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24

Potential

24-1 Potential Difference

A positive charge q situated at some point A in an electric field where the
intensity is E will experience a force F given by Equation (23-1a) as

F = Eq.

In general, if this charge q is moved to some other point B in the electric
field, an amount of work /::,.fr will have to be performed. The ratio of the
work done /::,.fr to charge q transferred from point A to point B is called the
difference of potential /::,.V between these points; thus

(24.1)

where V A is the potential at A, and VB is the potential at B.
The quantity of charge q should be so small that it does not disturb

the distribution of the charges which produce the electric field E. Or we
may imagine that successively smaller charges are used, and that the work
done in moving each such charge is determined. The limit of the ratio of
the work done to the charge transferred as the charge gets progressively
smaller is the potential difference between the two points A and B. Differ
ence of potential is thus the work per unit charge that would be done in
transferring charge from one point to another. A difference of potential
can exist between two points even though no charge is actually transferred
between them.

Potential difference is a scalar quantity, since both work and charge
are scalar quantities. If a positive charge q is transferred from A to B, and
if the work is done by some outside agency against the forces of the electric
field, then point B is said to be at a higher potential than A; if the work is
448



§24-1 POTENTIAL DIFFERENCE 449

done by the electric field in moving a positive charge from A to B, then the
potential at A is higher than that at B.

The unit of potential difference in the mks system is the volt. From
Equation (24-1) we see that one volt is equal to one joule per coulomb.

In the cgs system of units, the unit of potential difference is the statvolt,
which is equal to one erg per statcoulomb. We may find the relationship between
the volt and the statvolt by following the usual unit conversion procedure. Thus

1 volt = 1 jou~ X 107 ergs X 1 coul
1 coul 1 joule 3 X 109 stcoul

107 ergs 1
- = - statvolt.

3 X 109 stcoul 300

.\flore exactly, 1 statvolt = 299.6 volts.

In the above discussion we have used the term potential at a point,
while the definition was in terms of the difference of potential between two
points. The term "potential at a point" can have meaning if we decide
upon some reference point as a point of zero potential. In practical work
this reference point or zero level of electrical potential is usually taken as
the earth or the ground, and the potential at any other point is measured
with respect to it. Electrical equipment is practically always connected
to earth or to ground at some point, and other potentials are spoken of as
being so many volts above or below ground potential. In many calcula
tions in physics, in dealing with the properties of finite charge distributions,
without reference to their position with respect to the earth, it is convenient
to refer potentials to the potential of a point at infinity. In such calcula
tions a point infinitely distant from the charge distribution is considered
as the zero of potential.

The assignment of a zero of electrical potential is thus somewhat
arbitrary and is analogous to the assignment of the position of zero potential
energy in dealing with a particle in the earth's gravitational field. Although
we did not develop the concept of gravitational potential in mechanics, the
gravitational potential difference may be defined in terms of the work per
unit mass in moving a mass between two points in the field. Since there is
no work done in moving a mass along a frictionless level surface in the
gravitational field, all points on a level surface have the same gravitational
potential. The work done in raising a mass m through a height h in a field
of gravitational intensity g is mgh, and, dividing by m, we see that the
gravitational potential difference is gh. Thus altitude is a measure of
gravitational potential, which is customarily referred to an arbitrary zero
of altitude at sea level.
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24-2 Potential Due to a Point Charge in Vacuum

An isolated point charge in vacuum generates an electric field which is
given by Equation (23-2) as

q
E = --21r.

41l"Eo1'

Fig. 24-1

q

\Ye recall that in this equation r is the distance from the charge q to the
point where the field is being evaluated, and the unit vector l r is directed

from the charge to the field point.
Let us place the charge q at the origin
of coordinates and calculate the work
which must be done by some outside
agency in moving a positive charge q'
from a point A in the electric field
at a distance 1'a from the origin, to a
point B in the field at a distance 1'b

from the origin, as shown in Fig
ure 24-l.

o Let us first show that the work
done does not depend upon the path
by which the charge q' is moved from
A to B. To do this we shall consider
two alternate routes. In the first of
these we shall move q' radially along
the line AC, and then along the arc
of a circle CB. In this path, work is
done only along the radial portion
of the path, for here the force which
must be exerted is equal and opposite
to the force experienced by q' due to
the electric field of q. No work is
done by the agency displacing q'

along the circular portion of the path, for here the force exerted is radial
and is perpendicular to the displacement, which is tangential.

We may approximate the second route ADB as closely as we please
by a succession of radial and circular displacements. Again we see that
work is done only during a radial displacement, for in each of the circular
displacements the displacement is perpendicular to the force. Since the
magnitude of the electric intensity depends only upon the distance from
the origin and not upon the angular position, we see that the force exerted
by the outside agency, and therefore the work done in a displacement
between radial coordinates 1'2 and 1'1, is the same whether this radial dis-
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placement takes place along the path ACB or along the path ADB, or along
any other path between A and B.

The work done in carrying the charge q' between two points in the field
of a point charge q is therefore independent of the path. The potential differ
ence between the two points depends only on their position with respect to
the charge q. To simplify the calculation of the potential difference
between the points A and B, we choose the path ACB of Figure 24-],
where, as we have already seen, it is only necessary to calculate the work
done along the radial portion of the path, AC. The force F which must
be exerted by an external agency is equal and opposite to the force exerted
by the electric field on this charge. The force on a positive charge q' is
given by ,

F = -Eq' = - ~ 1r •
41rEor

(24-2)

The mechanical work t..Jr done by the force F which is exerted on the charge
q' in displacing it radially through a distance M toward the point charge q
is given by

qq'
t..Jr = F t..r = - --2 t..r.

41rEor
(24-3)

To find the potential difference between the points A and B, we must sum
up the work done in transporting the charge q' over all the increments of
path. In the limit of small increments of displacement, the work done
MY is

remembering that
1- - + const,
r

we find (24-4)

From the definition of the potential difference as the work done in trans
porting a test charge q' divided by the magnitude of that test charge, we
have

(24-5)

From Equation (24-1)

t..V = Vb - Va.

If the initial point A is taken at ra = 00, it will be convenient to assign the
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value zero to its potential. The potential at point B will then be given by
the equation

Dropping the subscript b, we find that the potential V at a point located
at a distance r from a point charge q in vacuum is given by

(24-6)

Kote that in this expression V is an algebraic scalar quantity, which may
be either positive or negative. The distance r is always a positive number,
while the charge q must be replaced by a positive number for a positive
charge and by a negative number if the charge is negative.

24-3 Potential Due to a Distribution of Charge in Vacuum

The potential at a point P due to a single point charge is a scalar quantity
which represents the work per unit positive charge done in transporting
charge from infinity to the field point P. Let us suppose that the electric
field is generated by several point charges ql, q2, ... , and so on. In trans
porting the test charge from infinity, work must be done against the
electric field contributed by each of the charges ql, q2, and so on. The work
done against the field of each of these charges separately is given by Equa
tion (24-6). Since work, and therefore potential, is a scalar quantity, the
total work done may be computed by finding the work done against the
field due to charge ql, the work done against the field of charge q2, and so on,
and then adding these algebraically. If the potential at P due to qi alone
is Vb the potential at P due to q2 alone is V 2, and so on, and the potential V
at P due to the entire charge distribution is

V = VI + V 2 + ....
Thus we have, for the potential of a collection of point charges,

(24-7)

where ri is the distance from the i'th charge qi to the field point P at which
the potential is being evaluated, and the summation is to be extended to
all the charges in the distribution.

Illustrative Example. Two point charges, ql = 5 j.LCoul and q2 = -5 JLcoul,
are separated by a distance of 8 cm, as shown in Figure 24-2. Find the potential
at points a and b of that figure.

Since only two charges generate the field, the summation of Equation (24-7)
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reduces to a sum of two terms. At point a, r1 = 0.1 m and r2 = 0.02 m. The
potential Va at point a is

5 X 10-6 caul + -5 X 10-6 caul
Va = ------------

couP couP
471" X R.S5 X 10-12 -- X 0.1 m 471" X R.85 X 10-12 - X 0.02 m

nt m 2 nt m 2

= 4.5 X 105 nt m _ 22.5 X 105 nt m
caul caul

= -18 X 105 volts.

Fig. 24-2

+5)1couJ Bem

b

2em
f

t a
-5)1couJ

Sub-

(24-8)

At the point b we see from the figure that r1 = 0.1 m, while r2 = 0.06 m.
stitllting into Equation (24-7), we find

Vb = 5 X 10-6 caul + -5 X 10-6 caul

- 12 couP 4~ X 8.81; X 10-12 couP X 0.06 m'471" X R.Hi) X 10- --- X 0.1 m " u

nt m 2 nt m 2

Vb = 4.5 X 105 volts - 7.5 X 105 volts

= -3 X 105 volts.

In comparing this example to the corresponding illustrative example
of Section 23-3, we see that the calculation of the potential is far simpler
than the calculation of the electric intensity. This follows from the scalar
nature of the potential and the vector nature of the electric intensity.

In the event that we have a continuous distribution of charge rather
than a collection of discrete point charges, we may find the potential by
integration rather than by summation. Equation (24-7) becomes

J dqv- -.
471"Eor

Illustrative Example. Calculate the potential at a point P on the axis of
the uniformly charged narrow ring of Section 23-4, illustrated in Figure 23-5.

Every element of charge dq is at the same distance

r = (a 2 + Z2)~
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from the point P and contributes the same amount

to the potential at this point. Hence the potential at point P due to the entire
ring of charge q is

1 q

47rEo (a 2 + Z2)~

24-4 Equipotential Surfaces

An equipotential surface is a surface along which a charged body may be
displaced without any work having been required in the process. The
equipotential surface is defined as a locus of points in space at a common
potential. In consequence, lines of force must intersect an equipotential
surface at right angles to the surface, for if there were any component of
the electric intensity parallel to an equipotential surface, work would be
required to displace a charged body along that surface, in contradiction
with our definition of an equipotential surface.

The surface of a conductor is an equipotential surface. The equi
potential surfaces surrounding a point charge are concentric spherical
surfaces centered at that charge; the potential of each such surface is given
by Equation (24-6). The equipotential surfaces surrounding a uniformly
charged cylinder are coaxial cylinders, with their common axis as the axis
of the charged cylinder. In general, equipotential surfaces are drawn so
that equal increments in potential separate each pair of surfaces. A few of
the equipotential surfaces surrounding a point charge are shown in Figure
24-3, and some of the equipotential surfaces surrounding a charged metallic
sphere are shown in Figure 24-4.

The knowledge that equipotential surfaces and lines of force intersect
perpendicularly everywhere enables us to solve graphically many problems
in electrostatics to a good approximation, even when these problems are
too difficult for mathematical solution. Furthermore, any equipotential
surface may be replaced by a metallic surface which is maintained at the
appropriate potential without altering the electric field outside the con
ductor. Thus, for example, we may replace the appropriate imaginary
equipotential surface of Figure 24-3 by a real metallic sphere which is
maintained at the potential of that equipotential surface. If the charge
inside the spherical shell is removed, there can be no lines of force inside
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the conducting shell, and the inside of the shell is an equipotential volume.
The lines of force and the equipotential surfaces outside the shell are un
altered. vVe may find the complete set of equipotential surfaces and lines

Fig. 24-3 The equipotential surfaces
around a point charge are concentric
spherical surfaces with the point charge
at the center.

Fig. 24-4 The equipotential surfaces
outside a charged metallic sphere are
spherical surfaces concentric with the
charged sphere.

of force of the sphere simply by erasing the lines of force and the equi
potential surfaces within the conducting shell, as in Figure 24-4.

Two equal and opposite point charges +q and -q separated by a
distance s constitute a dipole. The set of equipotential surfaces of a dipole
intersect the plane of the diagram in the dotted lines shown in Figure 24-5,
while the lines of force are shown as solid lines. At all points along a plane
perpendicular to the line joining the two charges at the mid-point of the
line, the potential is zero. At a field point P located in this plane the
potential is

-q q
V=-+-=O.

41l'EoT 41l'EOT

This imaginary equipotential plane at zero potential may be replaced by
a conducting plane at zero potential (obtained by connecting the plane to
ground) without altering the field distribution. Thus if we are interested
in obtaining the potential distribution of a charge q located a distance s/2
to the right of a grounded conducting plane, we may compute this field by
finding the field and potential due to the dipole, and then erasing the lines
of force and equipotential surfaces which appear to the left of the conduct
ing plane.
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Fig. 24-5 Lines of force (solid) and equi
potentials (dotted) about a dipole.

E

Fig. 24-6

24-5 Potential Gradient

When a charge q is displaced an amount .:ls from point A to an adjacent
point B, as shown in Figure 24-6, the force which must be exerted on the
charge by an external agency is oppositely directed to the electric field and
is given by

F = -qE,

and the work done by this force is

Mt' = F·.:ls.

Substituting for F its value from the above equation, we find

.:l)f/ = -qE·.:ls. (24-9)

If we divide Equation (24-9) by the charge q, the quantity on the left-hand
side of the equation is equal to the potential difference .:lV between the
initial and final points of the displacement, giving

.:lV = -E·.:ls = -E.:ls cos cf>. (24-10)

(24-11)

In the limit of small displacements, we may find the potential from the
electric field by integration. Symbolically, we write

.:lV =i b

- E· ds = i b

- E ds cos cf>,
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(24-12)

where ~V represents the potential difference VB - V.{ between the points
A and B, and t:/> is the angle between ds and E.

If we divide Equation (24-10) by the magnitude of the displacement
~s, we obtain the result that

~V = -E. (~s) = -E'L,
~s ~s

where 1. is a unit vector in the direction of the displacement. Thus the
rate of change of potential with distance in any direction, as specified by
the direction of the unit vector 1., is equal to the negative of the component
of the electric field intensity in that direction. If the direction of the unit
vector is along the line of force, the rate of change of potential is greatest.
At a given point the rate of change of the potential in the direction of most
rapid change is called the potential gradient at that point. When the unit
vector is directed along a line of force the angle t:/> between the unit vector
18 and the electric intensity E is zero, and we may write

which may be rewritten as

E=

E=

~V--,
~s

dV

ds
(24-13)

in the limit of small displacements.
The units of electric field intensity are therefore the same as the units

of potential gradient. In the mks system of units, we may use either
newtons per coulomb or volts per meter to represent either electric intensity
or potential gradient. As we have seen in Section 23-9, the dielectric
strength of air is approximately 3 X 106 nt/coul, or 3 X 106 volts/m.
After walking across a carpeted room in the wintertime when the air of the
room is quite dry, sparks as long as 5 em may be observed to jump from
one's knuckles to a doorknob. This implies that a difference of potential
of approximately 1.5 X 105 volts exists between the doorknob and the
knuckle.

If the potential is known as a function of the coordinates, we may find
the components of the electric field parallel to any of the coordinate axes
by imagining the displacement ~s to be parallel to that axis. Thus the
component of the electric field intensity in the x direction, Ex, is given by
the negative of the derivative of V with respect to x. In finding Ex by this
means, we would examine the variation in V with respect to x holding the
other coordinates constant. In the usual notation this is called a partial
derivative and is represented by the symbol a rather than the symbol d.
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Following this convention, we write

aVE=-_o
x ax '

similarly, E y =
aV--,
ay

and E z =
av
az

(24-14a)

(24-14b)

(24-14c)

The electric field intensity E may then be expressed in terms of its com
ponents and the unit vectors in the coordinate directions; thus

(24-15)

Illustrative Example. From the second example in Section 24-3, we have
shown that the potential generated by a uniform ring of charge at a point along
its axis is

Find the electric intensity at a point on the axis of the ring by application of
Equations (24-14).

First we note that the coordinates x and y do not appear in the expression
for the potential. Thus the derivative of V with respect to x is zero, and the
derivative of V with respect to y is zero. Hence there is no component of the
electric field in the x or the y direction. To find the component of the field in
the z direction, we apply Equation (24-14c).

av a [ 1 q ]
E z = - a; = - az 47r€o (a 2 + Z2)~ °

Carrying out the indicated differentiation, we find

This result is identical with the formula obtained by direct integration in
the illustrative example of Section 23-4.

In general, the electric field intensity may be obtained by the methods
of Section 23-4. This requires three separate integrations to be performed,
one for each of the components of the electric intensity. It is often much
simpler to integrate once to find the potential, since this is a scalar quantity,
according to the procedure of Section 24-3, and then to differentiate this
result, following Equations (24-14) to find the electric field intensity.
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TABLE 24-1 PRINCIPAL EQUATIONS IN MKS AND CGS UNITS

Equation MKS CGS

(24-1) AV = AJf' Same as mks Potential difference
q

(24-6) V=-q- V = g Point charge in vacuum
47l"tor r

(24-12)
AV

-E·l. Same as mks Potential gradient- =
As

(24-14a) Ex =
av

Same as mks Potential gradient--ax

TABLE 24-2 CONVERSION FACTORS RELATING MKS AND CGS UNITS

(esu)

CGS Unit

1
= - statvolt

300

= _1_ dyne = _1_ statvolt (esu)
3 X 104 stcoul 3 X 104 cm

= 3 X 109 stcoul (esu)

= 107 ergs

1 volt

1 coul

1 joule

MKS Unit

1~ = 1 volt
coul m

V

E

q

Jf'

ISymbolQuantity

Potential

Electric
intensity

Charge

Work

!} '" f f 88 12 couFermlttlVlty 0 ree space: to = . 5 X 10- -.-- •
Joule m

Problems

24-1. A small charge of +12 stcoul is placed in a uniform electric field whose
intensity is 5,000 dynes/stcou!. (a) What is the force acting on this charge?
(b) How much work is done by the electric field in moving this charge a distance
of 4 cm in the direction of the field? (c) What is the difference in potential be
tween its initial and final positions?

24-2. A small body carrying a charge of 72 flcoul is placed 0.60 m from
another small body fixed in position, carrying a charge of 180 flCOU!. If the
72-I.lCoul body moves to a place 0.90 m from the 180-flcoul body, what will be
its kinetic energy?

24-3. A small charged body of 1 flcoul is released from rest in a region of
space where the electric field intensity is 100 volts/m. What will its kinetic
energy be when it has been displaced a distance of 150 cm?

24-4. Two plane metallic plates are located a distance of 1 cm apart. If the
electric field between them is uniform, what must the potential difference between
these plates be if the force on a .5-flcoul charge between the plates is to be 10-3 nt?
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24-5. Two equal charges, each of +250 stcoul, are placed 24 cm apart on the
x axis. Determine the potential at a point 15 cm from each charge.

24-6. An electric charge of + 15 stcoul is located at the origin, and a charge
of -40 stcoul is located at a point whose coordinates are (0, 20 cm). Find the
potential at the following points: (a) (0, -5 cm), (b) (15 cm, 0), (c) (-15 cm, 0).

24-7. A charge of -13 j.woul is located at a point whose coordinates are
(-5 m, 0) and a second charge of +30 JLcoul is located at a point whose coordi
nates are (+9 m, 0). (a) Find the potential at the origin and (b) at a point
whose coordinates are (0, +12 m). (c) How much work must be done by an
external agency to move a 5-JLcoul charge from the origin to the point (0, + 12 m)?

24-8. An isolated conducting hollow sphere of radius 50 cm is charged to a
potential of 100 statvolts. (a) What is the potential of the center of the sphere?
(b) What charge placed at the center of the sphere would give an identical electric
field distribution outside the sphere, if the conducting shell were removed?
(c) What is the charge on the conducting sphere?

24-9. A uniformly charged sphere of radius a and charge density p coul/m3

gives rise to an electric field outside the sphere of charge which is identical to the
field generated by a point charge at the center of the sphere whose charge is
q = tll"a 3p. Inside the charged sphere the electric field intensity is given by
E = (p/3Eo)r. Find a formula for the potential at a point inside the charged
sphere a distance ro from the center of the sphere.

24-10. The electric field intensity from a uniformly charged rod is directed
radially and is given by the formula E = X/211"Eor, where Xis the charge per unit
length and r is the distance from the center of the cylinder. Find the potential
difference between two points whose radial coordinates are ra and rb.

24-11. An electron volt (ev) is a unit of energy used in atomic and nuclear
physics. It represents the energy acquired by an electron in falling through a
potential difference of 1 volt. How many electron volts are there in 1 erg? The
charge of the electron is 1.60 X 10-19 coul.

24-12. Two horizontal metallic plates are placed 1.5 cm apart, and a poten
tial difference of 3,000 volts is applied between them so that the electric field is
uniform and directed vertically. A small oil drop containing a charge of
32 X 10-19 coul and a mass of 10-10 gm is between the plates. (a) Determine
the electrical force on the oil drop. (b) Determine the net force on the oil drop.
(c) What potential difference must be applied to the plates for the oil drop to be
in equilibrium under the action of both electrical and gravitational forces?

24-13. The binding energy of a hydrogen atom is 13.6 ev. What energy, in
calories, would be required to separate the electron and proton to infinite distance
from each other?

24-14. The heat of formation of water vapor is 57.8 kilocal/mole. What is
the energy, in electron volts, which must be added to a molecule of water to
dissociate it into hydrogen and oxygen?

24-15. An electron is liberated from the filament of a vacuum tube and is
accelerated to the plate which is maintained at a potential of 300 volts above
the filament. With what speed is the electron moving when it strikes the plate?
The mass of the electron is 9.11 X 10-31 kg.
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