
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

8-18-2011

TCP Congestion Avoidance Algorithm
Identification (CAAI)
Peng Yang
University of Nebraska - Lincoln, pyang@cse.unl.edu

Wen Luo
University of Nebraska - Lincoln, wluo@cse.unl.edu

Lisong Xu
University of Nebraska - Lincoln, xu@cse.unl.edu

Jitender Deogun
University of Nebraska - Lincoln, deogun@cse.unl.edu

Ying Lu
University of Nebraska - Lincoln, ylu@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Yang, Peng; Luo, Wen; Xu, Lisong; Deogun, Jitender; and Lu, Ying, "TCP Congestion Avoidance Algorithm Identification (CAAI)"
(2011). CSE Conference and Workshop Papers. Paper 160.
http://digitalcommons.unl.edu/cseconfwork/160

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/160?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages

TCP Congestion Avoidance Algorithm Identification

Peng Yang, Wen Luo, Lisong Xu, Jitender Deogun, and Ying Lu

Department of Computer Science and Engineering, University of Nebraska-Lincoln

Lincoln, NE 68588-0115, Email: {pyang, wluo, xu, deogun, ylu}@cse.unl.edu

Abstract—The Internet has recently been evolving from homo-
geneous congestion control to heterogeneous congestion control.
Several years ago, Internet traffic was mainly controlled by the
traditional AIMD algorithm, whereas Internet traffic is now
controlled by many different TCP algorithms, such as AIMD,
BIC, CUBIC, and CTCP. However, there is very little work on
the performance and stability study of the Internet with heteroge-
neous congestion control. One fundamental reason is the lack of
the deployment information of different TCP algorithms. In this
paper, we first propose a tool called TCP Congestion Avoidance
Algorithm Identification (CAAI) for actively identifying the TCP
algorithm of a remote web server. CAAI can identify all default
TCP algorithms (i.e., AIMD, BIC, CUBIC, and CTCP) and most
non-default TCP algorithms of major operating system families.
We then present, for the first time, the CAAI measurement result
of the 5000 most popular web servers. Among the web servers
with valid traces, we found that only 16.85∼25.58% of web
servers still use the traditional AIMD, 44.51% of web servers
use BIC or CUBIC, and 10.27∼19% of web servers use CTCP.
In addition, we found that, for the first time, some web servers
use non-default TCP algorithms, some web servers use some
unknown TCP algorithms which are not available in any major
operating system family, and some web servers use abnormal slow
start algorithms. Our CAAI measurement results show a strong
sign that the majority of TCP flows are not controlled by AIMD
anymore, and a strong sign that the Internet congestion control
has already changed from homogeneous to highly heterogeneous.

Index Terms—TCP congestion control; heterogeneous conges-
tion control; Internet measurement

I. INTRODUCTION

The Internet has recently been evolving from homogeneous

congestion control to heterogeneous congestion control. A

few years ago, Internet traffic was mainly controlled by

the same TCP algorithm — the standard Additive-Increase-

Multiplicative-Decrease (AIMD) algorithm [1], [2]. However,

Internet traffic is now controlled by many different TCP

algorithms. For example, Table I lists all the TCP algorithms

available in two major operating system families: Windows

family (e.g., Windows XP/Vista/7/Server) and Linux family

(e.g., RedHat, Fedora, Debian, Ubuntu, SuSE). Both Windows

and Linux users can change their TCP algorithms with only

a single line of command. Linux users can even design and

then add their own TCP algorithms.

There is, however, very little work [3], [4], [5] on the perfor-

mance and stability study of the Internet with heterogeneous

congestion control. One fundamental reason is the lack of

the deployment information of different TCP algorithms in

the Internet. As an analogy, if we consider the Internet as a

country, an Internet node as a house, and a TCP algorithm

TABLE I
TCP ALGORITHMS AVAILABLE IN MAJOR OPERATING SYSTEM FAMILIES

Operating Systems TCP algorithms

Windows family AIMD [1], and CTCP [7]

Linux family AIMD, BIC [12], CUBIC [13], HSTCP [14],

HTCP [15], HYBLA [16], ILLINOIS [17],

LP [18], STCP [19], VEGAS [20], VENO [21],

WESTWOOD+ [22], and YEAH [23]

running at a node as a person living at a house, the process of

obtaining the TCP deployment information can be considered

as the TCP algorithm census in the country of the Internet. Just

like the population census is vital for the study and planning

of the society, the TCP algorithm census is vital for the study

and planning of the Internet. For example, the TCP algorithm

census can answer the following two fundamental questions

of heterogeneous congestion control.

• Question 1: Are the majority of TCP flows still controlled

by AIMD? This is an important question, because most

of recently proposed congestion control algorithms, such

as CUBIC [6], CTCP [7], DCCP [8], and SCTP [9],

are designed to perform well when competing with the

traditional AIMD, but yet be friendly with the competing

AIMD traffic (usually referred to as TCP friendliness).

If the majority of TCP flows are not controlled by

AIMD anymore, it is necessary to reevaluate not only the

performance but also the design goals of these congestion

control algorithms. For example, if CTCP becomes the

dominating algorithm in the Internet, should new con-

gestion control algorithms be designed to be friendly to

CTCP instead of AIMD?

• Question 2: What percentage of Internet nodes use a

specific TCP algorithm? This is an important question for

not only designing new congestion control algorithms and

evaluating existing congestion control algorithms (e.g.,

inter-protocol fairness issues [3], [5] among different

TCP algorithms), but also for designing and dimensioning

other Internet components (e.g., designing Active Queue

Management (AQM) mechanisms and determining the

router buffer sizes [10], [11], both are highly dependent

on the TCP algorithms used by Internet nodes).

This paper has two main contributions. First, we propose a

tool called TCP Congestion Avoidance Algorithm Identifica-

tion (CAAI) for actively identifying the TCP algorithm of a

remote web server. The reason that we consider web servers

is that web traffic comprises a significant portion of the total

Internet traffic. CAAI can identify all default TCP algorithms

(i.e., AIMD, BIC, CUBIC, and CTCP) and most non-default

TCP algorithms of major operating system families, and can

be used to conduct the TCP algorithm census. It is very

challenging to develop CAAI due to the fact that Internet

nodes do not explicitly report their TCP algorithms. With the

population census analogy, it would be very challenging to

gather the population information if people did not tell their

information. After an overview of CAAI in Section III, we

describe the three steps of CAAI in Sections IV, V, and VI,

respectively. 1) How to design and emulate some specific

network environments in which different TCP algorithms

behave differently? 2) How to extract the unique features of

a TCP algorithm from the collected TCP behavior traces? 3)

How to identify the TCP algorithm of a web server based on

its TCP features?

Second, we demonstrate the potential applications of CAAI

by presenting our measurement results of the 5000 most pop-

ular web servers (according to the Alexa traffic rank [24]) in

Section VII. We have successfully gathered the TCP behavior

traces for about 74% of web servers. Among them, we found

that only 16.85∼25.58% of web servers still use the traditional

AIMD, 44.51% of web servers use BIC or CUBIC, and

10.27∼19% of web servers use CTCP. In addition, we found

that some TCP algorithms have several versions, and the early

versions are still used by a large fraction of web servers. For

example, 15.82% of web servers still use an early version of

CUBIC, and 9.97% of web servers still use an early version of

CTCP. Surprisingly, we also found, for the first time, that some

web servers use non-default TCP algorithms (such as YEAH),

some web servers use some unknown TCP algorithms which

are not available in any major operating system family, and

some web servers use abnormal slow start algorithms.

Our CAAI measurement results show a strong sign that the

majority of TCP flows are not controlled by AIMD anymore

(therefore, it is the time to reconsider the design goal of TCP-

friendliness of new congestion control algorithms based on the

majority of TCP algorithms), and a strong sign that the Internet

congestion control has already changed from homogeneous to

highly heterogeneous (therefore, it is the time to reevaluate

the performance and stability of the Internet based on the

distribution of different TCP algorithms).

II. TCP CONGESTION CONTROL AND RELATED WORKS

TCP congestion control consists of several important com-

ponents, such as the initial window size, slow start, congestion

avoidance, loss recovery, etc, as illustrated in Figure 1. The

initial window size could be 1, 2 [25], 3, 4 [26], or even 10 [27]

packets. The slow start algorithm could be the standard slow

start [25], limited slow start [28], hybrid slow start [29], etc.

The congestion avoidance algorithm could be AIMD [1], CU-

BIC [13], CTCP [7], etc. The loss recovery mechanism could

be RENO [30], NEWRENO [31], SACK [32], DSACK [33],

etc. Note that, we can create different TCP congestion control

algorithms with different combinations of these components.

For example, CUBIC can be combined with the standard slow

start or the hybrid slow start or other slow start algorithms,

TBIT

* 2

* 4

* etc

* Standard

* Limited

* Hybrid

* etc

* AIMD

* CUBIC

* CTCP
* etc

* RENO

* NEWRENO

* SACK

* etc

initial

size

window

slow

start

congestion

avoidance

loss

recovery

TCP Congestion Control

CAAI TBIT

* 1

Fig. 1. TCP congestion control components.

and it can be combined with NEWRENO or SACK or other

loss recovery mechanisms.

CAAI proposed in this paper only considers how to identify

the TCP congestion avoidance component of a web server. The

initial window size and the loss recovery components of a

web server can be identified by TBIT [34] (described later

in this section). Very few slow start algorithms have been

implemented in major operating systems, and therefore, we

do not consider how to identify them in this paper.

Because this paper only considers the congestion avoidance

component of a TCP congestion control algorithm, we use

a TCP congestion avoidance algorithm or a TCP algorithm

to refer to the congestion avoidance component of a TCP

congestion control algorithm. For example, when we say

that a TCP algorithm is CUBIC, it means that the conges-

tion avoidance component of the TCP congestion control

algorithm is CUBIC. Below, we first review related works

on identifying TCP congestion avoidance components, and

then review related works on inferring other TCP congestion

control components.

1) Related works on identifying TCP congestion avoidance

components: Because most TCP algorithms listed in Table I

were proposed recently, there are very few papers on iden-

tifying them. Oshio et al. [35] propose a cluster analysis-

based method for a router to distinguish between two different

TCP algorithms. Feyzabadi et al. [36] consider how to detect

whether the TCP algorithm of a web server is AIMD or

CUBIC. Our proposed CAAI is different from their works

in that 1) CAAI can distinguish among most TCP algorithms

available in major operating system families, whereas their

works consider only two different TCP algorithms; 2) we have

solved many web and TCP issues so that we can conduct a

large scale of Internet experiments, whereas their works are

mainly based on simulations.

Our early work [37] proposes a method to infer the TCP

multiplicative decrease parameter of a web server, which is an

important TCP feature for identifying TCP algorithms. This

paper differs from our early work [37] in the following ways.

1) This paper considers how to distinguish among different

TCP algorithms; whereas our early work only considers how

to extract a TCP feature - the TCP multiplicative decrease

parameter; and 2) this paper presents, for the first time, the

TCP deployment information of the 5000 most popular web

servers.

2) Related works on inferring other TCP congestion control

components: There are a large number of papers on inferring

other TCP congestion control components, and they can be

classified into two categories: active measurements [38], [34],

[39], [40] which actively measure the TCP behaviors of

Internet nodes, and passive measurements [41], [42], [43],

[44], [45] which measure the TCP behaviors of Internet flows

in passively collected packet traces. Below, we review the two

most relevant works.

TBIT [34] is a popular active measurement tool for inferring

TCP behavior of a remote web server. It can infer various TCP

behaviors such as the initial window size, the loss recovery

mechanisms, congestion window halving, etc. But it cannot

identify the congestion avoidance algorithms, simply because

most congestion avoidance algorithms listed in Table I were

proposed after TBIT was developed. CAAI is implemented by

extending the source code of TBIT. Specifically, CAAI only

uses part of the TBIT code to communicate raw TCP packets

with a web server. We wrote our own code to emulate two

network environments, to extract two TCP features, and to

identify the TCP congestion avoidance algorithm.

NMAP [40] is a popular active measurement tool for

inferring the information, such as the operating system, of

a remote Internet node. However, it is hard to infer the TCP

algorithm of a remote Internet node, even if we can detect the

operating system of the node for the following reasons. Even

though an operating system has a default TCP algorithm, a

user can easily change the default algorithm. For example, both

Windows and Linux users can change the default algorithm

with only a single line of command. Furthermore, different

versions of the same operating system may have different

default algorithms. For example, different Linux kernels may

have different default TCP algorithms, and moreover different

Linux distributions may have different default TCP algorithms.

III. CAAI OVERVIEW

A. Design Goals

CAAI is designed to actively identify the TCP congestion

avoidance algorithm of a remote web server. We have the

following design goals for CAAI.

• Design goal 1: It can identify all default TCP algorithms

and most non-default TCP algorithms of major operating

system families.

• Design goal 2: It is insensitive to the operating system

of a web server, insensitive to network conditions, and

insensitive to TCP components other than the congestion

avoidance component.

For the first design goal, we consider a total of 13 TCP

algorithms: AIMD [1], BIC [12], CTCP [7], CUBIC’ and

CUBIC [13], HSTCP [14], HTCP [15], ILLINOIS [17],

STCP [19], VEGAS [20], VENO [21], WESTWOOD+ [22],

and YEAH [23]. AIMD is the default TCP of some Windows

operating systems, and some Linux operating systems. CTCP

is the default TCP of some Windows operating systems. BIC

and CUBIC are the default TCP of some Linux operating

systems. Since CUBIC was included into Linux Kernel in

2006, it has had several major changes [13]. We consider two

major versions of CUBIC: Linux kernel 2.6.25 and before

referred to as CUBIC’, and Linux kernel 2.6.26 and after

referred to as CUBIC. Finally, among all TCP algorithms

listed in Table I, we do not consider two TCP algorithms:

HYBLA [16] and LP [18], because they are not designed for

web servers. Specifically, HYBLA [16] is primarily designed

for satellite connections, and LP [18] is designed for back-

ground file transfer.

The second design goal enables us to accurately identify the

TCP algorithms of as many web servers as possible. Insensitiv-

ity to the operating system of a web server is desirable because

the same TCP algorithm can be implemented into different

operating systems. Insensitivity to network conditions (e.g.,

packet loss, delay, reordering, and duplication) is desirable

because we have no control of the network condition between

a CAAI computer and a remote web server. Insensitivity to

TCP components other than congestion avoidance is desirable,

because the TCP behavior of a web server is controlled not

only by its TCP congestion avoidance component but also by

many other TCP components (as listed in Figure 1).

B. TCP Algorithm Features

A TCP congestion avoidance algorithm can be well de-

scribed by the following two features.

• Feature 1: Multiplicative Decrease Parameter (denoted

by β), which determines the slow start threshold (i.e., the

boundary congestion window size between the slow start

and congestion avoidance states).

• Feature 2: Window Growth Function (denoted by g(·)),
which determines how a TCP algorithm grows its con-

gestion window size in the congestion avoidance state.

Let loss cwnd denote the congestion window size just

before a loss event or a timeout. In case of a loss event,

TCP sets both its slow start threshold and congestion window

size to β × loss cwnd. In case of a time out, TCP sets its

slow start threshold to β× loss cwnd, and sets its congestion

window size to usually 1 packet. Different TCP algorithms

usually have different multiplicative decrease parameters. For

example, AIMD sets β = 0.5; CUBIC sets β = 0.7; and

STCP sets β = 0.875. Some TCP algorithms have a variable

β which depends on loss cwnd and the network environment

such as the duration of a round-trip time (RTT), the minimum

RTT, and the maximum RTT. For example, BIC sets β = 0.8
if loss cwnd > 14, and sets β = 0.5 if loss cwnd ≤ 14;

HSTCP sets β between 0.5 and 0.9 depending on loss cwnd;

HTCP sets β between 0.5 and 0.8 depending on the ratio of

the minimum RTT and the maximum RTT.

Different TCP algorithms usually have different window

growth functions. The window growth function of a TCP

algorithm is usually a function of the elapsed number of

RTTs in the congestion avoidance state (denoted by x) and

loss cwnd. For example, AIMD has a linear window growth

function of x (i.e., g(x, loss cwnd) = 0.5× loss cwnd+x);

and STCP has an exponential window growth function of x

(i.e., g(x, loss cwnd) = 0.875× loss cwnd× 1.02x for non-

delayed ACKs). Some TCP algorithms have a window growth

function which depends not only on x, but also on the network

environment. For example, the CUBIC function depends on

both x and the duration of an RTT; and the CTCP function

depends on x, the duration of an RTT, and the minimum RTT.

Note that different TCP algorithms may show different

features in a network environment, but show the same features

in another network environment. Therefore, an important part

of CAAI is to emulate some network environments in which

different TCP algorithms have different features so that they

can be distinguished from one another.

C. CAAI Steps

CAAI identifies the TCP algorithm of a remote web server

by analyzing the TCP behaviors of the web server in some

emulated network environments. CAAI has the following three

steps.

• Step 1: Trace Gathering. CAAI gathers the TCP con-

gestion window traces of a remote web server in some

emulated network environments.

• Step 2: Feature Extraction. CAAI extracts the two TCP

algorithm features from the gathered TCP congestion

window traces.

• Step 3: Algorithm Classification. CAAI finally identifies

the TCP algorithm by comparing the extracted features

with the training features.

D. Design Challenges

It is very challenging to design CAAI for the following

reasons. 1) It might be easy to find a network environment to

distinguish 2 TCP algorithms, however, it is nontrivial to find

a small set of network environments to clearly distinguish a

large number of TCP algorithms, like 13 TCP algorithms. 2)

We do not have the control of the network condition between a

CAAI computer and a remote web server. The condition of the

network from a remote web server to a CAAI computer greatly

influences the TCP data packets sent from the web server. The

condition of the network from a CAAI computer to a web

server greatly influences the TCP ACK packets received by the

web server. Therefore, it is hard to emulate desired network

environments, hard to measure the TCP congestion window

sizes of a web server, hard to extract TCP features from the

measured congestion window traces, and hard to identify the

TCP algorithm based on the extracted TCP features. 3) We

do not have control of the content on a web server, and most

web pages are very short. Therefore, it is hard to maintain a

TCP connection between a CAAI computer and a remote web

server long enough so that CAAI can gather sufficiently long

traces of TCP congestion window sizes.

IV. CAAI STEP 1: TRACE GATHERING

A. Overview

The first step of CAAI gathers the traces of TCP congestion

window sizes of a remote web server in some emulated

network environments. These network environments are care-

fully chosen so that different TCP algorithms have different

features and thus they can be distinguished from one another.

Specifically, for each network environment,

• Subtask 1: CAAI creates a TCP connection to a remote

web server and emulates the network environment.

• Subtask 2: CAAI measures the TCP congestion window

sizes of the web server in the emulated network environ-

ment.

• Subtask 3: CAAI maintains the TCP connection until

it has gathered a sufficiently long trace of congestion

window sizes.

B. Emulated Network Environments

CAAI emulates the following two network environments

with parameters timeout and mss for a web server. Net-

work Environment A: CAAI sends back an ACK packet to

acknowledge each TCP data packet from the web server (i.e.,

non-delayed ACKs). The TCP data packets sent from the web

server are not lost until the TCP congestion window size

of the web server becomes greater than timeout packets.

Then, the packet loss leads to a TCP timeout of the web

server (i.e., loss cwnd ≥ timeout). After the timeout, there

is again no data packet loss. In addition, there is always no

data packet reordering in the emulated network. The maximum

TCP segment size (MSS) is mss bytes, and the RTT between

CAAI and the web server is always 1.0 second. Network

Environment B: Same as network environment A, except that

the RTT is 0.8 or 1.0 seconds as specified in Figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

E
m

u
la

te
d

 R
T

T
 (

S
e

c
o

n
d

s
)

No. of Emulated RTTs before Timeout

Network Environment A
Network Environment B

(a) Before Timeout

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25

E
m

u
la

te
d

 R
T

T
 (

S
e

c
o

n
d

s
)

No. of Emulated RTTs after Timeout

Network Environment A
Network Environment B

(b) After Timeout

Fig. 2. The RTTs of the two emulated network environments A and B.

Why these two network environments? Figure 3 shows the

traces of congestion window sizes of all 13 TCP algorithms

in these two network environments. We can see that network

environment A or B alone is insufficient to distinguish among

13 TCP algorithms. For example, AIMD (Figure 3(a)) and

VEGAS (Figure 3(j)) have the same trace in network envi-

ronment A, and AIMD (Figure 3(a)) and VENO (Figure 3(k))

have very similar traces in network environment B. Both A and

B together with timeout = 512 packets can clearly distinguish

among all 13 TCP algorithms. Network environment A is

used to collect the behavior of a TCP algorithm in a network

environment with a fixed RTT, in which we can extract two

TCP features for a fixed RTT. Network environment B is

used to collect the behavior of the TCP algorithm in another

network environment with a varying RTT, in which we can

extract another two TCP features for a varying RTT. Before

the timeout in network environment B, RTT increases from

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(a) AIMD

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(b) BIC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(c) CTCP (Windows Server 2008)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(d) CUBIC’ (Linux kernel 2.6.25)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(e) CUBIC (Linux kernel 2.6.27)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(f) HSTCP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(g) HTCP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(h) ILLINOIS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(i) STCP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(j) VEGAS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(k) VENO

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(l) WESTWOOD+

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(m) YEAH

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(n) AIMD

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

(o) CTCP (Windows Server 2008)

Fig. 3. The traces of congestion window sizes of all 13 TCP algorithms in network environments A and B measured on our local testbed with a 0% packet loss
rate. The first 13 figures ((a) to (m)) are obtained with timeout = 512 packets, and the last 2 figures ((n) and (o)) are obtained with timeout = 64 packets.
The results remain the same for all different values of mss. Unless explicitly indicated, the operating system is Linux kernel 2.6.27. We can see that two
network environments A and B with timeout = 512 packets can be used to clearly distinguish among all 13 TCP algorithms. However, with timeout = 64

packets, AIMD and CTCP have the same traces. Not shown in the figure, the other 11 TCP algorithms still have different traces with timeout = 64 packets.

0.8 to 1.0 second after the 3rd RTT, and this is used to check

whether the β feature depends on RTT (e.g., ILLINOIS shown

in Figure 3(h) and VENO shown in Figure 3(k)). After the

timeout, RTT increases from 0.8 to 1.0 second after the 12th

RTT, and this is used to check whether the g(·) feature depends

on RTT (e.g., CTCP shown in Figure 3(c) and YEAH shown

in Figure 3(m)). As explained below, timeout is always no

more than 512 packets, and therefore, TCP has already entered

the congestion avoidance state after 12 RTTs.

Values of timeout: Most TCP algorithms typically have

the same or similar behavior as the traditional AIMD for

small congestion window sizes (e.g., CTCP=AIMD when

their congestion window sizes are less than 41), and have

different behaviors than AIMD for large congestion window

sizes. Therefore, congestion window traces obtained with a

large timeout can be used to accurately distinguish among

different TCP algorithms. For example, Figure 3 shows that

two network environments A and B with timeout = 512
packets can be used to clearly distinguish among all 13 TCP

algorithms. But, with timeout = 64 packets, AIMD and

CTCP have the same traces of congestion window sizes, and

the other 11 TCP algorithms still have different traces (not

shown in the paper). However, congestion window traces with

a very large timeout are hard to obtain, because they require

a very long web page to be downloaded from the web server

which is usually time-consuming and sometimes impossible to

find on the web server, and because the maximum achievable

congestion window size is affected by many factors such as

the bandwidth-delay product of the network and the service

load of the web server. CAAI tries four timeout values in

the decreasing order of 512, 256, 128, and 64 packets. This is

because traces with timeout greater than 512 are sometimes

hard to obtain, and traces with timeout less than 64 is almost

useless for distinguishing among different TCP algorithms.

Values of mss: Since the maximum congestion window size

is limited by the ratio of the bandwidth-delay product to the

MSS, we should set mss to a smaller value in order to have

a higher maximum congestion window size. CAAI tries four

mss values in the increasing order of 100, 300, 536, and 1460

bytes. This is because previous Internet measurement [39]

shows that a large fraction of web servers accept an MSS

as low as 100 bytes, and all web servers accept an MSS of

1460 bytes.

Why emulating an RTT of 1.0 second? Because we can only

emulate an RTT longer than the actual RTT between a CAAI

computer and a web server, and because we want to emulate

the same two network environments for all web servers, the

emulated RTT should be longer than all actual RTTs. However,

a very long emulated RTT may cause undesired TCP timeouts

(actual TCP timeouts, not our emulated TCP timeout). Figure 4

shows the cumulative distribution function (CDF) of the actual

RTTs of the 5000 most popular web servers that we measured

in November 2010, and we can see that almost all actual RTTs

are less than 0.8 seconds. In addition, the initial TCP timeout

period is usually between 2.5 and 6.0 seconds [46], but some

web servers may have shorter initial TCP timeout periods.

Therefore, we can choose an emulated RTT in the range of

0.8 seconds and 2.5 seconds, and CAAI chooses 1.0 second.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Round Trip Time (Seconds)

Fig. 4. The cumulative distribution function (CDF) of the RTT of the 5000
most popular web servers. Measured in November 2010. One RTT per web
server.

Why emulating a timeout (i.e., no ACK packet until the time-

out) instead of a loss event (i.e., three duplicate ACK packets)?

This is because right after a loss event, the congestion window

size depends not only on the congestion avoidance algorithm,

but also heavily on some other TCP components such as

burstiness control in Linux. Linux uses a special burstiness

control [47], [48] to prevent TCP from sending a burst of

packets to the Internet, since bursty traffic may cause long

queueing delay and high packet loss. However, the burstiness

control interferes with congestion control on controlling the

TCP congestion window size. For example, for a Linux web

server, the congestion window size right after a loss event may

be far less than β × loss cwnd, and therefore, it is hard to

accurately measure the two TCP features after a loss event.

Why not combining multiple network environments into one

longer network environment? A longer network environment

requires a longer web page to be downloaded from a web

server, which is usually time-consuming and sometimes im-

possible to find. Therefore, we prefer multiple short network

environments rather than a long network environment.

1

6

3

2

5

4

Emulated
RTT 1

Emulated
RTT 2defer

defer

SYN

DATA/ACK

DATA/ACK

SYN/ACK

DATA

ACK
Web ServerCAAI Computer

Fig. 5. TCP packets between CAAI and a remote web server.

C. Subtask 1: Emulating a Network Environment

Figure 5 illustrates how CAAI communicates with a web

server and how it emulates a network environment. CAAI first

establishes a TCP connection to the web server by sending a

SYN packet (number 1 in the figure). The SYN packet contains

a TCP option to set MSS to mss and another TCP option

to enable the window scaling. After receiving the SYN/ACK

packet (number 2) from the web server, CAAI defers sending

the first DATA/ACK packet (number 3) for a while so that the

first RTT experienced by the web server is as long as the first

RTT of the emulated network environment. This DATA/ACK

packet not only acknowledges the SYN/ACK packet, but also

contains the first few HTTP request messages.

The web server sends back an ACK packet (number 4)

to acknowledge the DATA/ACK packet, and then sends its

data packets (only the first packet, number 5, is shown in

the figure) which contain HTTP response messages. CAAI

again defers sending the next DATA/ACK packet (number

6) so that the second RTT experienced by the web server

is as long as the second RTT of the emulated network

environment. This DATA/ACK packet not only acknowledges

the received data packet (number 5), but also contains the next

few HTTP request messages. CAAI continues acknowledging

each received data packet, until the TCP congestion window

size of the web server is greater than timeout. Then, CAAI

stops sending any packet, and therefore the TCP algorithm

of the web server will finally timeout and retransmit the lost

packets. For each data packet received after the timeout, CAAI

sends back a DATA/ACK which acknowledges all data packets

received so far. CAAI finally stops after the web server does

not send any more data packets or after it has gathered a

sufficient long trace.

How to emulate a network without any loss or reordering of

data packets except the timeout? Since CAAI defers sending

ACK packets, it can detect most lost and reordered packets

by checking the sequence numbers of data packets received

from the web server. In case of packet loss or reordering,

CAAI still sends the correct ACK packets as if there is no

packet loss or reordering. Note that, however, CAAI cannot

guarantee that ACK packets will be successfully delivered to

the web server, and this is a major reason for the inaccuracy

of CAAI identification results.

How to deal with forward RTO-recovery (F-RTO)[49]? The

emulated TCP timeout may be detected by a web server using

F-RTO as a spurious retransmission timeout. In this case, the

web server does not have a regular slow start after the emulated

timeout, which is however required by CAAI to accurately

determine the two TCP features. Therefore, for web servers

using F-RTO, CAAI sends a duplicate ACK after the emulated

timeout in order to stop the F-RTO recovery and start the

conventional TCP timeout recovery.

How to deal with slow start threshold caching? Usually,

the initial slow start threshold of a new TCP connection is set

to infinite. However, a web server using slow start threshold

caching (as part of TCP auto-tuning) sets the initial slow start

threshold of a new TCP connection to the slow start threshold

of the previous TCP connection of the same web client. In this

case, if CAAI emulates network environment B immediately

after network environment A, the web server exits the slow

start state very early and takes a very long time to reach

timeout. Therefore, for web servers using slow start threshold

caching, CAAI waits for some time (like 10 minutes) between

emulating network environments A and B.

D. Subtask 2: Measuring the Congestion Window Sizes

We estimate the TCP congestion window size of a web

server by the number of data packets that it sends in an

emulated RTT. There are two difficulties. 1) After CAAI

receives a data packet from the web server, how to determine

whether it belongs to the previous RTT or the current RTT?

2) Since a packet may be lost or duplicated in the Internet, the

number of data packets received by CAAI may not be equal

to the number of data packets sent by the web server.

The first difficulty can be solved by emulating an RTT

long enough so that the bandwidth-delay product is much

larger than timeout×mss. In this way, the web server sends

all data packets belonging to the same emulated RTT in a

short time interval at the beginning of an emulated RTT.

After receiving all corresponding ACK packets in a short time

interval at the beginning of the next emulated RTT, the web

server sends all data packets belonging to the next emulated

RTT in a short time interval at the beginning of the next

emulated RTT. Therefore, there is a long time gap between two

consecutive data packets belonging to two different emulated

RTTs. Considering that the maximum timeout of CAAI is

512 packets and the maximum mss of CAAI is 1460 bytes,

if the bandwidth from a web server to a CAAI computer is

at least 10 Mbps, an emulated RTT should be longer than

512 × 1460 × 8/107 = 0.6 seconds. The emulated RTTs of

both network environments are 1.0 and 0.8 seconds which are

longer than 0.6 seconds.

The second difficulty can be solved by using the highest

sequence number among all data packets which CAAI receives

in an emulated RTT. CAAI measures the congestion window

size wk of the web server at RTT k as follows: wk = (hk −
hk−1)/mss where hk is the highest sequence number among

all data packets which CAAI receives in the kth RTT. In this

way, as long as CAAI receives the data packet with the highest

sequence number, it can accurately measure the congestion

window size. Even if the data packet with the highest sequence

number is lost, CAAI can still reasonably accurately measure

the congestion window size as long as it receives the data

packets with the next highest sequence numbers.

E. Subtask 3: Maintaining a TCP connection

In order to distinguish among different TCP algorithms,

CAAI must gather sufficiently long traces of congestion win-

dow sizes. Because timeout is no more than 512 packets,

the slow start state usually takes no more than 10 RTTs.

Therefore, CAAI gathers at least 16 RTTs of congestion

window sizes after the timeout so that TCP has usually entered

the congestion avoidance state for at least 6 RTTs, which is

the minimum number of RTTs (as shown in Figure 3) to dis-

tinguish among all 13 TCP algorithms when timeout = 512
packets. Accordingly, we define a valid trace to be a trace

which has at least 16 RTTs of congestion window sizes after

the timeout. CAAI gathers at most 25 RTTs of congestion

window size after the timeout, at which time TCP has usually

entered the congestion avoidance state for at least 15 RTTs

which is sufficiently long for distinguish among all 13 TCP

algorithms. Overall, CAAI continues gathering a trace, until

there is no data packet from the web server or until 25 RTTs

after the timeout.

The difficulty is how to maintain the TCP connection so that

CAAI can gather a valid trace of congestion window sizes. For

example, for network environment A and B with timeout =
512 packets and mss = 100 bytes, it requires about 340K

bytes of data for a web server with AIMD to send a total

of 26 RTTs of data packets (10 RTTs before timeout and 16

RTTs after timeout). For mss = 300, 536, and 1460 bytes, it

requires about 1000K, 1800K, and 4900K bytes, respectively.

CAAI uses the following two methods together to solve the

problem.

First, CAAI repeatedly sends the same HTTP request mes-

sage to a web server. One might think that it is sufficient

to repeatedly request the default index.html of a web server.

However, there are two issues. 1) A considerable fraction

of web servers only accept the first or the first few HTTP

requests, and discard the remaining requests. 2) Some web

servers have a very short index.html.

Second, CAAI sends HTTP request messages for a long

web page. We have developed a web page searching tool

to automatically search a web server for a long web page

(e.g., html files, image files, or executable files). Specifically,

for a web server, our tool first uses httrack [50] to find as

many webpages as possible in 5 minutes (while taking care

of http redirection), uses the dig service to find web pages

belonging to the same domain as the web server, obtains

the web page headers to find their sizes without actually

downloading them, and finally finds the longest web pages.

It turns out that this is the most time-consuming part of our

experiments, and therefore we run this tool simultaneously on

hundreds of Planetlab nodes [51].

V. CAAI STEP 2: FEATURE EXTRACTION

This section describes how CAAI extracts the two

features from a trace of n congestion window sizes:

w1, w2, ..., wo, wo+1, ..., wn, where wo is the congestion win-

dow size right before the timeout, and wo+1 is the first non-

zero congestion window size after the timeout. Note that, for a

valid trace, we have o+16 ≤ n ≤ o+25. In order to extract the

two features, CAAI first determines at which RTT (denoted by

s, and called the threshold RTT) after the timeout TCP leaves

the slow start state. That is, the slow start threshold is between

ws−1 and ws. Once the threshold RTT is determined, the two

features can be easily extracted.

A. Determining the Threshold RTT

The determination of the threshold RTT is based on the

fact that the standard TCP slow start is usually the default

one, and the hybrid slow start [29] used by CUBIC behaves

the same as the standard slow start in our emulated network

environments A and B (since the RTTs of the slow start

state after the timeout remain unchanged, and the emulated

RTT is relatively long). That is, a TCP algorithm increases

the congestion window size by one for every received ACK

in the slow start state and increases the congestion window

size relatively slowly in the congestion avoidance state. The

challenge is how to check whether the congestion window size

of a web server is increased by one for every ACK packet

when ACK packets may be lost. To solve this problem, CAAI

first estimates the maximum ACK loss rate in the slow start

state, and then uses it to determine the threshold RTT.

At an RTT in the slow start state after the timeout, say

RTT k > o+1, CAAI estimates the maximum ACK loss rate

(denoted by pk) on the path from CAAI to a web server by

the following equation, which is obtained using the interval

estimation technique with a confidence level of 99.9%.

pk =
2n2 + 3.272 + 3.27

√

4n2(n1 − n2)/n1 + 3.272

2(n1 + 3.272)
(1)

where n1 =
∑k−1

i=o+1
wi is the total number of ACK packets

sent since the timeout, and n2 =
∑k−1

i=o+1
(2wi − wi+1) is

the total number of lost ACK packets since the timeout. The

number 2wi − wi+1 is an estimate of the number of ACK

packets lost in RTT i. This is because CAAI sends wi ACK

packets at RTT i, and if all of them are successfully received

by the web server, the congestion window size wi+1 at RTT

i + 1 should be 2wi. To avoid abnormal pk values, we limit

the maximum pk to be 80%, and the minimum pk to be 5%.

CAAI detects whether the congestion window size at RTT

k is increased by one for every ACK packet by checking

whether wk+1 > wk +wk(1− pk). Starting from the smallest

RTT s > o such that ws ≥ wo/2, CAAI searches for four

consecutive RTTs s−1, s, s+1, and s+2, for all of which the

congestion window size is not increased by one for every ACK

packet. RTT s is then the threshold RTT. This method can

more accurately determine the threshold RTT than the method

proposed in our early work [37] as evaluated in Section VII.

B. Feature 1: Multiplicative Decrease Parameter

Feature β can be obtained by β = ws/loss cwnd where

ws is the congestion window size at the threshold RTT, and

loss cwnd is the congestion window size right before the

timeout (i.e., loss cwnd = wo). If the extracted β is greater

than 1.0, CAAI reports an abnormal slow start error.

C. Feature 2: Window Growth Function

The window growth function of a trace can be described by

the congestion window sizes after RTT s. We use a fifth-degree

polynomial g(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4+ a5x

5 to

fit the congestion window sizes after RTT s. There are three

reasons. 1) Different traces may have different RTT numbers

of congestion window sizes, with curve fitting CAAI can use

six coefficients to describe a trace with any RTT number of

congestion window sizes. 2) For the 13 TCP algorithms, most

of their window growth functions can be well fitted with a first-

degree polynomial (i.e., a linear function for AIMD), some of

them can be well fitted with a third-degree polynomial (i.e., a

cubic function for CUBIC), and the window growth function

of YEAH in network environment B can be well fitted with a

fifth-degree polynomial. Note that although the actual window

growth function of STCP is an exponential function, its traces

within the first tens of RTTs after RTT s can be well fitted with

a first-degree polynomial. 3) A trace of congestion window

sizes may have some noises due to some network and server

factors, and curve fitting can greatly eliminate these noises.

In addition, we fit the offset congestion window sizes (i.e.,

g(1) = ws+1−ws, g(2) = ws+2−ws, ...) instead of the actual

congestion window sizes (i.e., g(1) = ws, g(2) = ws+1, ...).

The advantage is that for most TCP algorithms, we can use the

same g(x) and thus the same set of coefficients to describe the

window growth function of traces with difference ws values.

For example, g(x) is always x for AIMD traces.

D. The Feature Vectors of a Web Server

CAAI emulates two network environments A and B, and

gathers two traces from a web server. All the features of a web

server can be described by a feature vector V = (βA, aA0 , aA1 ,

aA2 , aA3 , aA4 , aA5 , βB , aB0 , aB1 , aB2 , aB3 , aB4 , aB5). Features with

superscripts A and B are for network environments A and B,

respectively. Sometimes, a TCP algorithm does not experience

any timeout for a network environment (e.g., VEGAS in

network environment B as shown in Figure 3(j)). In this case,

CAAI sets β to -1, and fits g(x) to the whole trace.

VI. CAAI STEP 3: ALGORITHM CLASSIFICATION

This section describes how CAAI identifies the TCP al-

gorithm of a web server based on its feature vector V . The

challenge is that we may get different feature vectors for

different web servers with the same TCP algorithm or for the

same web sever but at different times. This is because the

congestion window trace gathered from a web server depends

on the network condition, especially the instantaneous ACK

loss rate on the path from a CAAI computer to the web server.

To solve this problem, we create a training set which contains

the feature vectors of all TCP algorithms in some network

conditions (details in Section VII). Among all feature vectors

in the training set, CAAI finds the one which is the closest to

the feature vector of a web server.

We now describe some necessary notation. We refer to the

feature vector of a web server as the web feature vector, and

denote it by V = (βA, aA0 , aA1 , aA2 , aA3 , aA4 , aA5 , βB , aB0 , aB1 ,

aB2 , aB3 , aB4 , aB5). Its window growth functions in network

environments A and B are gA(x) and gB(x), respectively. For

example, gA(x) = aA0 +aA1 x+aA2 x
2+aA3 x

3+aA4 x
4+aA5 x

5.

We refer to a feature vector in the training set as a training

feature vector, and denote it by V́ = (β́A, áA0 , áA1 , áA2 , áA3 ,

áA4 , áA5 , β́B , áB0 , áB1 , áB2 , áB3 , áB4 , áB5). Its window growth

functions in network environments A and B are ǵA(x) and

ǵB(x), respectively.

For a web feature vector V , CAAI finds the closest one

among all training feature vectors with the same timeout
value as the web feature vector. The distance between two

feature vectors V and V́ is defined as follows.

d(V, V́) =

√

√

√

√

(

W 2
(

βA − β́A
)2

+

15
∑

x=1

(

gA(x)− ǵA(x)
)2

30

+W 2
(

βB − β́B
)2

+

15
∑

x=1

(

gB(x)− ǵB(x)
)2

30

)

(2)

where the first and third terms inside the square root are the

weighted difference between two β features (W is the weight),

and the second and fourth terms are the normalized differences

between the corresponding points of the two window growth

functions. The number 15 is because CAAI usually gathers 25

RTTs of congestion window size after a timeout (described

in Section IV-E), and thus TCP has entered the congestion

avoidance state for at least 15 RTTs (when timeout ≤ 512).

If the distance between the web feature vector and the

closest training feature vector is less than a threshold D,

CAAI reports the TCP algorithm of the closest training feature

vector as the identification result. Otherwise, CAAI reports

that the web server uses an unknown TCP algorithm, since

the web feature vector is too far away from every training

feature vector. Overall, CAAI has a total of two parameters.

Parameter W is the weight of β features, and parameter D is

the maximum allowed distance.

VII. CAAI EXPERIMENTS

In this section, we describe our CAAI experiment results.

The CAAI experiments described in this paper are not de-

signed to comprehensively measure the deployment informa-

tion of different TCP algorithms on web servers, and they are

only used to demonstrate the potential applications of CAAI.

A. Collecting Training Feature Vectors

We use our lab test-bed to collect training feature vectors

for CAAI. The test-bed consists of four computers: one CAAI

computer, one Linux web server, one Windows web server,

all connected to a Linux router. The Linux web server runs

Apache, and the Windows web server runs IIS. We run

Netem [52] on the Linux router to emulate various network

conditions between the CAAI computer and a web server.

Specifically, we emulate 2 network conditions with different

RTTs: 50ms and 250 ms, corresponding to two types of web

servers: web servers close to or far away from the CAAI

computer. In both network conditions, there is no packet loss

for both TCP data and ACK packets.

The feature vectors of CTCP are obtained using an IIS

web server on Windows Server 2008, the feature vectors

of CUBIC’ are obtained using an Apache server on Linux

kernel 2.6.25, and the feature vectors of all other 11 TCP

algorithms are obtained using an Apache server on openSUSE

11.1 with Linux kernel 2.6.27. Note that, we use the feature

vectors of AIMD only in Linux. This is because there is only

slightly difference between AIMD in Linux and AIMD in

Windows, and the slight difference would not noticeably affect

the identification accuracy for AIMD.

For each of 2 network conditions between the CAAI com-

puter and a web server, for each of 4 timeout values (i.e., 512,

256, 128, and 64 packets), and for each of 13 TCP algorithms,

we collect a training feature vector which contains the features

of a TCP algorithm in network environments A and B with

timeout. Note that the value of mss has no impact on the

feature vectors. Therefore, there are a total of 2×4×13 = 104
training feature vectors. However, note that when classifying

a web feature vector, CAAI compares it only with the training

feature vectors with the same timeout value as the web feature

vector. For example, when classifying a web feature vector

with timeout = 512 packets, CAAI only uses the 2×13 = 26
training feature vectors with timeout = 512 packets.

We notice that AIMD and CTCP behave very similar to each

other when timeout is 128 or 64 packets, and consequently,

AIMD and CTCP have very similar feature vectors in these

cases. Therefore, when timeout is 128 or 64 packets, we do

not distinguish between AIMD and CTCP.

B. Testbed Evaluation and Validation

1) Parameter Setting and Validation: In order to set the

parameters of CAAI and evaluate the identification accuracy

of CAAI, we collect a set of validation feature vectors obtained

using 10 packet loss rates (the 0% training packet loss rate plus

9 new packet loss rates: 0.01%, 0.02%, 0.05%, 0.1%, 0.2%,

0.5%, 1%, 2%, and 5%), 5 RTTs (the 2 training RTTs plus 3

new RTTs: 100, 150, and 200 ms), the same 4 timeout values,

and the same 13 TCP algorithms. Therefore, there are a total

of 10× 5× 4× 13 = 2600 validation feature vectors.

We use CAAI with the 104 training feature vectors to

identify all 2600 validation feature vectors. In order to choose

the value of parameter W , we temporarily set D to infinite

so that no unknown TCP algorithm is reported (i.e., each

validation feature vector is identified as some TCP algorithm).

Figure 6 shows the identification accuracy of CAAI when

parameter W varies from 1 to 16384. The identification accu-

racy is the percentage of correctly identified validation feature

vectors. After checking the incorrectly identified validation

feature vectors, we found that in network conditions with

high packet loss rates, CAAI sometimes cannot correctly

distinguish between AIMD and VENO which have similar

window growth functions, and sometimes cannot correctly

distinguish between ILLINOIS and STCP which have similar

window growth functions.

We can see that CAAI achieves the best accuracy when

W is around 256, and a very small or very big W impairs

the identification accuracy. Intuitively, this is because in one

extreme case when W is very small, CAAI mainly uses the

window growth function feature (i.e., g(·)), and in another

extreme case when W is very big, CAAI mainly uses the

multiplicative decrease parameter feature (i.e., β). Only when

W is neither small nor big, CAAI uses both features and thus

can achieve better identification accuracy. Therefore, CAAI

sets W to 256, at which point CAAI achieves an identification

accuracy of 95.7%. Finally, with W = 256, we set parameter

D to the maximum distance between a validation feature

vector and its closest training feature vector, which is about

500.

2) Evaluating the Threshold RTT: We evaluate our method

which detects the threshold RTT in a trace of congestion

window sizes. The threshold RTT as described in Section V is

the RTT when TCP leaves the slow start state and just enters

the congestion avoidance state. The accuracy of the detected

threshold RTT greatly determines the accuracy of TCP feature

vectors, and thus the accuracy of the identification results.

Figure 7 shows the average accuracy of the threshold RTTs

of all 2600 validation feature vectors. The accuracy of a

threshold RTT is calculated as 1− (|ws − ŵs|)/ŵs, where ws

is the window size at the detected threshold RTT and ŵs is the

window size at the actual threshold RTT. Figure 7 compares

the threshold RTT accuracy of two methods: our new method

(referred to as CAAI in the figure) as described in Section V,

and our previous method (referred to as EARLY WORK in

the figure) as described in our early work [37]. Our previous

method detects the threshold RTT by checking whether the

ratio of two consecutive congestion window sizes is less

than a threshold. We can see that our new method achieves

significantly better accuracy than our previous method.

C. Internet Measurement

We used CAAI to identify the TCP algorithms of the 5000

most popular web servers (according to the Alexa traffic

rank [24]) in February 2011. For a web server, we first use

our web page searching tool (described in Section IV-E) to

find a long web page on the web server, and then use CAAI

to download the web page and to identify the TCP algorithm

of the web server. If a web server has multiple IP addresses,

we only test one of them. A short message is added into the

header of every HTTP request message to indicate our contact

information and the research purpose of our experiments.

For about 26% of web servers, CAAI could not gather valid

congestion window traces (i.e., at least 16 RTTs of congestion

window sizes after a timeout, described in Section IV-E) even

with timeout = 64 packets. The reasons for most of these web

servers are 1) CAAI could not find a sufficiently long web page

on a web server, and 2) a web server accepts only one HTTP

request or very few repeated HTTP requests in the same TCP

connection. Intuitively, the file transfer of these web servers

is mainly controlled by the TCP slow start algorithm, and

thus it is not necessary to identify their congestion avoidance

TABLE II
RESULTS OF WEB SERVERS WITH VALID TRACES

timeout 512 256 128 64 Total

Total 59.95% 19.71% 12.71% 7.90% 100%

AIMD 10.33% 6.52% 5.65% 3.08% 16.85∼25.58%

CTCP 0.22% 0.08% 0.30∼9.03%

BIC 9.68% 3.57% 1.11% 0.00% 14.36%

CUBIC’ 11.60% 1.54% 2.03% 0.65% 15.82%

CUBIC 12.11% 1.41% 0.51% 0.30% 14.33%

HSTCP/CTCP’ 7.73% 0.70% 0.43% 1.11% 9.97%

HTCP 0.11% 0.08% 0.14% 0.16% 0.49%

STCP 1.08% 0.35% 0.27% 0.16% 1.86%

WESTWOOD 0.76% 0.46% 0.65% 0.95% 2.82%

ILLINOIS 0.30% 0.19% 0.08% 0.19% 0.76%

VEGAS 0.87% 0.46% 0.19% 0.05% 1.57%

VENO 0.46% 0.38% 0.24% 0.14% 1.22%

YEAH 0.41% 0.84% 0.65% 0.05% 1.95%

Unknown TCPs 3.27% 1.43% 0.38% 0.27% 5.35%

Abn. SlowStart 1.03% 1.70% 0.38% 0.78% 3.89%

algorithms. The reasons for the remaining web servers are

1) a web server has a very short initial TCP timeout period,

2) CAAI could not establish a TCP connection to a web server,

3) CAAI does not receive any packet after establishing a TCP

connection, 4) and other reasons.

For about 74% of web servers, CAAI successfully gathered

valid traces as summarized in Table II. Recall that to achieve

a high identification accuracy (described in Section IV-B),

CAAI starts with timeout = 512 packets. If not successful,

CAAI tries timeout = 256, 128, and finally 64 packets. Each

column shows the information of web servers gathered with a

timeout, and the last column shows the overall information.

We can see that for 59.95%, 19.71%, 12.71%, and 7.90% of

web servers with valid traces, CAAI successfully gathered

congestion window traces with timeout = 512, 256, 128,

and 64 packets, respectively. In the remaining part of this

section, we consider only web servers with valid trace, and

the percentage is calculated with respect to these web servers.

Table II shows that overall only 16.85∼25.58% of web

servers still use the traditional AIMD. The reason for the

range is that when timeout ≤ 128 packets, it is very hard to

distinguish between AIMD and CTCP. Therefore, for 5.65%+
3.08% = 8.73% of web servers, we do not know whether they

use AIMD or CTCP. We can also see that overall a significant

percentage (i.e., 14.36%+15.82%+14.33% = 44.51%) of web

servers use BIC, CUBIC’, or CUBIC, and among these three

TCP algorithms, CUBIC’ (i.e., the early version of CUBIC)

has the largest number of web servers.

Surprisingly, Table II shows that a non-trivial percentage

(i.e., 9.97%) of web servers use HSTCP. Figure 8 shows such

an example. We manually checked the congestion window

traces of these web servers, and we found that they are indeed

very similar to HSTCP traces as shown in Figure 3(f) and

quite different from CTCP traces as shown in Figure 3(c).

For example, the congestion window sizes at RTT 35 in both

Figures 8 and 3(f) are around 300 packets, whereas the

congestion window sizes at RTT 35 in Figure 3(c) are around

 93

 93.5

 94

 94.5

 95

 95.5

 96

 1 4 16 64 256 1024 4096 16384Id
e
n
ti
fi
c
a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Parameter W of CAAI

Fig. 6. CAAI achieves the best accuracy when W is
around 256, and a very small or very big W impairs
the identification accuracy.

 80

 85

 90

 95

 100

0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0T
h
re

s
h
o
ld

 R
T

T
 A

c
c
u
ra

c
y
 (

%
)

Packet Loss Rate (%)

CAAI
EARLY WORK

Fig. 7. CAAI can very accurately detect the
threshold RTT, and achieve much better accuracy
than our early work [37].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

Fig. 8. An early version of CTCP. Web Server in-
dicated in HTTP headers: IIS/6.0, Operating System
reported by NMAP [40]: Windows Server 2003.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

Fig. 9. A web server using YEAH. Web Server
indicated in HTTP headers: CacheFlyServe v26b,
Operating System reported by NMAP [40]: Linux.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

Fig. 10. An unknown TCP algorithm. Web Server
indicated in HTTP headers: Not Available, Operating
System reported by NMAP [40]: Linux.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 (
P

k
ts

)

Total No. of Emulated RTTs

Network Environment A
Network Environment B

Fig. 11. Abnormal Slow Start. Web Server indicated
in HTTP headers: uServ/1.53, Operating System
reported by NMAP [40]: Linux.

390 and 300 packets. However, by manually checking their

HTTP response header information, we found that most of

these web servers use IIS 6.0 which runs on Windows Server

2003 or Windows XP Professional x64 Edition. Considering

that Microsoft released a hotfix to add CTCP to these two

Windows systems in 2008, we believe that these 9.97% of

web servers may use an early version of CTCP (referred to

as CTCP’), which behaves very similar to HSTCP but quite

different from the latest CTCP in Windows Server 2008. We

can see that overall 10.27∼19% of web servers use CTCP’

or CTCP, however, most of them still use the CTCP’ (i.e., the

early version of CTCP).

Table II shows a small percentage of web servers use these

non-default TCP algorithms (i.e., TCP algorithms other than

AIMD, BIC, CUBIC, and CTCP). While some of them may

be due to identification errors, we found that there are indeed

some web servers using these non-default TCP algorithms.

Figure 9 shows the traces of a web server using YEAH,

which is almost the same as the traces of YEAH obtained

on our local test-bed as shown in Figure 3(m). Surprisingly,

there are also a non-trivial percentage (i.e., 5.35%) of web

servers using some unknown TCP algorithms (i.e. not any of

the 13 TCP algorithms). While some of them were due to bad

network conditions between the CAAI computer and the web

servers, we found that there are indeed quite a few web servers

using some unknown TCP algorithms. Figure 10 shows such

an example. Table II also shows that 3.89% of web servers

have abnormal slow start (i.e., the slow start threshold after a

timeout is higher than the congestion window size before the

timeout). Figure 11 shows such an example.

Our preliminary CAAI measurement results, even though

still not comprehensive, show a strong sign that the majority

of TCP flows are not controlled by AIMD anymore (therefore,

it is the time to reconsider the design goal of TCP-friendliness

of new congestion control algorithms based on the majority

of TCP algorithms), and a strong sign that the Internet

congestion control has already changed from homogeneous to

highly heterogeneous (therefore, it is the time to reevaluate

the performance and stability of the Internet based on the

distribution of different TCP algorithms).

VIII. CONCLUSION

In this paper, we proposed a tool called CAAI for identify-

ing the TCP algorithm of a remote web server, and presented

our measurement results of the TCP deployment information

of the 5000 most popular web servers.

There are still some limitations of the work described in

this paper. The current CAAI does not consider some other

TCP congestion control algorithms, such as FAST [53] which

is not available in any operating system but has been used

by some web servers, and does not consider XCP [54],

VCP [55], and PERT [56], which have recently been proposed

but not yet incorporated into any operating system. We plan

to add the training feature vectors of more operating systems

(e.g., FreeBSD, OpenBSD, Mac OS X, and Solaris) into our

training set, so that we can more accurately identify their TCP

algorithms. In addition, we plan to extend CAAI to actively

identify the TCP algorithms of other types of Internet nodes

(e.g., peer-to-peer nodes and FTP servers), and to identify the

TCP algorithms of Internet flows in passively measured packet

traces.

The current CAAI experiment covers only one IP address

per web server and only 5000 web servers, which is still much

less than the total number of web servers in the Internet.

We plan to conduct more comprehensive measurements, and

carefully investigate the web servers using non-default TCP

algorithms, unknown TCP algorithms, and abnormal slow start

algorithms.

ACKNOWLEDGMENT

The work reported in this paper is supported in part by NSF

CAREER CNS-0644080 and NSF CNS-1017561.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” in Proceedings of

ACM SIGCOMM, Stanford, CA, August 1988.

[2] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks,” Journal of Computer

Networks and ISDN, vol. 17, no. 1, pp. 1–14, June 1989.

[3] A. Tang, J. Wang, S. Low, and M. Chiang, “Equilibrium of hetero-
geneous congestion control: Existence and uniqueness,” IEEE/ACM

Transactions on Networking, vol. 15, no. 4, pp. 824–837, August 2007.

[4] K. Munir, M. Welzl, and D. Damjanovic, “Linux beats Windows! -
or the worrying evolution of TCP in common operating systems,” in
Proceedings of PFLDNet, Marina Del Rey, CA, February 2007.

[5] M. Weigle, P. Sharma, and J. Freeman, “Performance of competing high-
speed TCP flows,” in Proceedings of NETWORKING, Coimbra, Portuga,
May 2006.

[6] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” in Proceedings of PFLDNet, France, February 2005.

[7] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proceedings

of IEEE INFOCOM, Barcelona, Spain, April 2006.

[8] E. Kohler, M. Handley, and S. Floyd, “Datagram congestion control
protocol (DCCP),” RFC 4340, March 2006.

[9] R. Stewart, “Stream control transmission protocol,” RFC 4960, Septem-
ber 2007.

[10] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proceedings of ACM SIGCOMM, Portland, Oregon, August 2004.

[11] D. Barman, G. Smaragdakis, and I. Matta, “The effect of router
buffer size on highspeed TCP performance,” in Proceedings of IEEE

GLOBECOM, Dallas, TX, November 2004.

[12] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
for fast long-distance networks,” in Proceedings of IEEE INFOCOM,
Hong Kong, March 2004.

[13] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating System Review, vol. 42, no. 5,
pp. 64–74, July 2008.

[14] S. Floyd, “HighSpeed TCP for large congestion windows,” RFC 3649,
December 2003.

[15] R. N. Shorten and D. J. Leith, “H-TCP: TCP for high-speed and long-
distance networks,” in Proceedings of PFLDNet, Argonne, IL, February
2004.

[16] C. Caini and R. Firrincieli, “TCP-Hybla: A TCP enhancement for hetero-
geneous networks,” International Journal of Satellite Communications

and Networking, vol. 22, no. 5, pp. 547–566, September 2004.

[17] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss and delay-based
congestion control algorithm for high-speed networks,” in Proceedings

of VALUETOOLS, Pisa, Italy, October 2006.

[18] A. Kuzmanovic and E. W. Knightly, “TCP-LP: A distributed algorithm
for low priority data transfer,” in Proceedings of IEEE INFOCOM, San
Francisco, April 2003.

[19] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 2, pp. 83–91, April 2003.

[20] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New techniques
for congestion detection and avoidance,” in Proceedings of ACM SIG-

COMM, August 1994, pp. 24–35.

[21] C. Fu and S. Liew, “TCP Veno: TCP enhancement for transmission
over wireless access networks,” IEEE Journal on Selected Areas in

Communication, vol. 21, no. 2, pp. 216–228, February 2003.

[22] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of ACM Mobicom, Rome, Italy, July 2001.

[23] A. Baiocchi, A. Castellani, and F. Vacirca, “YeAH-TCP: Yet another
highspeed TCP,” in Proceedings of PFLDNET, Los Angeles, CA,
February 2007.

[24] Alexa Internet Inc., http://www.alexa.com/topsites.

[25] M. Allman, V. Paxson, , and W. Stevens, “TCP congestion control,”
RFC 2581, April 1999.

[26] M. Allman, S. Floyd, , and C. Partridge, “Increasing TCP’s initial
window,” RFC 3390, October 2002.

[27] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing TCP’s initial con-
gestion window,” ACM SIGCOMM Computer Communication Review,
vol. 40, no. 3, pp. 27–33, July 2010.

[28] S. Floyd, “Limited slow-start for TCP with large congestion windows,”
RFC 3742, March 2004.

[29] S. Ha and I. Rhee, “Hybrid slow start for high-bandwidth and long-
distance networks,” in Proceedings of PFLDNET, Manchester, UK,
March 2008.

[30] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC

5681, September 2009.
[31] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification to

TCP’s fast recovery algorithm,” RFC 3782, April 2004.
[32] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective

acknowledgment options,” RFC 2018, October 1996.
[33] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to the

selective acknowledgement (SACK) option for TCP,” RFC 2883, July
2000.

[34] J. Padhye and S. Floyd, “On inferring TCP behavior,” in Proceedings

of ACM SIGCOMM, San Diego, CA, August 2001.
[35] J. Oshio, S. Ata, and I. Oka, “Identification of different TCP versions

based on cluster analysis,” in Proceedings of IEEE ICCCN, San Fran-
cisco, CA, August 2009.

[36] S. Feyzabadi and J. Schonwalder, “Identifying TCP congestion control
algorithms using active probing,” in Passive and Active Measurement

Conference (PAM), Poster, Switzerland, April 2010.
[37] P. Yang, W. Luo, and L. Xu, “Towards measuring the deployment

information of different TCP congestion control algorithms: The mul-
tiplicative decrease parameter,” in Proceedings of IEEE GLOBECOM,
Miami, FL, December 2010.

[38] D. Comer and J. Lin, “Probing TCP implementations,” in Proceedings

of USENIX Summer Conference, Boston, MA, June 1994.
[39] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of

transport protocols in the Internet,” ACM Computer Communications

Review, vol. 35, no. 2, pp. 37 – 52, April 2005.
[40] Network Mapper (NMAP), http://nmap.org/.
[41] V. Paxson, “Automated packet trace analysis of TCP implementations,”

in Proceedings of ACM SIGCOMM, Cannes, France, September 1997.
[42] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics

and origins of Internet flow rates,” in Proceedings of ACM SIGCOMM,
Pittsburgh, PA, August 2002.

[43] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Infer-
ring TCP connection characteristics through passive measurements,” in
Proceedings of IEEE INFOCOM, Hong Kong, March 2004.

[44] S. Rewaskar, J. Kaur, and F. Smith, “A performance study of loss
detection/recovery in real-world TCP implementations,” in Proceedings

of IEEE ICNP, Beijing, China, October 2007.
[45] F. Qian, A. Gerber, Z. Mao, S. Sen, O. Spatscheck, and W. Willinger,

“TCP revisited: a fresh look at TCP in the wild,” in Proceedings of ACM

IMC, Chicago, IL, November 2009.
[46] N. Seddigh and M. Devetsikiotis, “Studies of TCP’s retransmission

timeout mechanism,” in Proceedings of IEEE ICC, Helsinki, June 2001.
[47] P. Sarolahti and A. Kuznetsov, “Congestion control in Linux TCP,” in

Proceedings of the FREENIX Track: 2002 USENIX Annual Technical

Conference, Berkeley, CA, June 2002.
[48] D. Wei, S. Hegdesan, and S. Low, “A burstiness control for TCP,” in

Proceedings of PFLDNet, France, February 2005.
[49] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-

recovery (F-RTO): An algorithm for detecting spurious retransmission
timeouts with TCP,” RFC 5682, September 2009.

[50] HTTrack Website Copier, http://www.httrack.com/.
[51] PlanetLab, “An open platform for developing, deploying, and accessing

planetary-scale service,” 2002, http://www.planet-lab.org/.
[52] S. Hemminger, “Network emulation with NetEm,” in Proceedings of the

6th Australia’s National Linux Conference, Australia, April 2005.
[53] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation, architecture,

algorithms, performance,” in Proceedings of IEEE INFOCOM, Hong
Kong, March 2004.

[54] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control
for high bandwidth-delay product networks,” in Proceedings of ACM

SIGCOMM, Pittsburgh, August 2002.
[55] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more

bit is enough,” in Proceedings of ACM SIGCOMM, Philadelphia, PA,
August 2005.

[56] S. Bhandarkar, A. Reddy, Y. Zhang, and D. Loguinov, “Emulating AQM
from end hosts,” in Proceedings of ACM SIGCOMM, Kyoto, Japan,
August 2007.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-18-2011

	TCP Congestion Avoidance Algorithm Identification (CAAI)
	Peng Yang
	Wen Luo
	Lisong Xu
	Jitender Deogun
	Ying Lu

