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27

Direct-Current Circuits

27-1 Electromotive Force

When a charged particle traverses a closed path in an electrostatic field in
space, the total work done on the particle is zero. The electric field is
conservative. Associated with each point in the field, there is a fixed value
of the electrical potential.

In a simple circuit consisting of a chemical cell and a resistor, as shown
in Figure 27-1, we have seen that the

current flows through the resistor _€
from the positive terminal of the cell /// ™~ ~
to the negative terminal of the cell. 7//
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The positive terminal is at the higher
potential, so that the current flows {
from the higher to the lower poten- \
tial outside the cell, but inside the NP 4 "",l" _f_ ’//
m— + _
3

S<—”

cell the direction of current flow is /,“'T
n = “

/

[

‘V\
A

IRVYYVVVYYYYNEN B N

Fig. 27 -1 Fig. 27-2

\

A
|
/

from the lower to the higher potential. The cell must do work upon the
charge in order to raise its potential.

Let us consider the effect of moving a positive probe charge through
a closed path in an electric field in which such a cell is located. As long as
the path of the charged particle does not pass through the cell, the work
504
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done in traversing a closed path is zero, as in the path PdaP in Figure 27-2.
When the path traverses the cell, the particle may acquire energy as a
result of the conversion of chemical energy to electrical energy, as in the
path PebaP, or the particle may lose energy as the result of the conversion
of electrical energy to chemical energy if this same path is traversed in the
direction opposite to the original direction, as in the path PabeP. If one
takes into account only the mechanical work done by the agency moving
the probe charge, the cell appears to be a place where energy may be
gained or lost, depending on the direction in which the passage through the
cell is effected. A similar result would be obtained by passage of the probe
charge through any electric generator in which the conversion of energy
from some other form to electrical energy is reversible.

The concept of electromotive force has been introduced to describe the
energy relations associated with electric cireuits which incorporate chemical
cells or other electric generators. If a net quantity of work »# is done
in carrying a charge ¢ around a closed path in which no current is flowing,
as in a circuit when the switch is open, the total electromotive force &
in that path is defined as

E=". (27-1)

In this definition of electromotive force &, abbreviated emf, it is important
to specify that the charge may traverse the path with arbitrary slowness.
In other words, if the work done in traversing the path depends upon the
speed of the particle, we will imagine that the particle is carried around
the path with near zero speed. Since the work done when a charge traverses
a resistor depends upon the current, which may be related to the speed of
the charged particle, the work done in very slowly moving a probe charge
through a resistor will approach zero, as long as the potential difference
between the ends of the resistor is zero.

From Equation (27-1) we see that the units of electromotive force are
the same as the units of potential difference. In the mks system of units,
the unit of emf is the volt. The emf is not a force but an energy per unit
charge. If the potential difference across the terminals of a cell is 2 volts
when no current is flowing, we say that the cell has an emf of 2 volts.

Since the work done on a probe charge ¢ in traversing the path PadP
1s zero, the emf along this path is zero. In traversing the path PebaP, if
the potential difference between the terminals of the cell is V, the work done
by the cell on the charge is V¢, and the emf is

c Ty
q

for the particle has more energy when it has returned to P than it had
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initially. Positive work has been done on the particle. In traversing the

same path in the opposite direction PabeP, the emf is

—Va _
q

E = -V,

for the particle has done work~in traversing the cell. In other words,
negative work has been done on the particle, so that its energy is less upon
its return to P than it was initially. The emf of a cell or of a generator
thus has a sense, and s directed from the negative terminal of the cell to its
positive terminal inside the cell. When a positive charge passes through a
cell in the direction of the emf, it gains in potential energy. When a
positive charge passes through the cell in a direction opposite to the emf,
it loses potential energy. In both cases the change in electrical potential
is equal to the magnitude of the emf & of the cell.

27-2 Series and Parallel Connections

An electric circuit may be very simple and consist of one or two electrical
devices connected to a source of power, or it may be very complex and
consist of many different elements connected in a variety of ways. In

Fig. 27-3 Resistors connected in series. (a) The current is the same in each resistor.
(b) The difference of potential across all the resistors in series is equal to the sum of the
differences of potential across each of the resistors.
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practical applications it is important to be able to determine the equévalent
resistance of any circuit or any section of the circuit in terms of the resist-
ances of the individual elements of a circuit. Suppose we have a circuit
consisting of a battery, three resistors, and four ammeters, connected as
shown in Figure 27-3(a). This is called a series circuit, and the various
elements are said to be connected in series. In a series cireuit the current is
the same wn all parts of the circuit.

The same current flows in each of I

the resistors, each of the am- 0
meters, and the battery.

Another type of connection
is shown in Figure 27-4 in which Cy Q
the three resistors are connected
in parallel. Since the difference of e
potential between two points, I
such as C and D, can have only /
one value, the difference of po- B
tential across each resistor is the < A } < Illl
same. A voltmeter connected |
acrossC and D Wl.ll give the differ- Fig. 27-4 Resistors in parallel. The
ence of potential across each  gifference of potential is the same across
resistor and, in this case, will also  each resistor.
give the difference of potential
across the terminals of the battery. The voltmeter is always connected
in parallel with that portion of the circuit whose voltage is to be measured,
while the ammeter is always connected in series in that portion of the
circuit in which the current is to be measured.

In Figure 27-3(b), if three voltmeters are connected across the three
resistors in series, Ry, Ry, and R, and a fourth voltmeter is connected across
all three resistors, it will be observed that the difference of potential V across
all three resistors in series is equal to the sum of the differences of potential
across each of the resistors, or

V=V,+7Vy+ Vs (27-2)

\ Rs yI

Applying Ohm’s law to each resistor and remembering that the current
I is the same in each one, we get

Vl = IRI, V2 = IRQ, and V3 = IR3,

which yields, upon substitution in Equation (27-2),
V = IRI + IR2 + IR3 (27-3)

The equivalent resistance R of this circuit is one which would have the same



508 DIRECT-CURRENT CIRCUITS §27-2

current / flowing in it when the same potential difference V is applied to it;
that is,

V =1IR. (27-4)
Equating these two values of V, we get
R =R, + Ry + Rs. (27-5)

The equivalent resistance of a group of resistors connected in series is the
sum of their individual resistances.

If ammeters are inserted into the circuit containing three resistors in
parallel, as shown in Figure 27-4, it will be observed that the eurrent I which
leaves the battery divides at (' in such a way that it is equal to the sum of
the currents in the individual resistors, or

=1 + Iy + I3, (27-6)

where I, is the current in Ry, I3 the current in R, and I3 the current in R;.
These currents recombine at D and flow back to the battery. Applying
Ohm’s law to each resistor and remembering that the potential difference V'
is the same across each one, we get

V = LRy, V = IRy, and V = I3R;.
We may therefore write Equation (27-6) as

from which —_—= =t — 4 — (27-7)

this is the relationship between the equivalent resistance I and the individ-
ual resistances of three resistors in parallel. The reciprocal of the resistance
is called the conductance of the resistor. Equation (27-7) may be read as
follows; the equivalent conductance of a parallel circuit is the sum of the
conductances of the individual resistors connected in parallel. Equation
(27-7) also shows that the equivalent resistance of a parallel combination is
less than the resistance of any one of the resistors.

Illustrative Example. TFind the potential difference between the terminals
of the 12-ohm resistor of Figure 27-5(a) if the battery has an emf of 36 volts and
has no internal resistance.

Let us first determine the equivalent resistance of the three resistors in the
circuit. The equivalent resistance of the parallel combination of the 6- and
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12-ohm resistors may be found as

1 1 + 1
- = s
R 6ohms 12 ohms

or R = 4 ohms.

We may replace the parallel combination by a single 4-ohm resistor, as shown in
Figure 27-5(b). This series combination of two resistors has an effective resistance
of 6 ohms. Thus the three resistors of Figure 27-5(a) may be replaced by a single
6-ohm resistor, as shown in Figure 27-5(c).

6.
20
(a) . 120
v
HOUE
60
——’\N\N\/\/‘ﬁ

36v

e
(c)

Fig. 27-5

From Ohm’s law the current in the circuit of Figure 27-5(c) is

7= K _ 36 volts
R 6 ohms
= 6 amp.

Thus a current of 6 amp flows from the battery in each of the equivalent circuits
of Figure 27-5. In Figure 27-5(b) the potential difference between the terminals
of the 4-ohm resistor is therefore equal to 24 volts. Replacing the 4-ohm resistor
by the original parallel combination, as in Figure 27-5(a), the potential difference
between the terminals of the 12-ohm resistor is 24 volts.

27-3 Terminal Voltage

In practical electrical generators the passage of current through the genera-
tor is accompanied by the evolution of heat within the generator. To
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describe the evolution of heat in a quantitative way, we say that practical
generators have an emf and an internal resistance as well. It is customary
to represent the internal resistance of a practical cell by a resistor r which
is in series with a resistanceless cell of emf &. The potential difference
as measured by a voltmeter connected across the terminals of the cell ab
(Figure 27-6) will depend upon the current I flowing through the cell.

£
I a r I
< w1
(a)
()
aY,
E
I 4 r b I

(b)

o1
%
)

Fig. 27-6 Terminal voltage and emf of (a) cell discharging and (b) cell being charged.

Let us suppose that the current through the cell is in the direction of
the emf, as shown in Figure 27-6(a). The current through the internal
resistance r is in the direction bc. According to Ohm’s law, the point ¢
must be at a lower potential than the point b by an amount given by

V = Ir.

If we carry a unit positive probe charge from the point b to the point ¢ and
then to the point a, the potential falls by Ir in passing from b to ¢ and rises
by & on passing from ¢ to a. The potential difference between b and «a is
given by

Vo=V, —Ir 4 & (27-8)
so that Vo—Vp=6& — Ir. (27-9)

Thus the difference of potential between the terminals of the cell, also
called the {erminal voltage, is less than the emf of the cell when the current
is in the direction of the emf; this is the case when the cell is discharging.

When the direction of the current is opposite to that of the emf, as in
Figure 27-6(b), we note that the point ¢ must be at ahigher potential than
the point b by an amount Ir, so that the potential difference between points
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b and a is given by
Vo= V=64 Ir. (27-10)

When a battery is being charged, the current is in a direction opposite to
its emf, and its terminal voltage is greater than &.

As a dry cell or a storage battery deteriorates with use, its emf remains
substantially constant, but its internal resistance increases. The cell must
be tested under conditions in which it is required to supply currents appro-
priate to its use, in order to determine whether the cell is “dead.” When
the terminal voltage is appreciably less than the emf, the battery may no
longer be suitable for its intended application.

27-4 Voltmeters and Ammeters

The voltmeters and ammeters used in electrical measurements are con-
structed from a basic meter movement which will be described in a sub-
sequent chapter. For our present purposes we need only know that this
basic meter is a device which measures current, called a galvanometer.
Galvanometers are usually constructed so as to have scale deflections pro-
portional to the current passing through them. The galvanometer has an
internal resistance. '

Fig. 27-7 Ammeter.

Let us suppose that we have a galvanometer which is so constructed
that its internal resistance is B, and that it is deflected to a full-scale reading
whenever the current passing through it is I,. If we wish to have an am-
meter whose full-seale reading is I,, we may construct such a meter from
the galvanometer by connecting a resistor R, across the terminals of the
galvanometer. Such a resistor is called a galvanometer shunf. The shunt
resistor is often connected inside the case of the galvanometer; the external
connections to the instrument are shown in Figure 27-7 as A4’.

Suppose we wish the galvanometer to indicate a full-scale deflection
when a current [, flows through the connections 44’. Since the construc-
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tion of the galvanometer is such that it reads full-scale deflection when the
current through it is 7,, the current flowing through the shunt resistor I,
must be given by

I,=1,+1I..

Since the galvanometer is in parallel with the shunt resistor, the potential
difference across the galvanometer must be the same as the potential differ-
ence across the shunt resistor. Thus

I,R, = I,R,.

The value of the required shunt resistor may be determined by eliminating
the current I; from these two equations. We have

I, =1, (1 + %); (27-11)
so that a knowledge of the resistance of the galvanometer, the current
through the galvanometer for full-scale deflection, and the desired full-scale
ammeter reading suffice to deter-
mine the required shunt resistance.

It is impossible to make an
ammeter whose full-scale deflection
requires less current than is required
by the galvanometer from which it
was constructed. An ammeter read-
ing large currents requires a shunt
resistor of smaller resistance than
does one reading small currents.

Fig. 27-8 Voltmeter. Since an ammeter is connected in

series with the circuit in which the

current is being measured, an ammeter with very low resistance is desired

in order that it may have a minimum influence upon the current in the
circuit.

The same galvanometer may be used as a voltmeter by connecting a
multiplier resistor in series with it, as shown in Figure 27-8. The terminals
of the voltmeter AA’ are to be connected across (in parallel with) two points
in a circuit whose potential difference we wish to measure. The galva-
nometer reads full-scale deflection when a current I, passes through it.
The same current also passes through the multiplier resistor R,,. From
Ohm’s law the potential difference V, between the points A and A4’, is
given by

7
V = IL(Rn + Ry). (27-12)

Thus we may construct a voltmeter with any desired full-scale reading V
by inserting a resistor R,, in series with a galvanometer, if the internal
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resistance R, of the galvanometer and the current I, required for full-scale
deflection are known.

A good voltmeter should be constructed from a galvanometer of high
sensitivity. The voltmeter is connected in parallel with the circuit com-

“ponent whose voltage is being measured. In order that the circuit be least

disturbed by the presence of the voltmeter, the current through the volt-
meter should be small. Thus it is important that the resistance of the
voltmeter be high. )

It is possible to construct multipurpose meters from a single galva-
nometer. A number of appropriate resistors are mounted in the case with
the galvanometer, and a switching arrangement is provided which connects
selected resistors in series with the galvanometer for voltage measurement,
while other resistors are connected in parallel with the galvanometer for
use of the instrument as an ammeter.

Hlustrative Example. It is desired to convert a galvanometer, that has an
internal resistance of 5 ochms and gives a full-scale deflection for a current of
10 pamp, into a voltmeter whose full-scale deflection corresponds to 300 volts.

What value of multiplier resistance should be used?
Substituting numerical values into Equation (27-12), we have

300 = 10 X 107%(R,, + 5),
R.. = 2,995 ohis.

I

To convert the same galvanometer to an ammeter with a full-scale reading
of 100 pamp, a shunt resistor is used whose resistance is given by Equation
(27-11).

100 X 107% = 10 X 10=° (1 + %)

8

R, = 5 ohm.

27-5 The Potentiometer

When a voltmeter is used to measure a potential difference, some error is
always introduced because of the fact that the voltmeter draws current
from the circuit to which it is connected. When a voltmeter is used to
measure the potential difference between the terminals of a cell, the meas-
ured voltage is always less than the emf because of the voltage drop across
the internal resistance of the cell. In many applications it is important to
be able to measure the potential difference between the two terminals with-
out drawing current to the measuring device. In such cases a polentiometer
is used.

The schematic circuit of a potentiometer is shown in Figure 27-9. At
the heart of the potentiometer is a slide-wire resistor made of a uniform
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wire ac, provided with a sliding contact, shown in the figure at point 5. The
resistance of the portion of the wire from the fixed contact at @ to the sliding
contact at b is proportional to the length of the wire hetween these two
points. A constant current [ is maintained in the slide wire by means of
the battery B, so that the potential difference between a and b is propor-
tional to the length of the wire between these two points. In this way any
potential difference from zero to the terminal voltage of the battery can be
obtained between the points a¢ and
b simply by moving the sliding
contact.

In order to use the potenti-
ometer, it 1s necessary first to
calibrate it with the aid of a stand-
ard cell such as the Weston
normal cell whose emf has been
previously determined. The posi-
tive terminal of the standard cell
is connected to the same point a as
the positive terminal of the bat-
tery, while the negative terminal
of the standard cell is connected
to the point b through a sensitive

Fig. 27-9 A potentiometer. galvanometer. The sliding con-

tact b is moved along the slide

wire until there is no current through the galvanometer, indicating

that there is no potential difference across the terminals of the galvanom-

eter. Thus the emf of the standard cell is equal to the potential difference

Va» along the slide wire between these points. If the resistance of the slide
wire between the point ¢ and the point b is R, we have,

é‘s = Vab = IRab-

To determine the emf of an unknown cell &, the standard cell is re-
placed by the unknown cell, and the sliding contact is shifted to a new
position x to achieve a balance. We have

Ey = Vo = IRe,.

Dividing the second of these equations by the first, we obtain

Rax
fx B é‘s <Rab> .

If I, is the length of the slide wire from a to b and I, is the length from a toz,
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and since the resistance of a uniform wire is proportional to its length, we
have

R L
Rab - lb ’
Iy
so that Er = Es <f> . (27-13)
b

The measurement of the emf of a cell is thus reduced to the measure-
ment of two lengths along a uniform slide wire. Since the potentiometer
uses a galvanometer to determine the null condition, the condition of no
current flow, an extremely sensitive instrument may be used. Further-
more, we have no need to compound the errors of measurement by first
measuring the current from the battery or the resistance of the slide wire.
Any potential differences may be measured relative to a standard cell with
an accuracy limited only by the uniformity of the slide wire and the sensi-
tivity of the galvanometer.

The potentiometer may be used to calibrate voltmeters and ammeters,
to measure potentials in an electrolytic plotting tank, to measure the
thermal emf in a thermocouple for the measurement of temperature, and,
in fact, wherever an accurate determination of potential difference is
required.

27-6 Kirchhoff's Laws

Complicated circuits made up of resistors and sources of emf often cannot
be readily resolved into series and parallel combinations of resistors. The
procedures for solving such networks were first stated by Gustav Robert
Kirchhoff (1824-1887) and are known as Kirchhoff’s laws. In order to
state concisely these rules for the solution of circuit problems, we shall first
define two terms, a junction and a loop. A junction, or branch point, is a
point where three or more conductors, or branches, are electrically con-
nected. A loop is any closed path in an electrical circuit.

The concept of conservation of charge leads to the first of Kirchhoff’s
laws, which states that the algebraic sum of the currents flowing into a junction
is zero.

21 =0.

In the above equation, representing Kirchhoff’s first law, current flowing
into a junction is generally regarded as positive current, while current
flowing out of the junction is regarded as negative. The current flowinginto
any junction must equal the current flowing out of that junction. If this
were not true, we would have to imagine that charge could be created or
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destroyed at a junction, in contradiction of the principle of conservation
of electric charge.

The second of Kirchhoff’s laws may be stated as the algebraic sum of
the potential differences around a closed loop is equal to zero. Since the poten-
tial differences between the terminals of the circuit elements are composed
of emf’s, and I R drops across resistors, we may write Kirchhoff’s second law
symbolically as

2E+ IR =0

In effect, this rule states that the potential of a point in an electric circuit
is a fixed quantity. If we start at any point in the circuit and imagine that
we transport a probe charge around a closed loop, the algebraic sum of the
potential changes associated with passing from one junction to the next in
passing around the loop is equal to zero.

To apply Kirchhoff’s laws to a network, we first imagine the network
to be broken up into loops, as shown in Figure 27-10, in which circuit ele-
ments have been represented as
rectangles. We choose these
loops to be as simple as possible,
so that each circuit element is
contained in at least one loop.
Some circuit elements may be
part of more than one loop. We
assign arbitrarily a direction to
the current in each loop. We in-
dicate this direction by an arrow,
and assign to the current an
algebraic magnitude represented

Yl by the symbol I, I, and so on.
In drawing these currents as con-
Fig. 27-10 Current loops. tinuous through a junction, we

have automatically fulfilled
Kirchhoff’s first law. In the event that we have assigned the wrong di-
rection to any of these loop currents, the numerical solution for that cur-
rent will yield a negative answer.

To each loop we apply Kirchhoff’s second law; starting at a particular
point in the circuit, we imagine that we carry a unit positive probe charge
from junction to junction. The probe charge may be carried around the
loop in any direction, without regard to the direction of the loop current.
When the probe charge is carried through a source of emf in the direction
of the emf, passing from the negative to the positive terminal, the potential
of the probe charge is increased by the magnitude of the emf. When the
probe charge is carried through the source of emf from the positive to the
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negative terminal, its potential is decreased in amount by the magnitude
of the emf. When the probe charge passes through a resistor in the direction
of the current, the potential of the probe charge is decreased, for the direc-
tion of the current in a resistor is from high to low potential. If the probe
charge is passed through the resistor in a direction opposite to the direction
of the current, the potential of the probe charge is increased. Because of
the manner in which we have indicated the loop currents, some elements
will have current contributions from more than one loop current. Since the
net current through the resistor determines the potential difference between
its terminals, we may treat the potential change due to each loop current
as an independent contribution to the potential change of the probe charge.

+
40
L w— )
5.0, b 6.0
Fig. 27-11

Tllustrative Example. Find the potential difference between the points
a and b in the circuit of Figure 27-11.

We imagine the circuit to be broken into two closed loops, as shown in the
figure, with the 8-volt cell and the 4-ohm resistor common to both loops, and
represent the currents in the two loops by I, and I, which have been drawn
arbitrarily in the clockwise direction. We imagine that we have a unit positive
probe charge at the point A, and we carry the probe charge around the first loop
in the direction of the current in this loop. We shall represent an increase in the
potential of the probe charge as positive and a decrease of the potential of the
probe charge as negative. The algebraic sum of the potential changes of the
probe charge in passing around the loop must be equal to zero.

On passing through the 3-ohm resistor in the direction of the current I4, the
potential of the probe charge falls. The change in potential of the probe charge
is —3I;. The probe charge next passes from the negative to.the positive terminal
of the 8-volt cell, so that its potential change is +8 volts. There are two con-
tributions to the potential change of the probe charge in passing through the
4-ohm resistor. Since it passes through the resistor in the direction of the current
I,, the potential of the probe charge decreases by 4I;. At the same time the
probe charge passes through the resistor in a direction opposite to I, so that its
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potential increases 4I;. The net change in potential of the probe charge is
—4I, + 41,.

Next the probe charge passes through the 5-ohm resistor where its potential
changes by —5I,. Finally it returns to the point A by passing through the
10-volt cell from the positive to the negative terminal, making a change in
potential of —10 volts. Adding all these changes algebraically and setting the
sum equal to zero, we find

—3I,+ 8 — 41, 4+ 4I, — 5I; — 10 = 0,
from which —12I, + 41, — 2 =0

for the equation resulting from the application of the loop condition to the first
loop.

Starting with the point A’ and traversing the second loop in the counter-
clockwise direction, opposite to the direction of the current I, we find

—6 48 —4I; + 41, + 613+ 21, = 0,
yielding —4I, + 121, +2 =0

as the equation resulting from the second loop.
We may solve these equations simultaneously to find

I, =1,= —%amp.

The currents in both loops are therefore opposite to the directions indicated in
Figure 27-11. .

Having found the currents in the circuit, the remainder of the problem is
quite straightforward. Since I; and Is are equal in magnitude and opposite in
direction between a and b, there is no current between the junctions a and b.
To find the potential difference between these two points, we imagine the unit
probe charge to be at position a. At this point its potential is ¥V,. To move the
probe charge to position b it must pass through the 8-volt cell, its potential being
inereased by the emf of the cell, and through the 4-ohm resistor. Since there is
no current through the resistor, there is no potential change on passing through
it. The probe charge is then at the potential of point b, V3. In the form of an
equation

Vo + 8volts = Vi;
Vy — Vo = 8 volts.

27-7 Back EMF of a Motor

As we have seen in Section 27-1, the concept of electromotive force is a
useful one in connection with the operation of generators of electricity. We
may extend this concept so that it is applicable to motors as well, through
the idea of a back emf. It is possible to construct a d-c motor so that
the direction of rotation of the motor depends upon the direction of the
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current, through it. Unlike chemical cells or generators, which are polar-
ized so that they convert some other form of energy to electrical energy
when the charge passes in one direction and convert electrical energy back
to that other form when the charge passes in the reverse direction, a motor
always converts electrical energy to mechanical energy.

It is possible to describe this property of the motor electrically in terms
of an emf, called a back emf, which is always opposite in direction to the
current. The electrical power & converted by the motor to mechanical
power is

P = €I,

where [ is the current delivered to the motor, and & is its back emf. In
general, a motor may be described by its back emf & and its internal resist-
ance R when it is part of an electrical circuit.

Ilustrative Example. (a) What is the back emf of an electric motor which
has an internal resistance r = 5 ohms and draws a current I = 2 amp when
connected to a source whose terminal

voltage V is 110 volts? (b) What is the 110 v
efficiency of the motor? -~

(a) The schematic circuit is shown in t l _ A
Figure 27-12 where the motor has been i

represented by a generator, whose emf
& is directed opposite to the direction
of the current, in series with a resistor
representing the internal resistance of the
motor. If we imagine that the probe + -
charge is initially at the point A and that —O__'V\/\/\/\/\/‘_
we carry the probe charge in a counter- < 50

clockwise direction around the loop, we &
find, from Kirchhoff’s second law,

V—-—~&—r=0.

S
-~

Fig. 27-12

Substituting numerical values, we get
+ 110 volts — & — 5 0ohm X 2 amp = 0,
& = 100 volts.

(b) To find the efficiency of the motor, we observe that the energy ¥,
delivered to the motor in time ¢ is

Wi = 110 volts X 2 amp X ¢ = 220 watts X ¢.

The energy converted by the motor to mechanical energy is given by the
product of the back emf by the charge which has passed through the motor in
time ¢ so that the work done by the motor ¥’y is given by

X o = 100 volts X 2amp X ¢sec = 200 watts X ¢.
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The efficiency ¢ of the motor is
_ ¥o _ 200 watts X ¢

Wi 220 watts X ¢
e = 0.91.

Problems

27-1. Two resistors of 30 and 45 ohms resistance, respectively, are connected
in parallel, and the combination is connected to a 120-volt source. Determine
(a) the effective resistance of this combination and (b) the current through
each resistor.

27-2. Three coils of 20, 30, and 50 ohms resistance, respectively, made of
uniform wire, are connected in parallel, and the group is then connected to a
110-volt source. Find (a) the resistance of the combination and (b) the current
through each resistance.

27-3. Three resistors having resistances of 15, 25, and 50 ohms, respectively,
are connected in series, and a difference of potential of 120 volts is maintained
across the combination. (a) What is the
current in each resistor? (b) What is the
voltage across each resistor? (¢) How much
power is supplied to this combination?

27-4. In the circuit sketched in Figure 120 v
27-13, the current in the 10-ohm coil is 4.5 2010 R
amp. (a) Calculate the value of the resist- l

el

100

ance R. (b) Determine the amount of heat
developed in 1 min in the 10-chm coil.

27-5. Three resistors having resistances Fig. 27-13
of 4, 8, and 12 ohms, respectively, are con-
nected in series. A storage battery maintains a difference of potential of 12 volts
across the combination. How much power is delivered to each resistor?

T Transgission
120v

i Line, 2.50

100 00
500
200

Fig. 27-14

27-6. Alamp, an electric heater, and an electric iron are connected in parallel,
as shown in Figure 27-14. Their resistances, when hot, are 100, 50, and 20 ohms,
respectively. If the generator produces a voltage across its terminals of 120 volts,
and if the transmission line has a resistance of 2.5 ohms, find (a) the current
supplied by the generator, (b) the voltage across the terminals of the lamp, (c¢) the
current in the heater, and (d) the power consumed by the heater.

27-7. A generator which maintains a constant terminal voltage of 120 volts
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supplies a current of 16 amp to a group of 10 identical lamps in parallel. The
line connecting the generator to the lamps has a resistance of 0.5 ohm. (a) What
is the voltage at the lamps? (b) What is the resistance of each lamp?

27-8. Figure 27-15 is a diagram of a part of an electric circuit. If the current
in the 6-ohm resistor is 3 amp, find the following quantities: (a) the reading of
the voltmeter connected between C and D; (b) the current in the 8-ohm resistor;
(c) the reading of the ammeter placed between B and C'; (d) the potential differ-
ence between points A and B; and (e) the current in the 20-ohm resistor.

60
A B

300 ()
-/

)
lw]

Fig. 27-15

27-9. Two lamps, each rated at 40 watts and 120 volts, are used as resistors
in a circuit. If the two lamps are connected in series, (a) what is their com-
bined resistance and (b) how much power is dissipated by these lamps when the
voltage across the two is 120 volts?

27-10. A battery has an emf of 6 volts and an internal resistance of 3 ohms.
What will be the current delivered to a 100-ohm resistor connected to the ter-
minals of the battery?

27-11. When a generator is delivering a current of 50 amp, its terminal
voltage is 110 volts. When the same generator delivers a current of 100 amp,
its terminal voltage is 100 volts. What are the values of (a) the emf and (b) the
internal resistance of this generator?

27-12. When a storage battery is delivering a current of 20 amp to a load,
its terminal voltage is 5.9 volts. When the same battery is being charged by a
generator at a current of 5 amp, its terminal voltage is 6.05 volts. What are the
values of (a) the internal resistance and (b) the emf of the battery?

27-13. A generator with an emf of 120 volts and an internal resistance of
5 ohms delivers a current of 3 amp to a motor whose internal resistance is 2 ohms.
(a) What is the back emf of the motor? (b) What is the mechanical power
delivered by the motor? (c¢) What is the efficiency of the motor? (d) What is the
over-all efficiency of the system?

27-14. An ammeter reads a full-scale deflection of 1 amp and has a shunt
resistance of 0.1 ochm. The galvanometer from which it is constructed gives a
full-scale deflection when a current of 100 wamp passes through it. What is
the resistance of the galvanometer?

27-15. It is desired to construct a multimeter with ammeter ranges of 0.01
amp, 0.1 amp, and 1.0 amp and with voltmeter ranges of 0.1 volt, 1.0 volt, and
10 volts from a galvanometer having a full-scale deflection at a current of 100
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wamp and an internal resistance of 50 ohms. Find the value of the shunt or
multiplier resistance in each case.

27-16. A voltmeter having a resistance of 100,000 ohms and a full-scale
deflection of 1 volt is connected across a 50,000 ohm-resistor. The voltmeter
indicates a potential difference of 0.75 volt. What is the potential difference
between the terminals of the resistor when the voltmeter is disconnected?

27-17. An ammeter which has a resistance of 50 ohms and a full-scale
deflection of 0.1 milliampere (abbreviated ma) is connected in series with a
circuit consisting of a cell and a 200-ohm resistor. The meter reads 0.08 ma.
What is the current in the circuit when the milliammeter is removed?

Fig. 27-16

-

27-18. In the Wheatstone bridge of Figure 27-16, the standard resistor S is
100 ohms, while the resistor R; is 150 ohms and R, is 50 ohms at balance. (a)
What is the value of the unknown resistor X? (b) Find the current supplied by
the battery whose emf is 6 volts and whose internal resistance is 3 ohms.

27-19. A battery has an internal resistance of R ohms. How large a re-
sistor should be connected across its terminals in order that the greatest amount
of heat is generated in the resistor?

ANWWW— I 2

1
100 oy
_ 60
=2y 30
+ +1 AMVWA
50 4"_T' 20
MAMN— . ANV
Fig. 27-17

27-20. Three 6-volt storage batteries are connected in parallel to a resistor of
100 ohms. The internal resistances of the batteries are 1 ohm, 3 ohms, and



PROBLEMS 523

10 ohms, respectively. (a) Find the heat generated in the 100-ohm resistor.
(b) Find the current delivered by each of the storage batteries.
27-21. In the circuit of Figure 27-17, find the current through the 6-ohm
resistor and the difference in potential Vy — V, between the points a and b.
27-22. A d-c generator having an emf of 110 volts and an internal resistance
of 5 ohms is used to charge a 60-volt bank of storage batteries, whose internal

+
+
110y “‘_= 60v
50 1511% 30
Fig. 27-18

resistance is 15 ohms, and to drive a motor whose back emf is 85 volts and whose
internal resistance is 3 ohms, as shown in Figure 27-18. (a) Find the current
supplied by the generator. (b) Find the charging current delivered to the
batteries. (c¢) Find the mechanical power delivered by the motor.

@,
6.0
30 40
80
O
Fig. 27-19

27-23. Find the single resistance equivalent to the network of Figure 27-19.
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