-independent soft agar assay was performed on LNCaP C-81 cells. As shown in Fig. 4C and D, after 4-week cultured at a density of 5000 cells per 35 mm dish there was visible colony formation in solvent-treated control groups. AMD treatment decreased the soft agar colony number by about 50%, and DME treatment inhibited over 90% (Fig. 4D). Further, both AMD and DME greatly reduced the size of colonies. Therefore, both AMD and DME exhibit anti-tumorigenic effects on both AI PC-3 and LNCaP C-81 cells (Fig. 4).

Kinetics of AMD and DME on LNCaP C-81 cell proliferation in SR condition

We investigated the kinetics of AMD and DME on LNCaP C-81 cell proliferation in SR conditions. As shown in Fig. 5A, after 3-day treatment in SR conditions, both AMD and DME significantly inhibited the growth of LNCaP C-81 cells, and DME exhibited a better efficacy than AMD. It should be noted that in SR conditions,
while control cells continuously grew on days 3 and 5, the cell number of AMD- and DME-treatment declined. Upon 5-day DME-treatment, the cell number was even lower than the pre-treatment day 0 cell number. The decrease in cell growth was reflected by cyclin D1 protein level (Fig. 5B).

Effects of AMD and DME on AR and Shc level in SR conditions

Since the majority of CR PCa cells still express functional AR for their growth requirement [19], we analyzed AR protein level in AMD- and DME-treated LNCaP C-81 cells under SR condition.

Fig. 2. Effects of imidazopyridine derivatives on the growth of PCa cells in regular culture conditions. A. LNCaP C-81 cells were plated in six-well plates at 2×10^3 cells/cm2 in regular medium for 3 days, then 10 μM each of imidazopyridine derivatives (PHE, AMN and AMD) in fresh medium were added for 72 h. Cells were trypsinized and counted for live cell number. The results presented were mean ± SD; $n = 2 \times 3$. *** $p < 0.001$. B. Total cell lysate proteins from imidazopyridine derivatives-treated C-81 cells were analyzed for AR, p53, Bax, cyclin B1, cyclin D1, PCNA proteins. β-actin protein level was analyzed and used as a loading control. C. The dose-dependent effect of AMD on LNCaP C-81 cell growth in regular culture medium. Cells were plated in six-well plates at 2×10^3 cells/cm2 in regular medium for 3 days and then treated with different concentrations of AMD in fresh medium. After 3 days, cells were trypsinized and counted for cell growth. The results presented were mean ± SD; $n = 2 \times 3$. *** $p < 0.001$. D. Time-dependent effect of AMD on LNCaP C-81 cell growth in regular culture condition. Cells were plated in six-well plates at 2×10^3 cells/cm2 in regular medium for three days, then 10 μM AMD were added. One set of cells in triplicates was harvested after 1, 3 and 5 days, and counted for cell growth. The fresh medium was added to remaining cells on days 1 and 3. The results presented were mean ± SE; $n = 2 \times 3$. * $p < 0.05$; ** $p < 0.01$. E. Effects of AMD on the growth of various PCa cells and immortalized prostate epithelial cells. All cells were plated in six-well plates at the noted density in their respective medium for 3 days, then fresh media plus 10 μM AMD were added. After 3 days cells were trypsinized and counted for cell number. The results presented were mean ± SE; $n = 2 \times 3$. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$. RWPEI – 4×10^3 cells/cm2; PZ-HPV-7 – 6×10^3 cells/cm2; LNCaP C-81 – 2×10^3 cells/cm2; MDA PCa2b AI – 3×10^5 cells/cm2; PC-3 – 2×10^5 cells/cm2; DU145 – 2×10^5 cells/cm2.

59–67
Thus, AMD- and DME-treatments decrease AR signaling. The protein level of p66Shc, a 66 kDa Src homologous-collagen homologue (Shc), is involved in regulating the proliferation of several carcinoma cells including PCa cells and can be up-regulated by steroids [20–23]. Fig. 5B showed the protein level of p66Shc but not p52Shc or p46Shc was decreased in 3-day and 5-day AMD- and DME-treated cells. The decreased p66Shc protein level correlates with diminished cell proliferation, AR and cyclin D1 protein levels.

Apoptotic effects of AMD and DME

We investigated whether AMD and DME suppress cell growth in part by inducing cell apoptosis since the 5-day DME-treated cell number was lower than the day 0 control. Bcl-X_l, an anti-apoptotic factor [24], and Bax, a proapoptotic protein [25], were analyzed in AMD- and DME-treated cells. Treatment of LNCaP C-81 cells with AMD and DME caused time-dependent upregulation of Bax protein seen at day 3 and day 5 (Fig. 5C). At day 5, p53 protein, a tumor suppressor, was also elevated in both AMD- and DME-treated cells (Fig. 5C). In parallel, AMD and DME treatments caused a significant decrease of Bcl-X_l protein, compared to untreated control cells (Fig. 5C). These results together indicate that induction of apoptosis is one mechanism by which imidazopyridine derivatives induce growth suppression in PCa cells under steroid-reduced conditions.

Effect of AMD and DME on AR and PI3K/Akt signaling

Akt activation due to loss of PTEN activity can potentially support CR PCa formation [26–28]. In parallel, aberrant AR signaling plays a critical role in CR PCa progression [19,29,30]. Hence, it is proposed that the combined inhibition of AR and PI3K/Akt can effectively improve the therapeutic efficacy in CR PCa patients. We determined whether AMD and DME can inhibit PI3K/Akt by examining S473 phosphorylation of Akt in LNCaP C-81 cells in which Akt is fully activated by S473 phosphorylation [16]. We used PI3K and Akt inhibitors for comparison. Fig. 6 showed that AMD and DME treatments decreased the S473-phosphorylation of Akt in addition to decreased AR and PSA proteins in LNCaP C-81 cells (Figs. 5B and 6). As expected, both PI3K and Akt inhibitors respectively reduced Akt(S473) phosphorylation (Fig. 6). Interestingly, Akt inhibition greatly increased cellular prostatic acid phosphatase (cPAP) level, a tumor suppressor gene in PCa [31], but not PI3K inhibition (Fig. 6). Unexpectedly, AR protein level was respectively elevated following PI3K and Akt inhibitor treatments (Fig. 6). The elevated AR expression level was corroborated by the increased cellular PSA level.

Discussion

In androgen-dependent cells, upon androgen binding, AR is activated and then translocated to nucleus for gene regulation, resulting in cell growth and survival [29,30,32]. Nevertheless, CR PCa cells, which still require functional AR, evade ligand-dependent and ligand-independent mechanisms that allow cells to survive in an androgen-depleted environment [14,29,30,32–34]. Thus, targeting multi-functional molecules simultaneously can improve the efficacy of therapy.

In the present study, LNCaP C-81 cells were used as the primary cell model for our studies because these cells exhibit many properties of CR PCa [12–14,33]. We first demonstrated the antiproliferative efficacy of three novel imidazopyridine derivatives on LNCaP C-81 cells (Fig. 2). Among them, AMD effectively inhibits the cell growth evidenced by decreased cell number and cyclin protein levels (Fig. 2). Further, Bax and p53, a Bax transcription factor [34], are upregulated in AMD-treated cells. Hence, AMD inhibits cell proliferation. Importantly, while AMD has a broad spectrum of antiproliferative activity in both AR-positive and AR-negative AI PCa cells; AMD spares normal prostate epithelial cells (Fig. 2E).

To improve the efficacy of growth suppression on AI PCa cells, we modified the amino group side chain of AMD and obtained a derivative termed DME (Fig. 1). DME exhibits superior inhibitory activity compared to AMD on LNCaP C-81 cell growth in regular as well as SR media (Fig. 3). While both AMD and DME effectively inhibit LNCaP C-81 and PC-3 cell proliferation (Figs. 2, 3 and 5), these two compounds may exhibit different mechanisms of inhibition towards these two cell lines. For example, in the wound healing assay, AMD was a more potent inhibitor of PC-3 cell migration than DME. Unfortunately, LNCaP C-81 cells migrate too slowly to conduct a wound healing assay. Conversely, in both clonogenic and soft agar assays conducted on LNCaP C-81 cells, DME was a more potent inhibitor of colony formation than AMD (Fig. 4). One possible explanation of differential effects by DME vs. AMD is that DME is more potent than AMD at inhibiting AR protein level and Akt activation in C-81 cells. Additionally, PC-3 cells are
AR-negative and LNCaP C-81 cells express functional AR; as such, DME and AMD inhibit both AR and Akt in LNCaP C-81 cells, while only inhibit Akt in PC-3 cells. Together, DME is more potent than AMD at inhibiting LNCaP C-81 cell proliferation and colony formation. Nevertheless, further experiments with direct comparison are required to delineate the mechanism of growth suppression by DME vs. AMD on these two cell lines.

Targeting AR and/or intervening with androgen biosynthesis can effectively inhibit CR PCa and thus improve patient survival [35–38]. Our results show for the first time that both AMD and DME treatments can decrease AR protein and signaling with cell growth suppression (Figs. 2, 5A and B). Although the mechanism of AR inhibition by imidazopyridine derivatives requires further investigation, our results show that imidazopyridine derivatives inhibit AR-positive PCa cell growth in part by inhibiting AR signaling, evidenced by decreased PSA protein (Figs. 5B and 6). It is possible that imidazopyridine derivatives decrease AR protein partly by inhibiting Akt phosphorylation. AMD and DME inhibit Akt-induced AR protein stability, contributing to observed lower levels of AR protein. Furthermore, by inhibiting AR signaling, AMD and
DME may prevent the interaction of AR with p85α regulatory subunit of PI3K; which results in decreased Akt activation [39]. p66Shc, a 66 kDa oxidase, can up-regulate cell growth and is elevated in steroid-regulated carcinomas [20,23,40]. In PCa, p66Shc plays a role in mediating the cross-talk signal between steroids and tyrosine phosphorylation [40], which is involved in regulating cell proliferation and apoptosis [22,23,40,41]. Further, androgens upon binding to AR can up-regulate p66Shc protein level and PCa cell proliferation [40]. Our data show that both AMD- and DME-treatments resulted in decreased AR and p66Shc protein levels, correlating with diminished cell proliferation and elevated apoptotic Bax protein (Fig. 5). Although LNCaP C-81 PCa cells are androgen-independent cells, their growth is still increased upon androgen treatment [13,14,19]. Thus, imidazopyridine derivatives inhibition of AR-mediated cell growth and p66Shc protein levels is at least in part through decreased AR protein levels. Thus, p66Shc protein may serve as a common convergent point that integrates cell proliferation and apoptosis signaling [23].

CR PCa cells often have elevated levels of anti-apoptotic molecules for its survival [29,42]. Bcl-2 family members play critical roles in regulating apoptosis. For example, Bcl-Xc is anti-apoptosis [43,44] and can also enhance metastasis [45]; while Bax can

Fig. 5. The kinetic effects of AMD and DME on LNCaP C-81 cells in steroid-reduced conditions. A. The cells were plated in six-well plates at 2×10^3 cells/cm² in regular medium for 3 days, then steroid starved for 48 h followed by treatment with AMD and DME at the concentration of 10 μM. After 1, 3 and 5 days, one set of cells (in duplicates) from each group was harvested for cell number determination. The remaining cells were replenished with fresh medium and inhibitors (AMD and DME). B. Total cell lysate proteins from AMD- and DME-treated C-81 cells were analyzed for AR, Shc, PSA and cyclin D1 protein. β-Actin protein level was used as a loading control. C. The pro-apoptotic effect of AMD and DME on LNCaP C-81 cells in a steroid-reduced condition with time dependent manner. Total cell lysate proteins from AMD and DME treatment were analyzed for p53, Bcl-Xc and Bax proteins. β-Actin protein level was used as a loading control. The results presented were mean ± SE; n = 2 × 3. *p < 0.05; **p < 0.01; ***p < 0.001.
and its increased level favors apoptosis [25,46]. Further, p53 protein is a tumor suppressor, a Bax transcriptional regulator [34,47] and also mediates a Bcl-2 family member-independent apoptosis process. The elevated Bax and p53 with decreased Bcl-X_L proteins (Fig 5C) together indicate AMD and DME can induce apoptosis. Therefore, we observed DME- and AMD-induced growth suppression and DME-treated cells had cell number even lower than that of day 0 control cells (Fig 5A).

The PI3K/Akt signaling pathway plays a vital role in cell growth and survival; its dysregulation contributes to therapeutic resistance of tumor cells [26,27,29,30,48]. Our results show AMD and DME inhibit Akt activation in addition to AR signaling (Figs. 5 and 6). Unexpectedly, treatments with both PI3K and Akt inhibitors induce AR and PSA levels in PTEN-inactive LNCaP C-81 cells (Fig. 6), which is consistent with the observation on the reciprocal activation of AR and PI3K signaling in PTEN-deficient mouse PCa cells [28]. Hence, the data indicate that patients treated with PI3K pathway inhibitors can experience a rise in PSA levels if their tumors are PTEN deficient [28]. Further, it is also hypothesized that Akt activation may inhibit HER-2-mediated AR activation [28]. Our results clearly show that these novel imidazopyridine derivatives significantly inhibit both AR and PI3K/Akt signaling. Even though targeting either AR or PI3K/AKT signaling alone by second generation inhibitors has shown promising results [28,49], the activation of reciprocal pathways can counteract the efficacy of inhibitors targeting single signaling pathway in PCa [28,50]. Hence, combination therapy targeting both AR and PI3K/Akt signaling molecules would improve the therapeutic efficacy toward CR PCa.

In summary, our data show for the first time that imidazopyridine derivatives can effectively inhibit CR PCa cell proliferation in SR conditions and reduce in vitro tumorigenicity. The concurrent inhibition of PI3K/Akt and AR signaling with the activation of apoptotic pathway is one of the underlying mechanisms that imidazopyridine derivatives suppress CR PCa cell growth. Our data thus support the notion that the imidazopyridine derivatives represent a promising class of compounds to combat CR PCa. Further studies are needed to elucidate the underlying suppression mechanisms on CR PCa cells. Modifications of other functional groups of these compounds may further improve the efficacy of PCa suppression for treating CR PCa.

Conflict of Interest

We do not have any conflict of interest.

Acknowledgements

This work was supported in part by the National Cancer Institute, National Institutes of Health [R01 CA88184]; Department of Defense PCa Training Grant [PC094594, PC121645]; and the University of Nebraska Medical Center Bridge Fund.

References

