8-4-1997

Search for the Decays $B^0 \rightarrow D^{(*)+} D^{(*)-}$

D.M. Asner
University of California - San Diego, La Jolla, California

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

CLEO Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsbloom/160

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for the Decays $B^0 \to D^{(*)}+D^{(*)}$

A. J. Weinstein,25 and F. Würthwein25 (CLEO Collaboration)

1University of California, San Diego, La Jolla, California 92093
2University of California, Santa Barbara, California 93106
3University of Colorado, Boulder, Colorado 80309-0390
4Cornell University, Ithaca, New York 14853
5University of Florida, Gainesville, Florida 32611
6Harvard University, Cambridge, Massachusetts 02138
7University of Hawaii at Manoa, Honolulu, Hawaii 96822
8University of Illinois, Champaign-Urbana, Illinois 61801
9Carleton University, Ottawa, Ontario, Canada K1S 5B6, and Institute of Particle Physics, Canada
10McGill University, Montréal, Québec, Canada H3A 2T8 and Institute of Particles Physics, Canada
11Ithaca College, Ithaca, New York 14850
12University of Kansas, Lawrence, Kansas 66045
13University of Minnesota, Minneapolis, Minnesota 55455
14University of New Mexico, Albuquerque, New Mexico 87131
15The Ohio State University, Columbus, Ohio 43210
16University of Oklahoma, Norman, Oklahoma 73019
17Purdue University, West Lafayette, Indiana 47907
18University of Rochester, Rochester, New York 14627
19Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
20Southern Methodist University, Dallas, Texas 75275
21Syracuse University, Syracuse, New York 13244

0031-9007/97/79(5)/799(5)$10.00 © 1997 The American Physical Society

VOLUME 79, NUMBER 5 PHYSICAL REVIEW LETTERS 4 AUGUST 1997
799
Using the CLEO-II data set we have searched for the decays $B^0 \to D^{(*)+} D^{(*)-}$. We observe one candidate signal event for the decay $B^0 \to D^{(*)+} D^{(*)-}$ with an expected background of 0.022 ± 0.011 events. This yield corresponds to a branching fraction of $\mathcal{B}(B^0 \to D^{(*)+} D^{(*)-}) = [5.3^{+3.0}_{-1.3}(\text{stat}) \pm 1.0(\text{syst})] \times 10^{-4}$ and an upper limit of $\mathcal{B}(B^0 \to D^{(*)+} D^{(*)-}) < 2.2 \times 10^{-3}$ at the 90% C.L. We see no significant excess of signal above the expected background level in the other modes, and we calculate the 90% C.L. upper limits on the branching fractions to be $\mathcal{B}(B^0 \to D^{*+} D^{-}) < 1.8 \times 10^{-3}$ and $\mathcal{B}(B^0 \to D^{+} D^{-}) < 1.2 \times 10^{-3}$. [S0031-9007(97)03774-5]

PACS numbers: 13.25.Hw

The decays $B^0 \to D^{(*)+} D^{(*)-}$ are favorable modes for studying CP violation in B decays. In the standard model, time-dependent asymmetries in the decays can be related to the angle β of the unitarity triangle \cite{1}. This angle can also be measured with $B^0 \to \psi K^0_S$ decays; any difference between the values obtained in $B^0 \to D^{(*)+} D^{(*)-}$ decays and $B^0 \to \psi K^0_S$ would indicate non–standard model mechanisms for CP violation \cite{2,3}. Although $B^0 \to D^{*+} D^{-}$ and $B^0 \to D^{*+} \bar{D}^{-}$ are not pure CP eigenstates, estimates indicate that a dilution of the CP asymmetry of only a few percent would be incurred by treating these modes as pure CP eigenstates \cite{1}. The modes $B^0 \to D^{(*)+} D^{(*)-}$ have never been observed, and no published limits on their branching fractions exist. The decay amplitude is dominated by a spectator diagram with $\bar{b} \to \bar{c} W^+ \to c \bar{d}$. One can estimate the branching fractions for $B^0 \to D^{(*)+} D^{(*)-}$ by relating them to the Cabibbo-favored decays $B^0 \to D_s^{(*)+} D_s^{(*)-}$:

$$\mathcal{B}(B^0 \to D^{(*)+} D^{(*)-}) \approx \left(\frac{f_{D_s^{(*)}}}{f_{D^{(*)}}} \right)^2 \tan^2 \theta_C$$

$$\times \mathcal{B}(B^0 \to D_s^{(*)+} D_s^{(*)-}),$$

where the f_X are decay constants and θ_C is the Cabibbo angle. Table I shows the expected $B^0 \to D^{(*)+} D^{(*)-}$ branching fractions, where the CLEO measurements of $\mathcal{B}(B^0 \to D_s^{(*)+} D_s^{(*)-})$ have been used \cite{4}.

The data used in this analysis were recorded with the CLEO-II detector \cite{5} located at the Cornell Electron Storage Ring (CESR). An integrated luminosity of 3.09 fb\(^{-1}\) was taken at the $Y(4S)$ resonance, corresponding to approximately $3.3 \times 10^6 B\bar{B}$ pairs produced.

At the $Y(4S)$, the $B\bar{B}$ pairs are produced nearly at rest, resulting in a spherical event topology. In contrast, non-$B\bar{B}$, continuum events have a more jetlike topology. To select spherical events we required that the ratio R_2 of the second and zeroth Fox-Wolfram moments \cite{6} be less than 0.25.

We required charged tracks to be of good quality and consistent with coming from the interaction point in both the $r-\phi$ and $r-z$ planes. We defined photon candidates as isolated clusters in the CsI calorimeter with energy greater than 30 MeV in the central region ($|\cos \theta| \leq 0.71$, where θ is measured from the beam line) and greater than 50 MeV elsewhere. Pairs of photons with measured invariant masses within 2.5 standard deviations of the nominal π^0 mass were used to form π^0 candidates. Selected π^0 candidates were then kinematically fitted to the nominal π^0 mass.

A particle identification system consisting of dE/dx and time of flight was used to distinguish charged kaons from charged pions. For charged pion candidates, we required the likelihood of the pion hypothesis L_π to be greater than 0.05. Since all signal modes require two charged kaons, the kaon candidates were required to have a joint kaon hypothesis likelihood $L_K = L_{K_S}$ greater than 0.10.

We reconstructed all $D^{(*)+}$ candidates in the mode $D^{(*)+} \to \pi^+ D^0$ (charge-conjugate modes are implied). D^0 candidates were reconstructed in the modes $D^0 \to K^{-} \pi^+$, $D^0 \to K^- \pi^+ \pi^0$, and $D^0 \to K^- \pi^+ \pi^- \pi^+$. D^+ candidates were reconstructed via $D^0 \to K^- \pi^+ \pi^+$. TABLE I. Estimated branching fractions for $B^0 \to D^{(*)+} D^{(*)-}$, based on the measured branching fractions of the Cabibbo-favored decays $B^0 \to D_s^{(*)+} D_s^{(*)-}$.

<table>
<thead>
<tr>
<th>Mode</th>
<th>\mathcal{B} of Related $D_s^{()+} D_s^{()-}$ mode (%)</th>
<th>Estimated \mathcal{B} for $D^{()+} D^{()-}$ (10(^{-4}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to D^{()+} D^{()-}$</td>
<td>2.4</td>
<td>9.7</td>
</tr>
<tr>
<td>$B^0 \to D^{()+} \bar{D}^{()-}$</td>
<td>2.0</td>
<td>8.1</td>
</tr>
<tr>
<td>$B^0 \to D^{()+} \bar{D}^{()-}$</td>
<td>1.1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

TABLE II. Branching fractions of $D^{(*)}$ modes used in reconstruction.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Branching fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^{(*)+} \to \pi^+ D^0$</td>
<td>68.3 ± 1.4</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^+$</td>
<td>3.83 ± 0.12</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^+ \pi^0$</td>
<td>13.9 ± 0.9</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^+ \pi^- \pi^+$</td>
<td>7.5 ± 0.4</td>
</tr>
<tr>
<td>$D^+ \to K^- \pi^+ \pi^+$</td>
<td>9.1 ± 0.6</td>
</tr>
</tbody>
</table>
Table II summarizes the branching fractions of the $D^{(*)}$ modes used [7].

For the decay mode $D^0 \to K^- \pi^+ \pi^0$, we make a cut on the weight in the Dalitz plot in order to take advantage of the resonant substructure present in the decay. The cut chosen was 76% efficient for good $D^0 \to K^- \pi^+ \pi^0$ decays while rejecting 69% of the background.

We performed a vertex-constrained fit on all the charged tracks in the B^0 candidate for modes that contained a D^{*+}. The χ^2 from the vertex fit was required to be less than 100. The fit improved the determination of the angular track parameters for the slow π^+ from the D^{*+} decay. The resulting rms resolution on the reconstructed mass difference $\Delta m_{D^{*+}} = m_{D^{*+}} - m_{D^0}$ was approximately 0.69 MeV.

Because $B^0 \to D^{*+} D^\mp$ is a pseudoscalar \to vector + pseudoscalar decay, the cosine of the decay angle $\cos \theta_{\pi^+}$ of the slow π^+ from the D^{*+} has a $\cos^2 \theta$ distribution, while background events have a uniform distribution in this variable. For $B^0 \to D^{*+} D^\mp$ candidates we required $|\cos \theta_{\pi^+}| > 0.5$.

To select B^0 candidates that contain well-identified $D^{(*)}$s we combined the reconstructed $D^{(*)}$ masses into a single quantity χ_M. The definition of χ_M for each mode is given by

$$
\chi_M^2(D^{*+}D^\mp) = \left(\frac{\langle \Delta m \rangle_1 - \langle \Delta m \rangle}{\sigma_{\Delta m}} \right)^2 + \left(\frac{\langle \Delta m \rangle_2 - \langle \Delta m \rangle}{\sigma_{\Delta m}} \right)^2 + \left(\frac{m_{D^{*+}} - \langle m_{D^{*+}} \rangle}{\sigma_{m_{D^{*+}}}} \right)^2 + \left(\frac{m_D^\mp - \langle m_D^\mp \rangle}{\sigma_{m_D^\mp}} \right)^2,
$$

(2)

$$
\chi_M^2(D^{+}D^\mp) = \left(\frac{\langle \Delta m \rangle - \langle \Delta m \rangle}{\sigma_{\Delta m}} \right)^2 + \left(\frac{m_D^+ - \langle m_D^+ \rangle}{\sigma_{m_D^+}} \right)^2 + \left(\frac{m_{D^0} - \langle m_{D^0} \rangle}{\sigma_{m_{D^0}}} \right)^2,
$$

(3)

$$
\chi_M^2(D^+D^-) = \left(\frac{m_D^+ - \langle m_D^+ \rangle}{\sigma_{m_D^+}} \right)^2 + \left(\frac{m_{D^0} - \langle m_{D^0} \rangle}{\sigma_{m_{D^0}}} \right)^2,
$$

(4)

where the values in angle brackets represent the nominal values and the sigmas are the rms resolutions on the given quantity. We require $\chi_M^2(D^{*+}D^\mp) < 8.0$, $\chi_M^2(D^{+}D^\mp) < 4.0$, and $\chi_M^2(D^+D^-) < 2.0$. From studies of Monte Carlo and regions in the data outside of the signal areas in other variables, we find that the backgrounds are uniform in χ_M^2.

Since the energy of the B^0 is equal to the beam energy at CESR, we used the beam energy instead of the measured energy of the B^0 candidate to calculate the beam-constrained mass $m_B = \sqrt{E_{\text{beam}}^2 - p_B^2}$. The rms resolution in m_B for signal events, as determined from Monte Carlo, is 2.8 MeV. In addition, the energy difference $\Delta E = E_B - E_{\text{beam}}$, where E_B is the measured B^0 energy, was used to distinguish signal from background. The resolution in ΔE is 12 MeV after performing a mass-constrained fit that included the masses of all secondary particles ($D^{(*)}$ and π^0). The signal region in all modes was defined as $|\Delta E| < 2\sigma_{\Delta E}$ and $|m_B - \langle m_B \rangle| < 2\sigma_{m_B}$.

We used a Monte Carlo simulation of the CLEO-II detector to optimize all cuts. Since the number of observed signal events was expected to be small, all cuts were optimized to minimize the probability that the expected background level would fluctuate up to or beyond the expected signal level. For calculating the expected number of signal events during this optimization we assumed a branching fraction of 0.1% for all $B^0 \to D^{(*)} D^{(*)}$ modes.

Using the cuts defined above, we determined the signal reconstruction efficiency using Monte Carlo. The reconstruction efficiency and single event sensitivity [SES = $(e B N_{B\bar{B}})^{-1}$, where e is the detection efficiency, B is the product of the daughter branching fractions, and $N_{B\bar{B}}$ is the number of $B\bar{B}$ pairs produced in the data set] for each

<table>
<thead>
<tr>
<th>Mode</th>
<th>Efficiency, ϵ (%)</th>
<th>SES = $(e B N_{B\bar{B}})^{-1}$ (10^{-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to D^{*+} D^\mp$</td>
<td>1.86</td>
<td>5.45 ± 0.99</td>
</tr>
<tr>
<td>$B^0 \to D^{+} D^\mp$</td>
<td>5.07</td>
<td>3.79 ± 0.53</td>
</tr>
<tr>
<td>$B^0 \to D^+ D^-$</td>
<td>14.41</td>
<td>2.52 ± 0.40</td>
</tr>
</tbody>
</table>

FIG. 1. ΔE vs m_B for data in the $B^0 \to D^{*+} D^\mp$ analysis. The signal region is indicated by a solid box. The sideband region lies above the top and below the bottom dotted lines.
The signal region is indicated by a solid box. The sideband region lies above the top and below the bottom dotted lines.

The dominant background is due to random combinations from $B\bar{B}$ and continuum events. The Monte Carlo predicts that this background varies smoothly in ΔE and m_B, and this is verified in the data. The m_B distribution for data in ΔE sidebands ($50 \leq |\Delta E| \leq 400$ MeV) varies smoothly with no peaking in the signal region. The same is true for the ΔE distribution for data with $m_B < 5.27$ GeV. To estimate the background in the signal region, we count the events in a sideband in the $\Delta E - m_B$ plane ($50 \leq |\Delta E| \leq 400$ MeV; 5.2 GeV $\leq m_B \leq E_{beam}$) and multiply by the relative efficiencies of the signal and sideband regions determined from background Monte Carlo.

Figures 1, 2, and 3 show the resulting plots of ΔE vs m_B for the three modes. The signal region is indicated with a solid line, and the sideband region is indicated with a dotted line.

Table IV lists the event yields in the sideband and signal regions. The expected number of background events in the signal region is also given. The uncertainty on the expected number of background events is a combination of statistical error on the number of events in the ΔE sideband regions and the uncertainty in the background shape through the signal region.

The probability that the expected background of 0.022 \pm 0.011 events in $B^0 \rightarrow D^{*+}D^{*-}$ fluctuates up to one or more events is 2.2%. If we interpret the one observed event as evidence for a signal, the resulting branching fraction would be

$$B(B^0 \rightarrow D^{*+}D^{*-}) = \frac{[5.3^{+7.1}_{-5.3} (stat) \pm 1.0 (syst)]}{10^{-4}},$$

where the systematic uncertainty comes from the uncertainty in the SES.

No significant excess of events is seen in the other two modes. We calculate upper limits on the branching fractions for all three modes, and these results are summarized in Table V. The systematic uncertainty in the SES and the uncertainty in the background level have been incorporated into the upper limits [8].

We have performed a search for the decays $B^0 \rightarrow D^{(*)+}D^{(*)-}$. In the mode $B^0 \rightarrow D^{*+}D^{*-}$, one event is

$$B^0 \rightarrow D^{*+}D^{*-} = \frac{2.2 \times 10^{-3}}{10^{-4}},$$

$$B^0 \rightarrow D^{*+}D^{*-} = \frac{1.8 \times 10^{-3}}{10^{-4}},$$

$$B^0 \rightarrow D^{*+}D^{*-} = \frac{1.2 \times 10^{-3}}{10^{-4}},$$

Table V. Summary of upper limits on the $B^0 \rightarrow D^{(*)+}D^{(*)-}$ branching fractions. All upper limits are quoted at the 90% C.L.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Upper limit (90% C.L.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \rightarrow D^{+}D^{-}$</td>
<td>2.2×10^{-3}</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{+}D^{-}$</td>
<td>1.8×10^{-3}</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^{+}D^{-}$</td>
<td>1.2×10^{-3}</td>
</tr>
</tbody>
</table>
seen in the signal region where the expected background is 0.022 ± 0.011. The one event in $B^0 \rightarrow D^{**} D^{*-}$ is seen at a rate that is consistent with predictions, and in all three modes the upper limits are within about a factor of 2 from the predicted branching fractions.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Heisenberg Foundation, the Alexander von Humboldt Stiftung, Research Corporation, the Natural Sciences and Engineering Research Council of Canada, and the A. P. Sloan Foundation.

*Permanent address: University of Texas, Austin, TX 78712.

†Permanent address: BINP, RU-630090 Novosibirsk, Russia.
‡Permanent address: Lawrence Livermore National Laboratory, Livermore, CA 94551.