5-2012

Flow Rate, and More

Ann Perry
USDA-ARS, ann.perry@ars.usda.gov

Follow this and additional works at: http://digitalcommons.unl.edu/usdaagresmag

Part of the Agriculture Commons, Animal Sciences Commons, Food Science Commons, and the Plant Sciences Commons

http://digitalcommons.unl.edu/usdaagresmag/161

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agricultural Research Magazine by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
50 percent from the highest rate studied, an emergence increase that could raise net income for southern Idaho sugar beet growers by nearly $6.2 million every year.

“We’ve concluded that these droplet-energy restrictions should be in place until sugar beet seedlings have emerged and become established,” Lehrsch says. “After that, sprinklers can be reconfigured to apply greater water volumes—at necessarily greater levels of energy—for the rest of the growing season.”

The researchers also observed that after multiple irrigations, soil penetration resistance decreased as droplet size and energy increased, probably because the larger droplets hit the ground with enough force to loosen soil particles and erode surface soil. They saw evidence of this erosion process during late-season irrigations when sediment-laden runoff flowed from row hills into nearby furrows and basins.

Lehrsch recommends keeping crop residues on the surface to slow erosion and amending soils with organic materials such as manure or whey—the byproduct remaining after cheese is made—to bolster soil-aggregate stability. These recommendations are based in part on his research that showed adding whey to furrows before row hills into nearby furrows and basins.

Moreover, the single irrigation decreased hydraulic conductivity—the rate at which water moves through soil—by an average of 48 percent in the pores in the study. This decrease could cause soils to become saturated more quickly, which in turn would hasten runoff and decrease irrigation efficiency.

“Now that we know the impact water droplet energy can have on soil and crop management, engineers can design better irrigation systems to minimize the negative effects irrigation can have on infiltration, soil structure, and crop emergence,” Lehrsch says. “With this new information, farmers can better manage their center-pivot irrigation systems to maximize infiltration and reduce runoff and irrigation-induced erosion.”

—By Ann Perry, ARS

Flow Rate, and More

At the Agricultural Research Service’s Northwest Irrigation and Soils Research Laboratory in Kimberly, Idaho, agricultural engineer Brad King and research leader Dave Bjorneberg compared how irrigation from four commercial center-pivot sprinklers affected potential runoff and erosion on four south-central Idaho soils.

Though their results were inconsistent, they did observe that at the end of six irrigations, a 50-percent reduction in sprinkler flow rate reduced runoff and soil erosion 60-80 percent. They concluded that reducing sprinkler flow rate early in the growing season—before the development of a crop canopy—could help reduce irrigation runoff and soil erosion linked to center-pivot sprinkler irrigation. In addition, the scientists observed that sprinklers distributing water drops more evenly over the wetted area had the highest runoff and sediment yield. Conversely, the lowest runoff and sediment yields were associated with sprinklers that distributed well-defined rotating streams of water drops, regardless of how much kinetic energy was transferred to the soil by the droplets.

The researchers followed up on this study with a laboratory investigation where they used a laser instrument to measure the size and velocity of individual water droplets distributed by five common center-pivot sprinklers. They found sprinklers distributing larger droplets did not always transfer more kinetic energy to the soil than sprinklers distributing smaller water droplets.

Given the somewhat contradictory findings, King and Bjorneberg concluded that much more remains to be learned about how different irrigation sprinklers affect runoff and erosion.—By Ann Perry, ARS.