
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Faculty Publications, Department of Physics and
Astronomy Research Papers in Physics and Astronomy

2000

Bayesian Spectrum Analysis for Laser Vibrometry
Processing
Walter F. Buell
Institute for Advanced Physics

Bradley Allan Shadwick
University of Nebraska-Lincoln, shadwick@unl.edu

Robert W. Farley
Electronics and Photonics Laboratory The Aerospace Corporation

Follow this and additional works at: http://digitalcommons.unl.edu/physicsfacpub

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Physics and Astronomy by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Buell, Walter F.; Shadwick, Bradley Allan; and Farley, Robert W., "Bayesian Spectrum Analysis for Laser Vibrometry Processing"
(2000). Faculty Publications, Department of Physics and Astronomy. 154.
http://digitalcommons.unl.edu/physicsfacpub/154

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsfacpub/154?utm_source=digitalcommons.unl.edu%2Fphysicsfacpub%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages


Bayesian Spectrum Analysis for

Laser Vibrometry Processing

Walter F. Buell,1,2∗ B. A. Shadwick,1

and

Robert W. Farley2

1Institute for Advanced Physics

10875 U.S. Hwy. 285, Suite 199

Conifer, CO 80433

2Electronics and Photonics Laboratory

The Aerospace Corporation, M2-253, P.O. Box 92957

Los Angeles, CA 90009-2957

April 24, 2000

Revised September 22, 2000

Institute for Advanced Physics Report #8



ABSTRACT

Laser vibration sensing provides a sensitive non-contact means of measuring vibrations of

objects. These measurements are used in industrial quality control and wear monitoring

as well as the analysis of the vibrational characteristics of objects. In laser vibrometry,

the surface motion is monitored by heterodyne laser Doppler velocimetry, and the received

heterodyne signal is sampled to produce a time-series which is processed to obtain a vibra-

tional spectrum of the object under test. Laser vibrometry data has been processed with a

traditional FM discriminator approach and by spectrogram and time-frequency distribution

processing techniques. The latter techniques have demonstrated improved performance over

the FM discriminator method, but do not take full advantage of the prior knowledge one has

about the signal of interest. We consider here a statistical signal processing approach to laser

vibrometry data. In this approach the quantities of interest are the frequencies of vibration,

while the phase and quadrature amplitudes are considered nuisance parameters. Because of

the optimal use of prior knowledge about the laser vibrometry signal, the frequencies can be

determined with much greater precision and greater noise immunity than using Fourier- or

time-frequency-based approaches. Furthermore, the statistical approach is known to have

superior performance when the data extends over a small number of vibrational periods.

We illustrate the method with data from a fiber-optic laser Doppler velocimeter. Our re-

sults show that while the choice of processing method for determining the instantaneous

velocity is relatively unimportant, the Bayesian method exhibits superior performance in

determining the vibrational frequency.

IAP Report #8 1



I. INTRODUCTION

Laser vibrometry (LV) provides a sensitive non-contact means of measuring vibrations

of objects. In a monostatic LV measurement, a laser beam illuminates an object of inter-

est, which may be stationary or in motion, and the returned scattered light is mixed with

a local oscillator derived from the same laser. The instantaneous beat frequency provides

a measurement of the surface velocity which may be extracted from the time-series data

by signal processing (for example a Fourier transform). The time evolution of the beat fre-

quency then contains information about the state of motion (vibration or other time-varying

velocity) of the target, which can be extracted by further processing. Traditional methods

for processing LV data include the FM discriminator method[1], spectrogram processing (a

Fourier method)[1] and time-frequency distributions[2]. Differences have been shown among

the performance of several LV processing techniques, and it is natural to ask whether sta-

tistical signal processing approaches would further improve sensitivity or accuracy for laser

vibration sensing. For example, Bayesian spectrum analysis has been demonstrated[3] to sig-

nificantly improve resolution in processing nuclear magnetic resonance (NMR) data, where

a time-series is processed to infer a molecular spectrum.

In order to be of utility for laser vibration sensing, a signal processing method must

operate well in the presence of noise, be robust to speckle broadening and laser linewidth,

and be computationally efficient. It should also yield useful spectra in a small number of

vibrational periods, especially when the vibrational period is long or if the measurement time

is limited. This latter requirement poses a significant constraint on fast Fourier transform

(FFT) approaches because the frequency resolution is roughly equal to the inverse of the

measurement time. Statistical spectrum estimators such as maximum entropy methods often

perform much better than estimators based on the FFT in such situations.

In this paper we compare Bayesian signal processing to Fourier transform methods (in the

spirit of spectrogram processing). The experimental data are derived from laser velocimetry

of a rotating drum with a diffuse scattering surface. We find that, at least in the regime

of high carrier-to-noise ratio, the FFT is sufficient to determine the instantaneous surface

velocity. When determining the vibrational frequency, however, we find that the Bayesian

frequency estimator dramatically outperforms the FFT approach. Section II describes our

experimental arrangement. Section III provides an overview of the statistical processing

methods we consider and describes our implementation. We present our results in Section IV,

comparing the Bayesian method to FFT processing.
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II. EXPERIMENT

To evaluate the performance of the statistical processing methods, we used data from a

fiber-optic laser Doppler velocimeter developed for in situ fluid flow measurements (see Fig-

ure 1).[4] In the experiment, the target was a rotating wheel coated with a diffuse reflecting

surface and driven with an optical chopper-wheel motor.

InGaAsP PIN Photodiode & preamplifier

Wheel

2×2 50/50 coupler

Optical Isolator

diode laser
Pigtailed 1.3 m

FIG. 1. Experimental setup for fiber-optic laser Doppler velocimeter.

The transmitter consists of a Hitachi ML776H11F InGaAsP distributed feedback, multi-

quantum-well diode laser, of wavelength λ = 1.31 µm, nominal power P0 = 5 mW, pigtailed

to SMF28 single mode fiber. A low noise, constant current supply provided an injection

current of 13.7 mA to the diode laser. No temperature control or external wavelength

stabilization was employed.

A 2 × 2 fiber-optic coupler (CANSTAR DBS-02x02-131/155-50) with a 47.7%/52.3%

coupling ratio was used to direct 52.3% of the laser output, or P = 0.63 mW, onto the

rotating wheel target with reflectivity R ∼ 50%. In order to simulate a well-defined vibration

frequency, the voltage drive to the wheel motor was sinusoidally modulated at a frequency

near 20 Hz, resulting in a modulation of the wheel’s angular velocity. The transceiver end

of the fiber was cleaved normal to the fiber, positioned 1.38 cm below, and 1.37 cm laterally

from the center of the 3.56 cm diameter wheel. The end of the fiber was thus z = 2.4 mm

from the center of the illuminated spot on the wheel. For the data analyzed here, the
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mean surface velocity component along the laser beam is about 10 cm/s, corresponding to

a Doppler shift of approximately 200 kHz. The fiber nominally has a 9.3 µm mode field

diameter and a numerical aperture of 0.13.

The backscattered signal is collected back into the fiber, transmitted through the other

angle-cleaved, coupler input and is directed onto an Epitax ETX300T InGaAs PIN photo-

diode (quantum efficiency η = 0.8), which was AC-coupled to a low noise transimpedance

amplifier (Analog Modules 711-4-4-AC). The detector/amplifier combination has a band-

width B = 1.5 MHz, 2.9 pW/ Hz1/2 noise, and was operated with a transimpedance gain of

approximately 3 V/µW. Voltage waveforms were collected at 2 megasample/s using a 12-

bit, ±1 V full scale A/D card (Adlink AD9812). Each sampled waveform consists of 216, 136

contiguous points, or 0.108 seconds of data (thus allowing about 2.4 vibrational periods).

The carrier to noise ratio (CNR) can be estimated as

CNR =
Pλ

h c B

A

z2
T2R η cos θ , (1)

where A is the fiber core cross-sectional area and θ is the scattering angle. With the param-

eters given above, and assuming 20% optical transmission efficiency T (including reflection

losses, coupler losses and coupling to the detector) we can expect a CNR of about 20 dB.

This can be considered the high CNR regime.

The purpose for selecting the rotating wheel geometry was both to provide a velocity

offset for a reasonable Doppler carrier frequency (without frequency-shifting our local oscil-

lator) and to provide a reasonable amount of speckle broadening for testing the robustness of

the signal processing methods. We can determine the combined effect of speckle broadening

and laser phase noise from the autocorrelation function of the experimental data, Figure 2.

The envelope is roughly Gaussian with a 1/e width of 40 µs, for a coherence bandwidth of

about 25 kHz.
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FIG. 2. Autocorrelation of the Doppler signal.
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III. STATISTICAL INFERENCE IN SIGNAL PROCESSING

Since the development of the FFT, discrete Fourier transforms have become for many

the first and last word in analyzing the frequency content of a signal. In many circumstances

this use of discrete transforms is quite well justified. There are, however, many important

instances where the FFT-based approach to spectral estimation is not optimal. Here we

are primarily concerned with one such example, namely that of short time series. It is well

known that the resolution of the discrete Fourier transforms is determined by the sample

duration. When this interval only covers a few periods of the frequency of interest, it can

be difficult to obtain good frequency estimates. This difficulty is further exacerbated by the

leakage of the spectral response of the data windowing function1 into the spectral range of

the signal.

In the last fifteen years, a highly successful approach to data analysis based on statistical

inference has emerged. These methods (which have been broadly labeled as Maximum

Entropy) depart from traditional data-processing approaches in favor of the modeling of

experiments. This distinction is more than merely pedantic and allows not only for a sound

theoretical basis for estimation of various parameters of interest but also for assignment of

confidence levels to these parameter estimates as well as for making relative quantitative

assessments between competing models as to which is most consistent with the data.

Underlying all experiments is some model (hopefully encompassing a small number of

parameters) that the experimenter believes will describe the experiment. The traditional ap-

proach to data analysis involves working “backwards” from the measured data to determine

the parameters of interest in the model. Data analysis based on Bayesian statistical inference

works “forwards” from the model and attempts to determine the model most statistically

consistent with the data. Thus we ask the question “How likely is it that the observed data

is a consequence of the model?” While on the surface, this approach appears to be nothing

more than the fitting of parameters in the model to match the data, we shall see below that

the statistical framework allows for much more. In particular, often there are parameters

in our models that are essential for describing the data but otherwise do not contain phys-

ically relevant information. In a standard fitting approach, these uninteresting parameters

would still nonetheless have to be included in along with “interesting” parameters. More-

over, it is not uncommon for these uninteresting parameters to out-number the interesting

parameters, making the fitting procedure a great deal more work than if one could somehow

consider only the physically relevant parameters. In the statistical approach it is possible

1Even if no window function is explicitly applied (a questionable practice in any event), there is
an implicit windowing of the data that can not be avoided.
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to marginalize (integrate out) these uninteresting parameters (often called nuisance param-

eters) leaving only the physically important parameters behind. Effectively this allows us

to determine the values of the relevant parameters most consistent with the data knowing

that the nuisance parameters will take on whatever values necessary to be consistent with

the data. A germane example of nuisance parameters is the phase and quadrature ampli-

tudes of a sinusoidal signal; very often we are only interested in the frequency. Bayesian

methods provide the framework to consider the important parameters of our models while

(effectively) ignoring the unimportant.

The goal of Bayesian[3] data analysis is to evaluate the conditional probability of values

for the parameters in the model given the data and any prior information. Formally, through

the use of Bayes’ theorem we can write

P (ϑ|d, I) =
P (ϑ|I)P (d|ϑ, I)

P (d|I)
(2)

where ϑ denotes the set of parameters in the model, I presents the prior information, and d

represents the measured data. Here P (ϑ|d, I) is the posterior probability of the model pa-

rameters given the data and prior information. This is the quantity of interest — the “best”

values of the parameters are those which maximize this probability. The remaining terms

in (2) have the following interpretations: P (ϑ|I) is the probability of the parameters given

only the prior information; P (d|I) is the probability of the data given the prior information;2

and P (d|ϑ, I) is the probability of the data given the parameters and prior information (this

is often referred to as the likelihood of the data).

The prior probability of the parameters, P (ϑ|I), is meant to summarize our knowledge

of the model parameters before the experiment is performed. As long as there is sufficient

data, the choice of this prior will have little influence on the final probability. It is gener-

ally accepted that a conservative approach is to choose a prior that represents “complete

ignorance” regarding the parameter values. We will be more specific about the choice of the

priors below when we examine the specific model representing our time series.

The likelihood of the data is perhaps conceptually the most straightforward part of

the calculation. We denote our discrete set of N data samples as d = {dj}N−1
j=0 , which

correspond to the sample times {tj}N−1
j=0 . The measured data is assumed to be described by

a model g(t;ϑ) plus noise ε(t), i.e.,

dj = g(tj;ϑ) + ε(tj), j = 0, 1, 2 . . .N − 1. (3)

2For a given model and data set, this term can be considered a normalization constant. It is only
of interest in comparing the relative probability of different models.
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Typically we have little or no information regarding the measurement noise, yet we must

somehow assign a prior probability to the noise. Traditionally this choice has been motivated

by the principle of maximum entropy, that is, we assign the noise the least informative

probability density, namely:

P (ε|σ, I) =
1√

2πσ2
e−ε2/2σ2

. (4)

Under the assumption that the noise is uncorrelated, the probability that the measurement

has the set of noise values e = {εj}N−1
j=0 is

P (e|σ, I) ∝
N−1∏
j=0

1√
2πσ2

e−ε2j/(2σ
2) ∝ σ−N exp

{
− 1

2σ2

N−1∑
j=0

(dj − g(tj;ϑ))2

}
. (5)

Combining this result with (2) we have

P (ϑ|d, I) ∝ P (ϑ|I) × σ−N exp

{
− 1

2σ2

N−1∑
j=0

(dj − g(tj;ϑ))2

}
, (6)

where the parameter set has been expanded to include the noise variance σ.

To proceed further it is useful to have a concrete example. In this work, we employ

Bayesian analysis to extract the vibration spectrum from the time series of Doppler shifts.

In this case we have both a relatively short time series (in terms of the vibration period) and

a significant stochastic “noise” component in the signal (in part due to speckle broadening).

While the determination of a single sinusoidal signal has become the canonical example of

Bayesian data analysis, these methods are extremely versatile and have wide applicability.

We take our data model to consist of a single harmonic frequency:

g(t;ω,B1, B2) = B1 cosω t + B2 sinω t. (7)

With this model, the posterior probability of the parameters becomes

P (ω,B1, B2, σ|d, I) ∝ P (ϑ|I) × σ−N exp

{
− 1

2σ2

N−1∑
j=0

(dj −B1 cosω tj − B2 sinω tj)
2

}
. (8)

We will treat the phase and quadrature amplitudes as well as the noise variance as nuisance

parameters and consider the marginal probability P (ω|d, I). We will take uniform priors

for Bi and adopt the so-called Jeffreys prior, 1/σ, for the noise variance.[3] Thus we have

P (ω|d, I) ∝
∫
dσ

∫
dB1 dB2 σ

−(N+1) exp

{
− 1

2σ2

N−1∑
j=0

(dj − B1 cosω tj −B2 sinω tj)
2

}
. (9)
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In this application, our data is uniformly sampled in time. Let ∆t be the sampling interval

and define Ω = ω∆t. The argument of the exponential in (9) can then be written as

− 1

2σ2

N−1∑
j=0

{
d2
j + B2

1 cos2 j Ω + B2
2 sin2 j Ω + B1B2 sin 2j Ω − 2B1dj cos j Ω − 2B2dj sin j Ω

}
= Nd2 + BTMB − 2BT b, (10)

where

B =

B1

B2

 , (11)

M =



N−1∑
j=0

cos2 j Ω

N−1∑
j=0

sin 2j Ω

N−1∑
j=0

sin 2j Ω

N−1∑
j=0

sin2 j Ω


, (12)

b =



N−1∑
j=0

dj cos j Ω

N−1∑
j=0

dj sin j Ω


. (13)

and d2 is the average of d2
j over the data set. It turns out that the sums in (12) can be

computed in closed form, yielding

M =


1

2

[
N +

sinNΩ cos(N − 1)Ω

sin Ω

]
1

2

sinNΩ sin(N − 1)Ω

sin Ω

1

2

sinNΩ sin(N − 1)Ω

sin Ω

1

2

[
N − sinNΩ cos(N − 1)Ω

sin Ω

]
 . (14)

Note that for 0 < Ω < π, M has positive definite eigenvalues.

We can now write (9) as

P (ω|d, I) ∝
∫ ∞

0

dσ σ−(N+1)

∫ ∞

−∞
dB1 dB2 e

−(Nd2+BTMB−2BT b)/2σ2

. (15)

We evaluate the Gaussian integral by introducing the change of variables B̂ = B −M−1b.

Now dB1 dB2 = dB̂1 dB̂2 and we have∫ ∞

−∞
dB1 dB2 e

−(Nd2+BTMB−2BT b)/2σ2

= e−(Nd2−bTM−1b)/2σ2

∫ ∞

−∞
dB̂1 dB̂2 e

− bBTM bB/2σ2

. (16)
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Since M is symmetric, there exists an orthogonal matrix S such that ST M S = diag(λ1, λ2).

Let u = ST B̂. Since detS = 1, (16) becomes∫ ∞

−∞
dB1 dB2 e

−(Nd2+BTMB−2BT b)/2σ2

= e−(Nd2−bTM−1b)/2σ2

∫ ∞

−∞
du1 du2 e

−u2
1λ1/2σ2

e−u2
2λ2/2σ2

= e−(Nd2−bTM−1b)/2σ2 2πσ2

√
detM

. (17)

This leaves only the integration over σ in (15), an expression which can be evaluated using

a standard result:[5] ∫ ∞

0

dx xα−1e−Cx =
Γ(α)

Cα
. (18)

Doing so gives

P (ω|d, I) ∝ Q1−N/2

√
detM

, (19)

where we have defined Q = Nd2 − bTM−1b.

We now have the marginal posterior probability as a function of ω alone; for any given

data set, the value of ω that maximizes (19), which we will denote by ω∗, is the frequency

that is most consistent with the data and the model. The values of parameters that have

been marginalized can be estimated from the corresponding expectation values evaluated

at ω = ω∗. The expectation value of any function ϕ of the model parameters is given by

〈ϕ〉 =

∫
dσ

∫
dB1 dB2 ϕ(ω; σ,B1, B2)P (ϑ|d, I)∫

dσ

∫
dB1 dB2 P (ϑ|d, I)

. (20)

For example, we obtain an estimate of the phase and quadrature amplitudes from

〈B〉 =

∫
dB̂1 dB̂2

(
B̂ + M−1b

)
e−

bBTM bB/2σ2∫
dB̂1 dB̂2 e

− bBTM bB/2σ2
(21)

= M−1b .

By a similar calculation we find〈
BTB

〉
= bTM−2b + 2σ2 N

detM
(22)

and 〈
σ2

〉
=

Q

N − 4
. (23)
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From (22) we can estimate the signal-to-noise ratio

SNR =

√
2

N

det M
+

〈
BTB

〉
〈σ2〉 , (24)

where we have approximated σ2 by 〈σ2〉. Furthermore, we can estimate the uncertainty

in ω∗. From (8) and (16) we can see that

P (ω, σ|d, I) ∝ e−Q/2σ2

. (25)

Expanding Q around ω∗ we have

P (ω, σ|d, I) ∝ e−Q′′(ω∗)(ω−ω∗)2/4σ2

. (26)

Taking the width of this distribution as a measure of the uncertainty in ω∗ gives

∆ω∗ =

√
2 〈σ2〉
Q′′(ω∗)

, (27)

where we have again approximated σ2 by 〈σ2〉.

IV. RESULTS

As mentioned above, here we apply Bayesian analysis to the problem of determining the

vibration frequency which is manifest as a modulation of the Doppler shifted laser light.

For our experimental arrangement, the average Doppler frequency is significantly higher

than the imposed vibration frequency and is well resolved by the sampling rate. For these

reasons, it is sufficient to determine the instantaneous Doppler shift using traditional FFT

methods. We take the measured time series and split it into a sequence of “windows.”

After removing any DC component and applying a Bartlett window function, the power

spectrum is estimated using the FFT and the frequency corresponding to the maximum
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FIG. 3. Doppler shift determined using 32 µs window.
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FIG. 5. Best fit (solid line) and raw time series (dots) using (a) 32 µs, (b)
64 µs, (c) 128 µs, and (d) 256 µs windows. The best fits correspond to the
parameters shown in Table (I).
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32 µs window

f [Hz] B1 [kHz] B2 [kHz] |B| [kHz]

8.67 ± 0.51 −1.857 −0.711 1.989

22.08 ± 0.11 −5.733 5.850 8.191

36.30 ± 0.57 0.925 −1.216 1.528

42.73 ± 0.49 −2.257 0.966 2.455

57.37 ± 0.41 1.913 0.352 1.945

64 µs window

f [Hz] B1 [kHz] B2 [kHz] |B| [kHz]

8.79 ± 0.56 −1.718 −0.497 1.788

21.70 ± 0.13 −5.021 6.004 7.826

35.52 ± 0.74 0.261 −1.347 1.372

42.43 ± 0.67 −1.475 1.682 2.237

57.74 ± 0.50 1.743 −0.196 1.754

128 µs window

f [Hz] B1 [kHz] B2 [kHz] |B| [kHz]

8.88 ± 0.68 −1.726 −0.882 1.938

21.70 ± 0.16 −5.124 5.829 7.761

36.64 ± 0.73 0.819 −1.246 1.491

43.14 ± 0.64 −2.244 1.077 2.489

58.03 ± 0.56 1.730 0.356 1.766

256 µs window

f [Hz] B1 [kHz] B2 [kHz] |B| [kHz]

9.14 ± 1.2 −0.911 −0.945 1.313

21.87 ± .21 −5.562 5.543 7.853

35.88 ± .77 0.639 −1.713 1.828

43.42 ± .70 −2.657 0.906 2.808

58.31 ± 1.1 1.246 0.428 1.317

TABLE I. Frequency and amplitude estimates using various window sizes. The frequencies are
extracted from the signal sequentially as described in the text and the uncertainties are computed
using (27) and the amplitudes are obtained using (22).

power is determined by quadratic interpolation. This process yields a time series of Doppler

frequencies with a sample interval corresponding to the window length. It is this derived

time series that we analyze using the Bayesian methods described above.

We present results for four different length windows: 64, 128, 256, and 512 samples

corresponding to 32 µs, 64 µs, 128 µs and 256 µs, respectively. Figure 3 shows the time

series of Doppler shifts determined using the 32 µs window. The time series clearly contains a

significant stochastic component, however by eye one can discern a periodic structure. In this

application e does not represent measurement “noise” but rather the stochastic component

of the signal, i.e., we are considering our signal to be composed of a deterministic part which

we model by g and a stochastic part, e, which we assume has a Gaussian distribution. The

statistical arguments are the same as in the case where e corresponds to experimental noise,

but the philosophy is slightly different.

In Figure 4(a), we plot the base 10 logarithm of the posterior probability, (19), as a

function of frequency f for the 128 µs window. As is typical with Bayesian analysis, the
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FIG. 6. Vibration power spectral density estimated using FFT (solid line)
and cubic interpolation of the peak (dashed line). The PSD has a maxi-
mum at f = 20.6 Hz with a HWHM of 17.5 Hz.

peak in the probability is vastly above the background level. Such sharp peaks give rise to

precise estimates of the parameters. We can also see that the probability plot suggests the

presence of other frequencies in addition to that responsible for the main peak. Although

our model only contains a single frequency, we can analyze multi-harmonic time series by

iteratively removing the frequency corresponding to the peak in the probability and then

re-analyzing the residual.3 A more complete approach would be to carry out a full multi-

mode analysis, using P (d|I) to select the optimal model. Such an analysis is significantly

more computationally intensive than the recursive method used here. As we will see below,

the results from this simpler approach are of sufficiently high quality that the more complex

multi-mode method is not justified by our data.

Shown in Figure 4(b)–(f) are posterior probabilities of the residual after removal of

subsequent frequencies. Notice how the vertical scale changes drastically; as each frequency

is removed the peak in the probability corresponding to the “next” frequency is much smaller

relative to the background. We attribute these additional frequencies to (i) harmonics

of the drive modulation frequency due to the “accelerate and coast” effect of the drive

modulation and (ii) motor “cogging” effects due to the low chopper wheel velocity. When

we reach panel (f), the probability no longer contains any dominant features. The results

of this procedure for all four window sizes are summarized in Table I. For the three largest

windows the frequency estimates are in complete agreement within their respective one-σ

uncertainties. The results from the 32 µs window are also in agreement with the other cases

except for the frequency of the mode near 22 Hz. We attribute this (small) discrepancy to

the fact that the window length of 32 µs is smaller than the speckle induced decoherence

time of approximately 40 µs. Thus for this short window, the stochastic component may

deviate significantly for the Gaussian distribution that it achieves over longer time intervals.

3The approach is known to work well with sinusoidal signals but can be disastrous in other
circumstances.[6]
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This has the effect of making the model not quite correct, i.e., our assumptions about the

“noise” statistics are not valid. It is then not surprising that we get some disagreement with

the cases where the model more closely matches the data.

In Figure 6, we show the FFT estimate of the power spectral density of the time series

produced using the 256 µs window. The PSD has a maximum at f = 20.6 Hz with a half-

width-half-max of 17.5 Hz. This maximum value is approximately 1.2 Hz below the average

frequency for this mode determined from the Bayesian analysis. Clearly the PSD is incapable

of resolving the multiple frequencies contained in the vibration signal. While the peak (after

interpolation) yields approximately the same value for the best vibration frequency, the

significant width of the spectrum (due to the small number of periods contained in the time

series) makes an accurate estimate of the frequency difficult. Contrary to popular belief,

“enlarging” the data set by zero-padding does not improve the resolution of the FFT but

merely interpolates in power spectrum between the frequencies of the shorter data set. The

width of this power spectrum estimate is a fundamental limitation of using the FFT and

cannot be side-stepped.

V. CONCLUSIONS AND FUTURE WORK

Here we have demonstrated the power of Bayesian analysis when dealing with short

time series containing a significant stochastic component. We have shown that the Bayesian

approach yields much more precise frequency estimates than is possible when using the FFT

as a spectral estimator. We have also seen that it is important that the model accurately fit

the data as this is part of the “prior information.” As with the priors for the noise or the other

model parameters, choosing a poor model can color the results of the analysis. Ultimately

we are asking for the parameter values which, given the model, are most consistent with the

data. The Bayesian framework provides a means of selecting between competing models and

any complete analysis should include consideration of multiple models. Here we considered

only a single sinusoid model since we were most concerned with demonstrating the use of

Bayesian methods as a “proof-of-principle.” This deficiency notwithstanding, the Bayesian

approach yields a frequency estimate that is accurate to approximately 1%. Given the short

time series, this is nonetheless quite impressive as it represents a significant improvement

(by nearly two orders of magnitude) upon the estimate obtained from the FFT.

This method will have the greatest impact in situations where measurement dwell-time

is at a premium, such as vibrational imaging [7] where many points across the surface of

an object must be monitored sequentially during a measurement period, or in situations

where the vibrational character is rapidly changing and dwell-time must be limited. If the
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experimental circumstances were such that there was not such a large separation between

the Doppler frequency and the vibration frequency, then using such large windows for deter-

mining the Doppler frequency would not be appropriate. In such a case we could also employ

Bayesian analysis to determine the Doppler shift. While not necessary with the data con-

sidered here, using Bayesian methods should allow for resolving vibration frequencies that

are a significant fraction of the Doppler frequency.

In future investigations we plan to evaluate the performance of statistical signal process-

ing methods applied to laser vibrometry in the low to moderate CNR regime (≈ 0 dB) and

with more realistic vibrational signals. The focus of this preliminary investigation was on

determining the vibrational frequency with a limited amount of data corrupted by significant

phase and frequency noise. Future investigations will also focus on the ability of the method

to detect small vibrational amplitudes in comparison with other processing methods.
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