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23

The Electric Field

23-1 The Electric Field

We have previously described the gravitational field as one way of thinking
about gravitational forces (Section 6-16). If an object of mass m at rest
at a point P experienced a force, we could attribute that force to the pres­
ence of the gravitational field. In a similar way we may attribute the force
experienced by an electric charge at rest at a point P to the presence of an
electric field at that point. From the preceding chapter we recognize that
the existence of a force ,on a charged particle is due to the presence of other
charged particles in the vicinity, but for many purposes it is unnecessary
to have a precise knowledge of the positions of these charges or their
magnitudes. In the same way we have utilized a knowledge of the gravita­
tional field intensity g to analyze the trajectories of projectiles without
detailed knowledge of the mass distribution which gave rise to g.

We can use a very small body containing a small charge q as a means
of exploring the electric field in any region of space. If the charge q experi­
ences a force F at a given point, the electric field intensity E at this point is
defined by the equation

I I

IE ~ q I (23-1)

The electric field intensity at a point in an electric field is the force per uni­
charge at this point. The test charge or probe charge q should be suffi­
ciently small so that it will not change the distribution of charge that gives
rise to the field to be measured. Ideally, one can take smaller and smaller
test charges q, measure the force on each test charge at the given point, and
take the limit of the ratio of Fjq as q gets smaller as the electric field in­
tensity at the point.

The electric field intensity is a vector quantity; it is the result of divid­
427



428 THE ELECTRIC FIELD §23-1

ing foree, a vector, by charge, a scalar. Equation (23-1) is analogous to
Equation (6-18), which has been used to define the gravitational field. In
using Equation (23-1) we must remember to substitute the sign of q as well
as its numerical value to get the correct directional relationship between
the veetor quantities E and F. The direction of the electric field is opposite
to the direction of the force on a negatively charged partiele. The units of
electric field intensity in the mks system may be expressed as newtons per
coulomb.

As we have seen in Chapter 22, the equations relating electrical quan­
tities take on different appearances in the cgs and mks systems of units.

y

E=1.6 X105-.!IL F= 2.4 X 10-3ntcaul
11(. ,.

x
z

Fig. 23-1 The electric field intensity is opposite in direction to the force on a negatively
charged particle.

In order to avoid complication in the body of the chapter, the equations in
this and subsequent chapters will be developed using mks units. Discus­
sions relating the two systems of units will be in smaller type to distinguish
them from the principal development. The principal equations of the
chapter are repeated in both systems of units in Table 23-1, and the
relationships between the units of the two systems are stated in Table 23-2,
at the end of the chapter.

In defining the intensity of the electric field, we must emphasize that
the test body used to probe the field is at rest. We shall see in a subsequent
chapter that a moving charged partiele may experience a force proportional
to its speed. Such a force is due to the presence of a magnetic field. The
magnetic field does not exert a force on a charged partiele at rest. The
electric field may therefore be defined by the force on a stationary partiele.
Once the electric field intensity is known, it may be used to compute the
force on a charged partiele without regard to whether the partiele is at
rest or in motion. The force on a charged partiele at a given point due to
the electric field is determined from Equation (23-1) as

F = Eq

and is independent of the speed of the particle.

(23-1a)
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Illustrative Example. A small particle having a charge of -15 X 10-9

coulomb experiences a force of 2.4 X 10-3 nt in the positive x direction, as shown
in Figure 23-1. Find the electric field intensity at that point.

The magnitude of the electric field intensity is

E = !:. = 2.4 X 10-3 nt
q 15 X 10-9 coul

nt
= 1.6 X 105-.

coul

The electric field is in the negative x direction, opposite to the direction of the
force on a negatively charged particle. If we write lx for a unit vector in the
positive x direction, the electric field intensity may be written as

E = ·-1.6 X 105 X lx~.
coul

23-2 Electric Charge as the Source of Electric Field

In the mks system of units, the vector form of Coulomb's law may be
written as

We may consider the charge q2 as a probe charge used to explore the electric
field. The electric field intensity E at the point where the charge q2 is
located may be found by dividing both sides of the above equation by q2­
Thus

F2 ql
E = - = --21"

q2 41l"Eor

and, dropping the subscript 1 from q1J the electric field intensity at a dis­
tance r from a point charge q, in vacuum, is given by the equation

(23-2)

The unit vector 1, is directed from the charge q which generates the field
to the point P where we imagine the test charge to be located, as shown
in Figure 23-2.

Illustrative Example. A point charge of -10 !lcoul is located at the origin.
Find the electric field intensity at a point in the x-y plane whose coordinates are
(3 m, 4 m).

The location of the charge and the field point P are shown in Figure 23-3.
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The unit vector 1r is shown directed from the charge q at the origin to the point
P. Substituting into Equation (23-2), we find

E = -_10_X_1_0-_6_co---:u_I _
X 1r ,

41r X 8.85 X 10-12 couF X 25 m 2

nt m 2

3 nt
E = -3.6 X 10 - X 1r •

coul

y
p

q'---'---,---r---,--X:-:-

Fig. 23-2 Fig. 23-3

Thus the magnitude of E is given by
nt

E = 3.6 X 10 3 -,
coul

and its direction is in the direction of -1,., that is, toward the origin along a line
making an angle of 53° with the positive x axis, as shown in the figure.

23-3 Electric Field Due to a Collection of Point Charges

A probe charge q placed at a point P in the neighborhood of any number
of point charges qr, q2, q3,' ..will experience a force which is the vector sum
of the forces produced by the individual charges on it. Thus

F = F1 + F2 + F3 + "',

where F is the resultant force on charge q and F1 is the force on it produced
by the charge qr, F2 the force produced by charge q2, and so forth.

F F1 F2 F3
~oo E=-=-+-+-+

q q q q
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therefore E = E1 + E2 + E3 + ... . (23-3)

Hence the electric field intensity at any point P produced by a set of point
charges in its neighborhood is the vector sum of the electric field intensities
produced by the individual charges at the same point.

Illustrative Example. Two point charges q1 = 5 J,LCoul and q2 = -5 J,.!coul
are separated by a distance of 0.08 m, as shown in Figure 23-4. Find the electric
field intensity (a) at point a located on the line joining the two charges at a dis-

+y
E1

E2
~

~

(b) II(

(Q) E

/
2cm

/a

q1 q2 +x
.Lj'IE1)y+5)lcou/ -5)lcoul

E2

(C)
(E1)x

Fig.23-4 (a) Location of charges and field points. (b) The fields E 1 due to charge qi
and E 2 due to charge q2 at the point a. (c) The field at b due to qI, to q2, and their
resultant field Eb.

tance 10 cm from q1 and 2 cm from q2 and (b) at point b located at the vertex of a
right triangle at a distance of 10 cm from q1 and 6 cm from q2.

(a) The electric field at a due to q1 is

E = 5 X 10-6 caul 1
1 12 x

4'11" X 8.85 X 10-12 cou X (0.10 m)2
ntm2

= 4.5 X 106 X lx~'
caul

The electric field at point a due to q2 is

E
_ - 5 X 10-6 caul 1

2 - x

4'11" X 8.85 X 10-12 couF X (0.02 m)2
ntm2

-112.5 X 10 6 X lx~'
coul
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The resultant electric field is therefore

E = E l + E 2

= (4.5 - 112.5) X 106 X 1x ~,
coul

E = -108 X 106 X 1x~'
coul

(b) The electric field at b due to charge ql is

E
_ 5 X 10-6 coul

1 -

41l' X 8.85 X 10-12 couP X (0.10 m)2
nt m 2

= 4,.'5 X 106~,
coul

and the x and y components of this field are

(El)x = 3.6 X 106~.
coul

(El)y = E l X sinO = 4.5 X 106~ X T\;
coul

The electric intensity at b due to q2 is

E = -5 X 10-6 coull.
2 12 v.

41l' X 8.85 X 10-12 cou X (0.06 m)2
nt m 2

nt
E 2 = -12.5 X 106 X l y - •

coul

The components of the resultant electric intensity are therefore given by

nt
Ex = (El)x = 3.6 X 106 _.

coul
nt

E v = (El)v + (E 2)v = (2.7 - 12.5) X 106 X - ;
coul

nt
E y = -9.8 X 106 _.

coul

The resultant field may be expressed as the vector sum of its x and y components
as

nt
E = (3.6 X 106 X 1x - 9.8 X 106 X 1v) -1·

cou
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23-4 Electric Field Due to a Continuous-Charge Distribution

When the electric field is established by a continuous distribution of charge
rather than by a collection of point charges, we may compute the electric
field intensity by imagining the charge distribution to be cut up into small
volume elements in which the entire charge of an element is considered to
be concentrated at some point of the volume element, say its center. The
electric intensity may then be computed by applying Equation (23-3) to
this collection of charges. More generally, we apply the methods of the
calculus and replace the sum by an integral in the limit of an extremely
fine subdivision.

If dE is the contribution to the electric intensity at the point P from a
volume element whose charge is dq, located at a distance r from the point
P, we may write

(23-4)

where 1 r is the unit vector directed from the element of charge dq to the
point P. Let us define the charge density p of a continuous-charge distribu­
tion as the quantity of charge per unit volume. The charge dq in a volume
element dv is then given by

dq = p dv,

and Equation (23-4) becomes

I pdv
E = -42 1r.

1l"Eor
(23-4a)

In Equations (23-4) the integration must be carried out over the entire
charge distribution. These equations are useful for symbolic purposes
only. In order to carry out the integration, it is necessary to replace them
by equations which yield the components of the electric intensity at the
point P. Thus

Ex = IdEx,

and so on.

Illustrative Example. Calculate the electric intensity at a point on the axis
of a uniformly charged narrow ring of charge.

Let us locate the ring, of radius a, in the x-y plane. The axis of the ring is
along the z coordinate axis. Let the charge of the ring be q. Its linear charge

density is therefore ....!L. The electric field intensity dE, contributed by an ele­
21l"a
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ment of the ring to a point P located at (0, 0, z), is shown in Figure 23-5. The
element subtends an angle dO and has a charge dq given by

dq = adO. -'L = qdO.
271"a 271"

The intensity dE is given by
q dO

dE = 271"
471"~o(a 2 + Z2)

Since the electric intensity contributed by each element of the ring is in a different
direction in space, we cannot integrate without first finding components along
the coordinate axes. The z component of dE is given by

z
dEz = dE cos cf> = dE ~

(a 2 + Z2)

=_l_iL z dO
471"~o 271" (a 2 + Z2)% •

Since a, the radius of the ring, and z, the
coordinate of the field point, are fixed, we
may integrate over the entire region of
charge by integrating dO over the range°to 271" to obtain

Fig. 23-5

z

x

Because of the symmetry of the fig-
Y ure with respect to the z axis, the com­

ponents of the electric intensity in a
direction perpendicular to the z axis at the
point P must sum to zero. For every
element of the ring which contributes a

component to the electric intensity parallel to the x-y plane, there is an equal
element across the diameter of the ring which contributes a component in the
opposite direction. Thus the electric intensity at all points on the axis of the
ring is parallel to the axis of the ring and is given by the above formula.

In making the computation, we have followed the procedure outlined in the
preceding paragraph, by integrating the components of the electric intensity
vector. This must be done in integrating any vector quantity, for the reason
that the process of integration is essentially the process of computing the limit
of an algebraic sum.

23-5 Lines of Force

To visualize the direction and magnitude of the electric field in space, it is
convenient to make use of the concept of lines of force, which was first
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introduced in Section 6-16 to represent the gravitational field. The electric
lines of force are drawn so that a tangent to the line at any point will give the
direction of the electric field intensity at that point. The magnitude of the
electric intensity is given by the number of lines passing perpendicularly
through a unit area centered at the point, as shown in Figure 23-6. No two
lines of force may cross each other, for this would infer that the force on a
unit positive charge had two directions at the point of crossing.

'.:.:

~....
f-'\

E

Fig. 23-6 Representation of the electric
field intensity at P by the number of elec­
tric lines of force passing perpendicularly
through a unit area at P.

Fig. 23-7 The electric field around
a small positive charge is radial and
directed away from the charge.

Let us consider the appearance of the lines of force about a positive
charge. Since the electric field is directed radially away from a positive
charge, as shown in Figure 23-7, the lines of force are also directed away
from the positive charge. The lines of force surrounding a negative charge
are directed radially toward the negative charge. Thus, in vacuum, a line
of force begins on positive charge and terminates on negative charge.
According to Equation (23-2), the electric intensity about a charged body
in vacuum is

The total number of lines of force passing through a sphere of radius r
concentric with q is N, the product of the electric intensity, or the number
of lines per unit area, by the area of the sphere, or

N = 47r1'2E,

so that (23-5)
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Thus the total number of lines of force radiating from a positively charged
body in vacuum is given by the charge of the body divided by ~o. The
number of lines of force terminating on a negatively charged body is given
by the same quotient.

23-6 Gauss's Theorem

The lines of force radiating from a positive charge must terminate on an
equal and opposite negative charge somewhere in the universe. In dealing
with an isolated charged body, as shown in Figure 23-7, we think of the
lines of force as terminating on negative charges at infinity. Suppose we
enclose a region of charge-free space with a sphere, or with some other
simple closed surface which can be reshaped into a sphere. Let us count
the total number of lines of force coming out of the surface, tallying those
leaving the surface as positive, and those entering the surface as negative.
Since there is no charge within the closed surface, no lines of force originate
or terminate within the surface. Any line of force which enters the surface
at one point must leave the surface at some other point. There can be no
net lines of force leaving or entering a volume that does not enclose a
charge; that is, there are as many lines entering the closed surface as there
are leaving it.

If there are several charges or a charge distribution within the closed
surface, each coulomb of positive charge generates l/~o lines of force, and
the same number of lines of force must terminate on each coulomb of
negative charge. The net number N of lines of force leaving the surface
must be given by

N = L:q.
~o

(23-Sa)

To determine the relationship between the electric intensity and the
number of lines of force, let us consider an element of area of a closed surface
of magnitude AA. If the lines of force are perpendicular to this surface
element, the electric intensity E is given by the number of lines AN leaving
the volume through this surface element, divided by the area AA, in accord­
ance with the convention we have chosen for representing the electric field
by lines of force. In the form of an equation

AN
E=-·

AA

N ow suppose the surface makes some angle with the lines of force, as shown
in Figure 23-8. If the outward drawn normal to the surface makes an
angle 0 with the lines of force, the component of the element of area which
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is perpendieular to the lines of force is given by ~A cos f), so that

E = ~N ,
~A cos f)

or N = E ~A cos f).

If we consider ~A as a vector quantity, as indicated in Section 8-2,
whose magnitude is given by the area ~A and whose direction is given by

Fig. 23-8

the outward drawn normal to the surface, we can apply the definition of a
scalar product given in Section 7-3, to write

~N = E·~A.

To find the total number of lines of force leaving the surface, we imagine
that the element of area ~A becomes very small, and in the limit we replace
the symbol ~ by the symbol d, and integrate dN over the entire surface.
This process may be represented symbolically as

N = JdN = JE.dA. (23-6)

On substituting for N its value in terms of the charge contained within the
closed surface, we find

(23-7)
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Equation (23-7) is a very important equation in electrostatics, and is known
as Gauss's theorem. The theorem states that the integral of the normal
component of the electric field intensity over a closed surface is equal to the
algebraic sum of the charge contained within that surface divided by EO.

Gauss's theorem is of great usefulness in computing the electric field
intensity E of symmetric charge distributions, in which it is possible to
have some knowledge about the symmetry of E itself from observing the

E

(b)

(0)

Fig. 23-9 Gaussian sphere of radius r concentric with charged sphere of radius a.
(a) Gaussian sphere outside the charged sphere; (b) Gaussian sphere inside the charged
sphere.

symmetry of the charge distribution. Let us consider the electric intensity
associated with a sphere having a charge q distributed uniformly through­
out its volume. To compute the electric intensity by subdividing the
sphere into small volume elements and integrating, in the manner indicated
in Section 23-4, is a tedious job. It is far simpler to observe that the value
of E must be the same on all points of a second spherical surface, concentric
with the first, because of the symmetry of the charge distribution. Let us
draw such a surface of radius r, called a Gaussian surface, as shown in
Figure 23-9. The radius of the uniformly charged sphere is a.

Since the direction of E is everywhere radial, the angle made by E with
the normal to the surface of the Gaussian sphere is everywhere 0°. The
quantity E·dA in Equation (23-7) reduces to the product of the magnitudes
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of these two quantities, and we have

f EdA =!I.
~o

GAUSS'S THEOREM 439

Since E is everywhere constant over the surface of the Gaussian sphere,
the quantity E may be taken outside the integral. The integral then
represents the surface area of the Gaussian sphere, 47l"r2

• Thus we have

47l"r2E = !I,
~o

which leads to (23-8)

for the magnitude of the electric field, whose direction is specified by the
fact that it is everywhere radial. Notice that the electric intensity everywhere
outside a uniformly charged sphere is as though the charge were all concentrated
at the center of the sphere. Since the law of universal gravitation is of the
same form as Coulomb's law, the above result is also valid for the gravita­
tional field about a uniform spherical mass distribution. It was for this
reason that we could treat the earth as though its mass were concentrated
at its center. The same result obviously applies to a uniformly charged
spherical shell and, in fact, to any distribution of charge having spherical
symmetry. Thus any distribution of charge having spherical symmetry
generates an electric field outside the charge distribution which is as though
the entire charge were concentrated at the center of the sphere.

If we wish to find the electric intensity inside the charge distribution
we draw a Gaussian sphere of radius r < a concentric with the charged
sphere, and again we observe that the electric field intensity must be
radially directed and must be of equal magnitude at all points of the
Gaussian sphere, from considerations of symmetry. Applying Gauss's
theorem, we find

2 1(4 3 )47l"rE=- -7l"rp,
~o 3

where p is the density of charge within the sphere and is given by

q 3q
p = -.!.7l"a3 = 47l"a3 •

3

Thus we have

E pr qr
= 3~o = 47l"a3~O •

(23-9)

Comparing the results of Equations (23-8) and (23-9), ,ve see that both
equations lead to the same result at the surface of the charged sphere where
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r = a, namely

(23-10)

The results of Equations (23-8) and (23-9) have been plotted in
Figure 23-10. The electric intensity has a maximum value at the surface
of the charged sphere and diminishes to zero at the center of the sphere and
at infinity. These results are of some interest in practical problems, as,
for example, in the electrical effects associated with the flight of an airplane

E

a

q

r

Fig. 23-10 Electric field intensity
of a uniformly charged sphere of
radius a as a function of the dis­
tance r from the center of the
sphere.

through a thundercloud. These results are also of interest in atomic
physics, where the electric intensity at the position of an outer-valence
electron is made up of the field contributed by the central nucleus, which
follows Coulomb's law, and the field of the inner electrons, which may be
approximated by a uniformly charged sphere. The field experienced by
the outer electron no longer follows an inverse square law when this electron
penetrates the charged cloud, and this, in turn, serves to determine some
important properties of atoms.

23-7 Conductors

By the term electrostatics we mean the study of the properties of electric
charge at rest. Within the framework of electrostatics, there can be no
electric field within a conductor, for by the word conductor we imply that
electric charge is free to move. If there were an electric field within a con­
ductor, there would be a force on the free electrons of that conductor; these
electrons would be accelerated; hence they would not be at rest. Thus,
simply as a matter of the consistency of our definitions, we must conclude
that, for distributions of charge which are in static equilibrium, the electric
intensity within a conductor is zero. In making such a statement we are
speaking of an idealized conductor, for any material object is made up of
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nuclei and electrons which are held together by electric forces. There are
intense electric fields on a submicroscopic level of examination. In the
present approximation of a conductor, we imagine the conductor to be
made up of a completely homogeneous material which may be subdivided
into infinitesimal parts without altering its properties. This approximation
has been found experimentally valid as long as the smallest subdivision we
permit ourselves to examine is one which contains hundreds of atoms. For
practical purposes this is still a very small volume element.

Since the electric field within a conductor is zero, we know from
Gauss's theorem that the electric charge within any portion of a conductor
must be zero. There must be an equal quantity of positive and negative
charge within any subvolume of the conductor. Hence, all the charge on a
charged conductor must reside on its surface. If a hole is made within the
body of a conductor, the electric intensity within that hole must be zero.

Much electrical equipment is built so that all the working parts are
contained within a metallic box, generally built of sheet copper or alumi­
num, and called an electrostatic shield. Electric charges outside that box
cannot produce any electric field within the box, and consequently cannot
affect the operation of equipment within the box. The box therefore pro­
vides a shield against outside electrical disturbances. This effect may be
demonstrated by placing an electroscope in the vicinity of an electrostatic
generator or a highly charged rod. If the rod is positively charged, some
negative charge is attracted to the ball of the electroscope, with the result
that the leaves become positively charged and repel each other, as shown
in Figure 23-1l(a). If a metallic cap is placed over the electroscope, the
electroscope is shielded, and no matter how great the charge on the rod,

.

.,~.''Ii·',
~Glass

// window

(a)
--Metal

---Metallic
cover

(b)

Fig. 23-11 (a) Leaves of an electroscope diverge when a charged rod is brought near
it. (b) When an electroscope is shielded by a metallic cover, the charged rod does not
affert the electroscope.
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the leaves remain vertical, as shown in Figure 23-11 (b). The metallic braid
woven over the insulation of wires used in many electronic circuits IS

another illustration of the practical use of electrostatic shielding.

23-8 Field Outside the Surface of a Conductor

The electric field intensity immediately outside the surface of a conductor
must be directed perpendicularly to the surface of the conductor. To
understand this, we observe that if the electric field were oblique to the
surface, it could be resolved into components parallel and perpendicular to
the surface. Once again, our argument is based upon the definition of
electrostatics. If there were a component of the electric intensity parallel
to the conducting surface, the free electrons on the surface of the conductor
would be accelerated and would no longer be at rest.

Let us suppose that there is an electric field in the vicinity of a con­
ducting surface. Some of the lines of force associated with that field will
go toward the conducting surface and terminate abruptly on it, perpen­
dicular to the surface; other lines of force will originate from the surface
and leave it perpendicularly. There are no lines within the conductor. We
have already seen that lines of force begin or end on electric charges. Thus,
if there is an electric field normal to the surface of the conductor, the con-

Fig. 23-12

ductor must be charged. We may apply Gauss's theorem to evaluate the
relationship between the electric field at the surface of a conductor and the
surface charge on that conductor.

Let us suppose that the electric charge on the surface of the conductor
is of charge density (J" units of positive charge per unit area. The electric
field intensity normal to the surface of the conductor is E. To find the
relationship between (J" and E, we make use of a Gaussian surface in the
shape of a pillbox, with cylindrical walls normal to the conducting surface,
and plane top and bottom faces parallel to the conducting surface. One
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face of the pillbox is imagined to be within the conducting material, while
the other face is just outside the conducting surface, as shown in Figure
23-12. If the area of the face of the pillbox is ~A, the charge contained
within the pillbox is (T ~A.

The electric intensity within the conductor is zero. Furthermore,
since the electric field is normal to the surface, no lines of force pass through
the cylindrical walls of the pillbox. In applying Gauss's theorem in the
form of Equation (23-7), the only contribution to the integral of the normal
component of E is obtained from the face of the pillbox outside the con­
ductor. Thus we have

E~A
(T~A

=--,
EO

and (23-11)

If we represent a unit vector normal to the surface of the conductor
and directed outward from the conductor as in, the electric intensity at the
surface of the conductor is related to the surface density of charge by the
equation

(T
E = -In.

EO
(23-11a)

Thus, if the charge on the surface of the conductor is positive, E is parallel
to in; hence E is outwardly directed. If the charge on the surface is nega­
tive, E is opposite in direction to in and is inwardly directed.

It is often desired to measure the electric field at the surface of a con­
ductor, as, for example, at the belly of an airplane in flight or at the surface
of the earth. One means of doing this is to measure the charge on a unit
area of the surface of the conductor and to apply Equation (23-11) to
determine the electric field intensity from the surface density of charge.
A small section of the conducting surface of the airplane may be insulated
from the remainder of the surface and may be periodically removed from
the skin of the airplane, brought within the fuselage, and connected to an
electroscope to measure its charge. More practically, if an electrically
isolated segment of the airplane's skin is alternately covered and uncovered
by a rotating conducting plate which is electrically connected to the skin,
as shown in Figure 23-13, the isolated segment may be thought of as being
first on the surface of the airplane, then within the conducting shell, and
so on. It becomes electrically charged when it is on the surface and is dis­
charged through a high resistance leading to the skin of the airplane when
it is covered by the rotating conductor. In such an arrangement the charge
which flows to and from the isolated segment through the resistor may be
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electronically amplified, and the electric field may be readily determined.
From such measurements it is known that the average fair-weather electric
field intensity at the surface of the earth is 100 nt/coul. The earth carries

Airplane's skin
\
\
\
\
\

Rotating cover
/

Fig.23-13 Schematic illustration of
electric field meter.

I
I

Isolated segment of skin of airplane

a negative charge whose total value is of the order of 500,000 coul, and
whose surface density is about 0.0009 coul/km2

• The electric field intensity
at the belly of an airplane in flight through a thunderstorm can be as much
as 340,000 nt/coul just prior to a lightning strike.

23-9 Dielectric Strength

Let us suppose that a gas is placed in an electric field, and that one of the
molecules of the gas has become ionized (or charged), say as a result of a
collision with another rapidly moving molecule. The charged ion is ac­
celerated by the electric field. The force acting upon the ion is the product
of the electric field intensity E by the charge q of the ion. Suppose further
that the charged particle moves an average distance l before making a
collision with another molecule; l is called the mean free path. The work
done on the particle by the electric field is given by the product Eql. This
is the energy acquired by the charged particle in the interval between
collisions. If the energy delivered to the ion by the field is sufficiently
great so that the ion can disrupt a molecule with which it collides, at least
two additional ions result from the collision process, each of which may
be again accelerated by the field and may make subsequent collisions.

In this way a large number of ions may be created, and the gas then
becomes electrically conducting. The electric field at which a gas becomes
conducting is called the dielectric strength of the gas. Clearly, if there are
no gas molecules present, as in vacuum, the dielectric strength is infinite,
for there are no molecules present to become ionized. When only a very
few molecules are present, as within a vacuum tube, an ionized particle may
reach the electrodes of the tube without making a collision with another
gas molecule, so that the total charge transferred is small. Again, when
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the pressure is quite high, the mean free path of the molecules is reduced,
so that an ion cannot move far enough in the field to acquire the energy
required to disrupt another molecule. The dielectric strength of the gas is
high, for a large electric field intensity is required to generate secondary
ionization.

The dielectric strength of air at atmospheric pressure is about 3 X IO{j
nt/coul. When this is exceeded, the air becomes conducting; corona dis-

Fig.23-14 Antistatic antennae A and static dischargers B on an airplane.

charge may be observed as a bluish glow in the region of an intense electric
field, for the recombining ions give off some of their energy as light, and
the sharp smell of ozone may be distinguished.

When an airplane becomes electrically charged in flight through pre­
cipitation, or when a charge is induced on the surface of an airplane when
it flies near a thundercloud, corona discharge may take place from the
propellers, from the wingtips, and from the radio antennae. The discharge
from the antennae is particularly serious, for the erratic nature of the
discharge generates radio noise called precipitation static; this often drowns
out the signal from a radio station used by the pilot for communication and
navigation purposes. Static dischargers, shown in Figure 23-14, have been
placed upon the wingtips of many airplanes so that the electric charge
accumulating on the airplane may be discharged noiselessly to the air. At
the same time the wire radio antennae of the airplane have been insulated
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with an insulating material of high dielectric strength, and specially de­
signed antenna fittings have been used to minimize the electric field
intensity at the terminations of the wires so that the corona discharge does
not take place from the antenna wire itself or from its associated fittings.

The dielectric strength of insulating materials is a technically impor­
tant property of insulators. Their values range from about 106 to about
108 nt/coul. It is interesting that many solid insulating materials have a
dielectric strength which is not appreciably greater than air. Solid insulat­
ing material in electrical apparatus is used generally as a spacer, to keep
conductors from making contact with each other rather than to improve
upon the insulating properties of atmospheric air.

TABLE 23-1 PRINCIPAL EQUATIONS IN THE MKS AND CGS UNITS

Equation I MKS CGS

(23-1) I E = Flq Same as mks Electric field

(23-2) E = ~-'L-1r E = !I1r Field of a point charge
471"Eor 2 1'2

(23-5) N=i N = 471"q Lines of force
EO

(23-7) fE.dA = L:J f E·dA = 471"q Gauss's theorem
EO

(23-11a) E = ~ 1n E = 471"<T1 n Field outside a conductor
EO

TABLE 23-2 CONVERSION FACTORS RELATING MKS AND CGS UNITS

= 3 X 109 stcoul (esu)

Quantity

Charge

Electric intensity

Force

Symbol

q

E

F

MKS Unit

1 coul

1~
coul

1 nt

CGS Unit

= 1 dyne
3 X 104 stcoul

= 105 dyne

(esu)

Permittivity of free space: Eo = 8.85 X 10-12 couP ,
nt m 2

1 coul 2

Eo = ----
3671" X 109 nt m 2

Problems

23-1. What is the intensity of the electric field at a distance of 20 cm from
a small sphere charged to +1,600 stcoul?
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23-2. What is the intensity of the electric field at a distance of 40 em from
a small body charged with -7,200 stcoul?

23-3. An electric charge of +15 stcoul is placed 25 em from one of -40
stcoul. Determine the magnitude and the direction of the electric field intensity
at the mid-point of a line joining them.

23-4. In Problem 23-3 determine the electric field intensity at a point in the
first quadrant 20 em from the + 15-stcoul charge and 15 em from the -40-stcoul
charge. The line connecting the two charges is along the x axis, and the 15-stcoul
charge is at the origin. State your answer in terms of x and y components of the
electric field intensity.

23-5. Two equal charges each of +2,500 stcoul are placed 24 cm apart, along
the y axis. Determine the electric field intensity at a point in the right-hand half
plane 15 cm from each charge. State your answer in terms of the unit vectors
1x and 1y •

23-6. The electric field intensity at a point P near a charge of 144 stcoul is
9 dynes/stcoul. Where must a charge of +324 stcoul be placed to reduce the
field intensity at P to zero? Give the position of P relative to each charge.

23-7. Two small charged bodies are placed 25 cm apart along the x axis.
One has a charge of +600 l.tCoul and the other has a charge of -1,800 ,ucoul.
Find the electric field intensity at a point 60 cm from the positive charge and 65
cm from the negative charge. State your answer in terms of unit vectors along
the x and y axes.

23-8. A small charge of + 12 stcoul is placed in a uniform electric field of
300 dynes/stcoul. Determine the force on this charge,

23-9. A body having a mass of 0.01 gm and a charge of 1 ,ucoul is placed in
a uniform electric field. What must be the magnitude and direction of the electric
field intensity if the body is to remain at rest under the influence of the electric
and gravitational fields.

23-10. How many lines of force emanate from a charge of +.5 ,ucoul (a) in
the mks system of units'? (b) In the cgs system of units?

23-11. A metallic sphere is charged to 10 ,ucoul, the charge being uniformly
distributed over the surface of the sphere. If the sphere is 1 m in diameter, find
the electric field intensity (a) at the surface of the sphere and (b) at the center of
the sphere.

23-12. A large metal sphere contains a surface charge of 2 ,ucoul/m 2. What
is the electric field intensity at the surface of the sphere?

23-13. A thin spherical shell of charge of radius 1 m has a total charge of ]
coul. (a) What is the electric field intensity at the center of the shell? (b) What
is the electric field intensity at a point 50 cm from the center of the shell? (c)
What is the electric field intensity 2 m from the center of the shell?

23-14. Derive a formula for the electric field intensity at distance r from
the center of a long uniformly charged cylinder of charge of radius a, of charge
density p per unit volume (a) when r is less than a and (b) when r is greater than
a. Check your results for these two cases by comparing them when r is equal to
a. Use a Gaussian surface composed of a cylinder of radius r concentric with the
charged cylinder and apply the consequences of cylindrical symmetry to Gauss's
theorem.
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