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a  b  s  t  r  a  c  t

The  objectives  of  this  study  included:  (1)  identify  the  expression  of  miRNAs  specific
to  bovine  cumulus–oocyte  complexes  (COCs)  during  late  oogenesis,  (2)  characterize  the
expression  of candidate  miRNAs  as  well  as  some  miRNA  processing  genes,  and  (3)  compu-
tationally  identify  and  characterize  the  expression  of  target  mRNAs  for candidate  miRNAs.
Small RNAs  in  the  16–27  bp range  were  isolated  from  pooled  COCs  aspirated  from  1-  to
10-mm  follicles  of beef  cattle  ovaries  and  used  to  construct  a  cDNA  library.  A total  1798
putative  miRNA  sequences  from  the  cDNA  library  of small  RNA  were  compared  to  known
miRNAs. Sixty-four  miRNA  clusters  matched  previously  reported  sequences  in the  miR-
Base  database  and  5 miRNA  clusters  had  not  been  reported.  TaqMan  miRNA  assays  were
used to  confirm  the  expression  of  let-7b,  let-7i,  and  miR-106a  from  independent  collections
of COCs.  Real-time  PCR  assays  were  used  to  characterize  expression  of  miRNA  processing
genes and  target  mRNAs  (MYC  and  WEE1A)  for  the candidate  miRNAs  from  independent
collections  of  COCs.  Expression  data  were  analyzed  using  general  linear  model  procedures
for analysis  of  variance.  The  expression  of  let-7b  and  let-7i  were  not  different  between  the
cellular  populations  from  various  sized  follicles.  However,  miR-106a  expression  was  greater
(P  <  0.01)  in  oocytes  compared  with  COCs  and  granulosa  cells.  Furthermore,  all the  miRNA
processing  genes  have  greater  expression  (P <  0.001)  in  oocytes  compared  with  COCs  and
granulosa cells.  The  expression  of  potential  target  mRNAs  for let-7  and  let-7i  (i.e.,  MYC),
and  miR-106a  (i.e.,  WEE1A)  were  decreased  (P  < 0.05)  in  oocytes  compared  with  COCs  and
granulosa  cells.  These  results  demonstrate  specific  miRNAs  within  bovine  COCs  during  late
oogenesis  and  provide  some  evidence  that  miRNAs  may  play  a role  regulating  maternal
mRNAs  in  bovine  oocytes.

Published by Elsevier B.V.

� Mention of trade names is necessary to report factually on available
data; however, the USDA neither guarantees nor warrants the standard of
the  product, and the use by the USDA implies no approval of the product
to  the exclusion of others that may  also be suitable. The USDA is an equal
opportunity provider and employer.
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1. Introduction

Reproductive efficiency is a major factor determining
the success of cow-calf and dairy production systems. A
primary reason cows are culled from a production herd is
that they fail to produce a calf (Lucy, 2007), resulting in sig-
nificant economic losses for the industry. A recent report
has indicated that annual financial losses due to reproduc-
tive failure in the U.S. beef cattle industry exceed $1.2 billon
(Geary, 2005). Therefore, by limiting reproductive failure in
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cattle there is a significant potential to increase the prof-
itability of the cattle industry.

To limit reproductive failure, we must understand the
mechanisms that regulate fertility in cattle. Abnormal
preimplantation embryonic development is a key mecha-
nism that decreases fertility in cattle (Geary, 2005; Lucy,
2007). Although many factors impact early embryonic
development, there is a general consensus that the quality
and competence of the oocyte plays a key role in determin-
ing the success of an embryo developing (Krisher, 2004).
During oogenesis, many processes occur within the oocyte,
which dictate its quality and competence. One of these pro-
cesses is the accumulation of maternal mRNAs that are
necessary to guide the early stages of embryonic devel-
opment prior to the activation of embryonic transcription
(Bettegowda and Smith, 2007). Many of these maternal
mRNAs are stored for an extended time, and thus, require
post-transcriptional regulatory mechanisms to coordinate
mRNA stability prior to activation. Furthermore, there is a
rapid turnover of maternal mRNAs during the maternal-to-
embryonic transition, indicating selective degradation of
maternal mRNAs during this transition. As a result, many
post-transcriptional regulatory mechanisms are known to
occur within the oocyte and these include mechanisms
that repress translation as well as subsequent activation
of translation and also mechanisms that degrade maternal
mRNAs (Bettegowda and Smith, 2007).

MicroRNAs (miRNAs) are a class of recently identi-
fied regulatory RNAs, which are short non-coding RNAs
of approximately 22 nucleotides in length in their mature
form (Bartel, 2004). MiRNAs function through sequence
complementation of target genes and can regulate gene
expression and translation through translational repres-
sion or mRNA degradation (Bushati and Cohen, 2007).
Recently, miRNAs have been identified and thoroughly
characterized in mice oocytes and early embryos by sev-
eral independent groups (Murchison et al., 2007; Tang
et al., 2007; Watanabe et al., 2006). Interestingly, specific
deletion of dicer1, the key ribonuclease that cleaves pre-
miRNAs to mature length miRNAs, resulted in depletion
of many of the miRNAs identified in the mouse oocyte
(Murchison et al., 2007). These mutant oocytes also failed
to complete maturation resulting in a block at first cleav-
age following fertilization (Tang et al., 2007). Furthermore,
dicer1 knockout oocytes showed dysregulation of many
genes, indicating that a large portion of maternal mRNAs
are regulated by miRNAs in the mouse oocyte (Murchison
et al., 2007). Two recent studies have identified the expres-
sion of several miRNAs within the fetal (Tripurani et al.,
2010) and adult (Hossain et al., 2009) ovary of the cow.
Characterization of some of these identified miRNAs within
the various ovarian, embryonic, and somatic cell types has
illustrated a potential role for miRNAs in ovarian func-
tion and early embryonic development within the cow
(Hossain et al., 2009; Tripurani et al., 2010). Taken together,
these studies demonstrate that miRNAs likely play a critical
role in the development of mammalian oocytes and early
embryos.

The miRNA processing pathway is linear and conserved
for all mammalian miRNAs (Winter et al., 2009). First, pri-
mary miRNAs, or pri-miRNAs, are transcribed by either

RNA polymerase II or III from within typically polycistronic
genes often found within introns (Kim and Kim, 2007).
These pri-miRNAs fold back onto complementary sequence
to form the characteristic hair-pin structure common to
all pre-miRNAs. The pri-miRNAs are then cleaved to pre-
miRNAs within the nucleus by the complex of ribonuclease
type III, nuclear (RNASEN) and diGeorge syndrome criti-
cal region 8 (DGCR8). The pre-miRNA is exported to the
cytoplasm by the complex of exportin 5 (XPO5) and RAN,
member RAS oncogene family (RAN). Within the cyto-
plasm, dicer1, ribonuclease type III (DICER1) and TAR
(HIV-1) RNA binding protein 2 (TARBP2) cleave the pre-
miRNA to its mature length. The single stranded mature
miRNA is then loaded together with eukaryotic translation
initiation factor 2C, 2 (EIF2C2) to form the RNA-induced
silencing complex (RISC). The targeting of specific mRNAs
by RISC results in mRNA cleavage, translational repression
or mRNA deadenylation (Winter et al., 2009).

This study identified the specific expression profile of
miRNAs in bovine cumulus–oocyte complexes (COCs) dur-
ing late oogenesis by sequencing a small RNA cDNA library.
Secondly, this study validated the expression of candidate
miRNAs in bovine oocytes, COCs, and granulosa cells from
various sized follicles. And finally, this study characterized
the expression of potential miRNA target genes and miRNA
processing genes in bovine oocytes, COCs, and granulosa
cells from various sized follicles.

2. Materials and methods

All experimental procedures were reviewed and
approved by the U.S. Meat Animal Research Center Animal
Care and Use Committee.

2.1. Collection of ovaries and isolation of RNA for
sequencing

Ovaries from beef cattle of mixed population were
obtained at a local abattoir in five replicate runs over a
4-week period. For each replicate run, ∼100 ovaries were
collected and processed. Ovaries were stored in 0.9% NaCl
with 0.75 �g/mL penicillin for ∼4 h during collection and
transport to the laboratory. Cumulus–oocyte complexes
were aspirated from 1- to 10-mm follicles and washed
three times in PBS supplemented with 0.1% fetal bovine
serum. Groups of ∼100 COCs, consisting of COCs from class
1 to 6 according to the classification system for bovine COCs
(Blondin and Sirard, 1995), were snap frozen in liquid nitro-
gen and stored at −80 ◦C. Total RNA from the pooled COCs
(n = 2241) was  extracted using Trizol (Invitrogen, Carls-
bad, CA) according to manufacturer’s protocol. The total
RNA concentration and quality was determined using the
Agilent 2100 Bioanalyzer RNA Nano chip assay (Agilent
Technologies, Santa Clara, CA).

2.2. Construction, sequencing, and bioinformatic analysis
of the small RNA cDNA library

Single insert cDNA libraries were constructed as
described previously (Lu et al., 2005; McDaneld et al.,
2009). Briefly, small RNA in the 16–27 bp size was
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isolated using Flash polyacrylamide gel electrophoresis
(Ambion, Austin, TX). The 5′ and 3′ RNA adaptors (5′-
GGUCUUACUCGCAUCCUGUAGAUGGAUC-3′ and 5′-AUG-
CACACUGAUGCUGACACCUGC-idT-3′, respectively) were
ligated to the purified small RNA using T4 RNA lig-
ase (Ambion). Purified ligation products were reverse
transcribed using a reverse transcription (RT) primer
(5′-GCAGGTGTCAGCATCAGTGT-3′) and SUPERSCRIPT
II reverse transcriptase (Invitrogen). PCR amplifi-
cation of the small RNA was performed using the
primers (5′-GGTCTTACTCGCATCCTGTA-3′ and 5′-
GCAGGTGTCAGCATCAGTGT-3′) specific to sequence
within the 5′ and 3′ RNA adaptors. Following PCR, ampli-
fied products were digested with EcoRI and cloned by
ligating products into pBLUEscript, electroporating the
vector into EC100 electrocompetent cells, and growing
individual colonies in 384-well plates containing ampi-
cillin selective LB media. Purified plasmids from individual
colonies were sequenced using an Applied Biosystems
3730 sequencer (Foster City, CA).

Nucleotide sequence quality was assessed using PHRED
(Ewing et al., 1998) and sequence was aligned based on
the identification of flanking vector and linker sequences.
Putative miRNA were clustered based on a 14-bp consensus
sequence in which each member matched 14 consecu-
tive bases to the most common member of the cluster.
This approach was taken due to the high frequency of
similar miRNAs having different length and sequence at
their 3′ ends (Coutinho et al., 2007). The resulting puta-
tive miRNAs were screened against known miRNAs listed
in miRBase Release 17, provided by the Sanger Insti-
tute (http://www.mirbase.org/). A positive match to a
known miRNA was determined if the putative miRNA
contained an exact sequence match to positions 4–17
within a known miRNA. The remaining putative miR-
NAs were screened using BLAST against tRNA, rRNA,
snoRNA and mitochondrial sequences. If the putative
miRNA had no known miRNA match within the miR-
Base or was not a result of tRNA, rRNA, snoRNA and
mitochondrial contamination, the putative miRNA was
identified as novel. Prediction of potential target mRNAs
for selected candidate miRNAs was performed using Micro-
cosm Targets Version 5 (http://www.ebi.ac.uk/enright-
srv/microcosm/htdocs/targets/v5/). This software identi-
fies target mRNAs using the miRanda scores and targets
were sorted by most significant P-value.

2.3. Collection of ovaries and isolation of RNA for
validation and characterization

For validation and characterization of candidate miR-
NAs and associated mRNAs, beef cattle ovaries were
obtained from the same abattoir used for generating the
small RNA cDNA library; however, these ovaries were col-
lected in three independent replicate runs ∼8 months after
the initial collections. For each replicate collection, ∼50
ovaries were collected and processed in a similar manner as
described above. COCs were aspirated and pooled accord-
ing to follicular size (1–5-mm or 6–10-mm) and consisted
of only class 1 or 2 COCs (Blondin and Sirard, 1995). Within
the pools of COCs from the 1- to 5-mm follicles, a random

Table 1
Bovine-specific primers for real-time RT-PCR analysis.

Gene IDa Accession
numberb

Primer sequencesc

GAPDH TC302944 F 5′-GGGTCATCATCTCTGCACCT-3′

R 5′-GGTCATAAGTCCCTCCACGA-3′

RPLP2 TC354572 F 5′-GCCGCAGCAGAGGAGAAGAAGGA-3′

R 5′-TTTGCAGGGGAGCGGGACTCTAGT-3′

18S TC378273 F 5′-ATGGCCGTTCTTAGTTGGTG-3′

R 5′-CGCTGAGCCAGTCAGTGTAG-3′

RNASEN TC360353 F 5′-GGAACAAGTAGGCTCCGTGA-3′

R 5′-AGAGCAGGTGCTGTCCTCAT-3′

DGCR8 TC381697 F 5′-GCAGGAGTGAGGACAGGAAG-3′

R 5′-TCGAGCACTGCATACTCCAC-3′

XPO5 TC363295 F 5′-CCTCTGGTGCTCTTCTGTCC-3′

R 5′-TCTCTTGCGACTCTGGGTTT-3′

DICER1 TC301019 F 5′-GTGGCTCTCATTTGCTGTGA-3′

R 5′-CGTTTTGTGGAACCTGGTCT-3′

TARBP2 TC306919 F 5′-GAGGAGTTGAGCCTGAGTGG-3′

R 5′-AGCAGGGAGCAGAGGATGTA-3′

EIF2C2 TC312997 F 5′-AAGTCGGACAGGAGCAGAAA-3′

R 5′-TGGCACTTCTCATCAGCTTG-3′

MYC TC303381 F 5′-ATACGGAACTCTTGCGCCTA-3′

R 5′-GCCAAGGTTGTGAGGTTGTT-3′

WEE1A TC332019 F 5′-GACTGGGCATCCAACAAAGT-3′

R 5′-TTCGCAAGGGCAAAAATATC-3′

a Abbreviations according to the human Gene ID (National Center
for Biotechnology Information): glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), ribosomal protein, large P2 (RPLP2), 18S ribosomal rRNA
(18S),  ribonuclease type III, nuclear (RNASEN), exportin 5 (XPO5), and dicer
1,  ribonuclease type III (DICER1), eukaryotic translation initiation factor
2C2 (EIF2C2).

b Accession numbers are from the Dana-Farber Cancer Institute
bovine gene index (http://compbio.dfci.harvard.edu/tgi/cgi-
bin/tgi/gimain.pl?gudb=cattle; release 12, 06/18/06).

c F = forward primer; R = reverse primer.

subsample of COCs were denuded by vortexing for 2 min
in 50 �L of PBS supplemented with 0.1% FBS. In addition,
granulosa cells were collected from the aspirate of the 1-
to 5-mm follicles. All cellular components from the 1- to
5-mn follicles and the COCs from the 6- to 10-mm follicles
were snap frozen in which denuded oocytes and COCs were
collected in pools ∼20 oocytes or COCs from each repli-
cate collection. Large and small RNA fractions were isolated
from samples using the miRNeasy Mini kit (Qiagen, Valen-
cia, CA). Total RNA from both large and small RNA fractions
was  quantified using RiboGreen (Turner Biosystems, Sun-
nyvale, CA).

2.4. TaqMan MiRNA assays

In selecting candidate miRNAs to be validated, the miR-
NAs were required to have a relatively high abundance and
a high homology with the human miRNA sequence because
validation assays were based on human sequence. The miR-
NAs that fit these characteristics included let-7b, let-7i, and
miR-106a. The percentages of abundance of total miRNA
identified from sequencing for let-7b, let-7i, and miR-106a
were 25.6%, 7.6%, and 3.1%, respectively. Bovine let-7b and
let-7i have 100% homology with these human miRNAs and

http://www.mirbase.org/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=cattle
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Table 2
Abundantly expressed putative miRNAs identified in bovine cumulus–oocyte complexes.

miRa Sequence Number Frequencyb Putative locationc

bta-let-7b UGAGGUAGUAGGUUGUGUGGUUU 464 25.55 5q 123.3
hsa-miR-574-5p UGAGUGUGUGUGUGUGAGUGUGU 325 17.90 NH
bta-let-7i UGAGGUAGUAGUUUGUGCUGUUU 138 7.60 5q 55.1
hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU 79 4.35 19q 21.2
bta-miR-93 CAAAGUGCUGUUCGUGCAGGUAG 73 4.02 25q 38.5
bta-miR-31 AGGCAAGAUGCUGGCAUAGCUGU 62 3.41 NH
bta-miR-106a CAAAGUGCUUACAGUGCAGGUAG 57 3.14 12q 64.7
bta-miR-210 CUGUGCGUGUGACAGCGGCUGA 47 2.59 18q 1.2
bta-miR-15b UAGCAGCACAUCAUGGUUUACA 42 2.31 1q 108.9
bta-let-7f UGAGGUAGUAGAUUGUAUAGUU 41 2.26 Xq 58.7
bta-miR-16a UAGCAGCACGUAAAUAUUGGUG 37 2.04 1q 108.9
bta-miR-20a UAAAGUGCUUAUAGUGCAGGUAG 37 2.04 12q 64.7
bta-miR-92 UAUUGCACUUGUCCCGGCCUGU 27 1.49 12q 64.7
bta-miR-151-5p UCGAGGAGCUCACAGUCUAGU 26 1.43 14q 2.3
BN1 UCUGACAUCGGUUGCUCUGCUU 23 1.27 17q 63.7
bta-let-7e UGAGGUAGGAGGUUGUAUAGUU 21 1.16 18q 57.6
bta-miR-195 UAGCAGCACAGAAAUAUUGGCA 18 0.99 19q 27.2
bta-miR-497 CAGCAGCACACUGUGGUUUGUA 17 0.94 19q 27.2
hsa-miR-202 AGAGGUGUAGGGCAUGGGAA 15 0.83 26q 51.6
hsa-miR-1308 GCAUGGGUGGUUCAGUGGUAGA 14 0.77 NH
bta-miR-206 UGGAAUGUAAGGAAGUGUGUGA 14 0.77 23q 25.1
PN5 CGAACCGAACUCCUCACUAAA 13 0.72 NH
BN2  AACCGAAUUUCUCACUAAA 12 0.66 NH
bta-miR-27a UUCACAGUGGCUAAGUUCUGC 11 0.61 8q 86.0
BN3  UCCUAUAGGGUGAGCAUGUAGUG 10 0.55 9q 2.8
PN3  CGAACCGAAUCCCUCACUAAA 10 0.55 20q 47.5

a Putative miRNAs were screened against known miRNAs using the miRBase Release 17.0 (http://microrna.sanger.ac.uk/sequences/). miRNAs not corre-
sponding to known sequences were classified as novel and labeled BN1-3. PN5 corresponds to porcine new 5 reported by McDaneld et al. (2009).

b Percentage from the total putative miRNAs identified (1798).
c Position of the mature putative miRNA based on Bos taurus Genome Build 4.0 (http://www.ncbi.nlm.nih.gov/projects/mapview/map search.cgi?taxid=

9913).  NH = no hit.

miR-106a has one nucleotide miss-match at the 5′ cytosine,
which is an adenine in the human sequence. However, this
position is not critical for the assay because the specific RT
primer and probe lay closer to the 3′ end.

TaqMan MiRNA assays (Applied Biosystems) for let-7b,
let-7i, and miR-106a were utilized to validate the expres-
sion of these candidate miRNAs in independent sources
of bovine oocytes, COCs, and granulosa cells from various
sized follicles. Briefly, 1 ng of the small fraction RNA iso-
lated from the ovarian samples was reversed transcribed
using the specific miRNA RT primers to generate cDNA
corresponding to the specific miRNA. For each candidate
miRNA, 66.5 pg equivalents cDNA were subjected to PCR
using the Chromo4 real-time PCR detection system (Bio-
Rad, Hercules, CA) and followed the TaqMan microRNA
protocols provided by the manufacture. Expression lev-
els for each miRNA were based on the threshold cycle
(Ct) values determined using the Opticon Monitor 3 soft-
ware (Bio-Rad). For each miRNA, one assay was performed
containing all the experimental samples in triplicate, with
intra-assay CV of 9.4%, 8.6%, and 11.4% for let-7b, let-7i,
and miR-106a, respectively, after converting the exponen-
tial Ct to the linear Ct using the formula 2−Ct (Livak and
Schmittgen, 2001).

2.5. Real-time PCR for measuring mRNA expression

For the expression of potential target mRNAs for let-
7 and miR-106a, bovine-specific primers (Table 1) were
designed using the Primer3 software (Rozen and Skaletsky,

2000)  and validated to amplify mRNA specific for myc
proto-oncogene protein (MYC) and wee1A protein kinase
(WEE1A). For the expression of transcripts involved in
the miRNA processing pathway, bovine-specific primers
(Table 1) were designed using the Primer3 software (Rozen
and Skaletsky, 2000) and validated to amplify mRNA
specific for RNASEN, DGCR8,  XPO5, DICER1,  TARBP2, and
EIF2C2.  Furthermore, previously designed and validated
bovine-specific primers (Table 1) for glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), ribosomal protein,
large, P2 (RPLP2), and RNA, 18S ribosomal 1 (RN18S1) (Miles
et al., 2009) were used to normalize TaqMan miRNA and
mRNA expression data based on normalization factors cal-
culated using the geNorm algorithm (Vandesompele et al.,
2002) from these three stable (M value < 0.6) reference
genes.

A two-step, real-time PCR method was used for the anal-
ysis of all mRNA expression levels. Briefly, 1 ng of the large
fraction RNA isolated from ovarian samples was  reverse
transcribed using the iScript cDNA synthesis kit (Bio-Rad).
Each real-time PCR was  assayed in duplicate and consisted
of 100 pg equivalents of cDNA, 0.4 �M of the appropriate
forward and reverse primer, and 12.5 �L of 1× iTaq SYBR
Green Supermix with ROX (Bio-Rad) in a 25 �L reaction.
All PCR conditions included denaturation (95 ◦C for 2 min)
followed by amplification (95 ◦C for 15 s, 60 ◦C for 15 s, and
70 ◦C for 45 s). Melting curve analysis and gel electrophore-
sis was  used to confirm the amplification of a single product
of the predicted size. The PCR product from a represen-
tative sample of PCR for each transcript was verified by

http://microrna.sanger.ac.uk/sequences/
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9913


20 J.R. Miles et al. / Animal Reproduction Science 130 (2012) 16– 26

sequence analysis to confirm the amplification of the cor-
rect cDNA. For each transcript, one assay was performed
containing all the samples, with intra-assay CVs of 14.9%,
11.5%, 18.7%, 13.3%, 15.5%, 14.6%, 5.6%, 9.6%, 5.6%, 10.9%,
and 4.9% for RNASEN, DGCR8,  XPO5, DICER1,  TARBP2, EIF2C2,
MYC, WEE1A,  GAPDH,  RPLP2,  and 18S, respectively, after
converting the exponential Ct to the linear Ct using the
formula 2−Ct (Livak and Schmittgen, 2001).

2.6. Statistical analysis

For the validation and characterization experiments,
two statistical comparisons were made: (1) expression was
compared between denuded oocytes, COCs, and granulosa
cell from 1- to 5-mm follicles, and (2) expression was com-
pared between COCs from 1- to 5-mm and 6- to 10-mm
follicles. TaqMan miRNA and real-time PCR data were ana-
lyzed using general linear model procedures for analysis
of variance (SAS, 2003; Steel et al., 1997) and results are
reported as least square means ± SEM. When a significant
F-statistic was determined, means were separated using
Tukey–Kramer multiple comparison test (SAS, 2003; Steel
et al., 1997). The model for the first comparison included
the fixed effects of cellular components (i.e., oocyte, COC,
or granulosa cell), replication collection, and their interac-
tions. The model for the second comparison included the
fixed effects of follicular size (i.e., 1–5-mm or 6–10-mm),
replicate collection, and their interactions. All expression
data were log-transformed prior to analysis to normalize
the data and then back-transformed for reporting observ-
able values.

3. Results

Following construction of the small RNA cDNA
library from bovine COCs, 2304 clones from the library
were sequenced, producing 2214 successful small RNA
sequences that were clustered based on matching 14 con-
secutive bases to the most common member of the cluster
(Table S1).  The consensus sequences for each cluster were
screened for mitochondrial RNA, rRNA, tRNA, and snoRNA
contamination, resulting in the removal of 416 sequences
(19% of the total). The remaining 1798 (81% of total)
sequences were compared to known miRNA sequences
in the miRBase miRNA database, revealing 64 clusters
that matched previously known miRNAs, 2 clusters that
matched only to previously reported novel miRNAs in pig
muscle libraries (McDaneld et al., 2009), and 3 clusters
with no match (labeled BN1-3). The cluster with the largest
number of sequences identified in bovine COCs (Table S1)
matched sequence of the let-7 miRNA family (31% of the
total). The 5 clusters that did not match sequences in miR-
Base represented putative novel miRNA and were labeled
BN1-3 and PN3/PN5 (McDaneld et al., 2009). Table 2 illus-
trates the most abundantly expressed individual miRNAs
in the bovine COC library. The most abundant individual
miRNA identified in bovine COCs was let-7b at 26.5% of the
total miRNA identified. Several other let-7 members were
also abundantly expressed in the bovine COC library and
included let-7i, let-7f, and let-7e. The three novel miRNA
(BN1, BN2, and BN3) unique to this library had low relative
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Fig. 1. Expression of let-7b, let-7i, and miR-106a in bovine oocytes, COCs
and granulosa cells. TaqMan miRNA assays were performed from three
independent replicate collections of oocytes, COCs, and granulosa cells
obtained from 1- to 5-mm follicles. Data were log transformed before
analysis and back-transformed to observed values. Values are reported
as  least-squares means ± SEM and expressed as relative quality (RQ) after
adjusting expression data based on normalization factors calculated using
the geNorm algorithm. Statistical significance is reported for each miRNA.

expression (10–23 sequence) accounting for only 3% of the
total miRNA.

To validate expression of selected miRNAs, TaqMan
miRNA assays were performed in independent sources of
oocytes, COCs and granulosa cells from various size folli-
cles. Fig. 1 illustrates the expression of selected miRNAs
in oocytes, COCs, and granulosa cells obtained from small
(1–5-mm) follicles. There was no difference in the expres-
sion of let-7b or let-7i between oocytes, COCs, or granulosa
cells. However, miR-106a was  significantly increased in
oocytes compared with COCs and granulosa cells, demon-
strating that this miRNA is up-regulated in the oocyte
compared with other somatic cells of the follicle. Fig. 2
illustrates the expression of the selected miRNAs in COCs
obtained from small (1–5-mm) and large (6–10-mm) folli-
cles. There was no significant difference in the expression
of let-7b, let-7i, or miR-106a in COCs obtained from small
and large follicles.

The Microcosm software was used to identify poten-
tial target mRNAs for the candidate miRNAs. There were
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Fig. 2. Expression of let-7b,  let-7i, and miR-106a in bovine COCs obtained from small and large follicles. TaqMan miRNA Assays were performed from three,
independent replicate collections of COCs obtained from small (1- to 5-mm) and large (6- to 10-mm)  follicles. Data were log transformed before analysis and
back-transformed to observed values. Values are reported as least-squares means ± SEM and expressed as relative quality (RQ) after adjusting expression
data  based on normalization factors calculated using the geNorm algorithm. Statistical significance is reported for each miRNA.

920, 923, and 1091 potential mRNA targets identified
for let-7b, let-7i, and miR-106a, respectively. Myc  proto-
oncogene protein was the 8th most significant (P < 0.0001)
target mRNA identified for let-7b and let-7i. Fig. 3A and B
illustrates the alignment of let-7b and let-7i, respectively,
within the 3′UTR of the MYC  gene. Wee1A protein kinase
was the 4th most significant (P < 0.0001) target mRNA iden-
tified for miR-106a. Fig. 3C illustrates the alignment of
miR-106a within the 3′UTR of the WEE1A gene.

Using real-time PCR, the expression of MYC  and WEE1A
mRNA was assessed in independent sources of oocytes,
COCs and granulosa cells from various size follicles. Fig. 4
illustrates the expression of MYC  and WEE1A mRNA in
oocytes, COCs, and granulosa cell obtained from small (1–5-
mm)  follicles. The expression of MYC  mRNA was decreased
(P < 0.05) in the oocyte compared with the COC and granu-
losa cells. The expression of WEE1A mRNA was decreased
(P < 0.01) in the oocyte compared with the COC and granu-
losa cells. Fig. 5 illustrates the expression of MYC  and WEE1A
mRNA in COCs obtained from small (1–5-mm) or large
(6–10-mm) follicles. The expression of MYC  mRNA was

decreased (P < 0.01) in COCs obtained from large follicles
compared with small follicles. In contrast, the expression
of WEE1A mRNA was  not different in COCs obtained from
small or large follicles.

To further characterize the functionality of miRNAs in
bovine COCs, the expression of critical miRNA process-
ing genes was  assessed in independent sources of oocytes,
COCs and granulosa cells from various size follicles. Fig. 6
illustrates the expression of RNASEN, DGCR8,  XPO5, DICER1,
TARBP2, and EIF2C2,  respectively, in oocytes, COCs, and
granulosa cells obtained from small (1–5-mm) follicles. The
expression of all of these miRNA processing genes were
significantly (P < 0.001) increased in the oocyte compared
with the COCs and granulosa cells, suggesting that miRNA
processing and function are likely greater in the oocyte
itself. Fig. 7 illustrates the expression of RNASEN, DGCR8,
XPO5, DICER1,  TARBP2, and EIF2C2,  respectively, in COCs
obtained from small (1–5-mm) or large (6–10-mm) fol-
licles. The expression of RNASEN, DGCR8,  XPO5, TARBP2,
and EIF2C2 was  not different in COCs from the two  folli-
cle size categories. However, DICER1 tended (P = 0.08) to
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Fig. 3. Alignment of let-7b (A), let-7i (B), and miR-106a (C) within the 3′

UTR of putative mRNA target genes. Potential target mRNAs for selected
candidate miRNAs were identified using Microcosm Targets Version
5  (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/). (A)
Alignment of bta-let-7b within the 3′-UTR of MYC. (B) Alignment of bta-
let-7i within the 3′-UTE of MYC. (C) Alignment of bta-miR-106a within the
3′-UTR of WEE1A.
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Fig. 4. Expression of MYC and WEE1A in bovine oocytes, COCs, and granu-
losa cells. Real-time PCR Assays were performed from three independent
replicate collections of oocytes, COCs, and granulosa cells obtained from
1-  to 5-mm follicles. Data were log transformed before analysis and back-
transformed to observed values. Values are reported as least-squares
means ± SEM and expressed as relative quality (RQ) after adjusting
expression data based on normalization factors calculated using the
geNorm algorithm. Statistical significance is reported for each transcript.
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Fig. 5. Expression of MYC and WEE1A in bovine COCs obtained from small
and large follicles. Real-time PCR Assays were performed from three inde-
pendent replicate collections of COCs obtained from small (1–5-mm)
and large (6–10-mm) follicles. Data were log transformed before anal-
ysis  and back-transformed to observed values. Values are reported as
least-squares means ± SEM and expressed as relative quality (RQ) after
adjusting expression data based on normalization factors calculated using
the geNorm algorithm. Statistical significance is reported for each tran-
script.

be increased in COCs from larger follicles compared with
smaller follicles. Increased levels of DICER1 and increased
numerical levels of let-7b and let-7i may  reflect the demon-
strated decrease in MYC mRNA expression in larger follicles
compared with smaller follicles.

4. Discussion

Small RNA cDNA libraries have been previously used
in cattle to evaluate miRNA abundance in adipose (Jin
et al., 2010) and mammary tissues (Gu et al., 2007), vari-
ous immune and embryonic tissues (Coutinho et al., 2007),
pooled liver, brain, heart, and lung (Long and Chen, 2009),
alveolar macrophages (Xu and Huang, 2009), and fetal
(Tripurani et al., 2010) and adult (Hossain et al., 2009)
ovaries. To our knowledge, the current study is the first
to report a miRNA expression profile specific to bovine
COCs using the small RNA cDNA library method described
herein. Furthermore, this study is the first to characterize
the expression of key miRNA processing genes within a
variety of ovarian cell types (i.e., granulosa cells, COCs, and
oocytes) in the cow. Together, these data provides evidence
that let-7 and miR-106a may  have an involvement in oocyte
development through regulation of potential targets tran-
scriptions, MYC  and WEE1A, respectively. The inhibition of
mitotic proliferation and proper activation of factors that
regulate the oscillations of meiotic maturation are critical
to ensure the proper progression of the oocyte through
maturation (Murray and Kirschner, 1989). Potential reg-
ulation of let-7 and miR-106a on the expression of MYC
and WEE1A, respectively, may  play a role in the proper

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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Fig. 6. Expression of miRNA biogenic transcripts (RNASEN, DGCR8,  XPO5, DICER1, TARBP2, EIF2C2) in bovine oocytes, COCs, and granulosa cells. Real-time
PCR  Assays were performed from three independent replicate collections of oocytes, COCs, and granulosa cells obtained from 1- to 5-mm follicles. Data
were  log transformed before analysis and back-transformed to observed values. Values are reported as least-squares means ± SEM and expressed as relative
quality (RQ) after adjusting expression data based on normalization factors calculated using the geNorm algorithm. Statistical significance is reported for
each  transcript.

maturation of the oocyte by regulating mitotic and meiotic
activity.

The let-7 miRNA family was the most abundant cluster
of miRNAs identified within bovine COCs, with let-7b being
the most abundantly expressed individual miRNA in bovine
COCs. This supports previously reported expression pro-
files of miRNAs using cDNA libraries and massively parallel
sequencing that identified let-7 miRNA family as an abun-
dantly expressed miRNA family in the bovine (Tripurani
et al., 2010) and mouse (Reid et al., 2008; Wyman et al.,
2009) ovaries. Many studies focusing on cancer cell devel-
opment in a variety of tissues have illustrated that let-7 is
a tumor suppressive miRNA functioning by inhibiting the
expression of the proto-oncogene, MYC  (Mendell, 2009;
Sampson et al., 2007). Myc  proto-oncogene protein is a
transcription factor that increases cellular proliferation
and drives cell cycle progression (Gearhart et al., 2007).
Although the involvement of MYC  in oogenesis of mam-
malian oocytes is unclear, MYC  plays a key role in driving
the initial cleavages after fertilization in Xenopus (Gusse
et al., 1989). In Xenopus oocytes, MYC  mRNA is abundantly
expressed throughout early oogenesis but decreases during

late oogenesis and early cleavage. However, there is a sig-
nificant lag in the level of MYC  protein which remains low
during early oogenesis and does not reach its highest level
until fertilization. This pattern of mRNA/protein expression
illustrates a post-transcriptional regulation for MYC  mRNA
such that the protein does not accumulate until the time
of fertilization (Gusse et al., 1989). It is possible that high
amounts of let-7 in bovine COCs may  inhibit the activity of
MYC  in oocytes; thereby, reducing the proliferative activity
and maintaining the oocyte in a mitotically inactive state
during oogenesis.

In the current study, we provide evidence that MYC  is
a likely target for let-7b and let-7i in cattle. The expres-
sion of MYC mRNA was  decreased in denuded oocytes
compared with COCs and the surrounding granulosa cells.
Interestingly, there was no difference in the expression
of let-7b or let 7i miRNAs in denuded oocytes, COCs, and
granulosa cells, which suggests that let-7b or let-7i miR-
NAs are not affecting the decreased expression of MYC  in
denuded oocytes. However, all of the miRNA processing
genes were highly expressed in the denuded oocyte, which
likely enhance the function of available miRNAs within the
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Fig. 7. Expression of miRNA biogenic transcripts (RNASEN, DGCR8,  XPO5, DICER1, TARBP2, EIF2C2) in bovine COCs obtained from small and large follicles.
Real-time PCR Assays were performed from three independent replicate collections of COCs obtained from small (1–5-mm) and large (6–10-mm) follicles.
Data  were log transformed before analysis and back-transformed to observed values. Values are reported as least-squares means ± SEM and expressed
as  relative quality (RQ) after adjusting expression data based on normalization factors calculated using the geNorm algorithm. Statistical significance is
reported for each transcript.

oocyte; thereby, resulting in decreased expression of MYC
in denuded oocytes. Furthermore, other uncharacterized
miRNAs could be targeting MYC  within the oocyte resulting
in decreased expression of MYC. It is not currently known
whether the decreased expression of MYC  in the oocytes
was due to transcriptional repression or mRNA degrada-
tion. A similar pattern of decreased MYC  mRNA expression
was observed in COCs from 6- to 10-mm follicles compared
with 1- to 5-mm follicles, but there was no significant dif-
ference in let-7b and let-7i in COCs from the two size ranges
of follicles. It is important to note that there was  a numeri-
cal increase in let-7b and let-7i and a tendency for increased
DICER in COCs from 6- to 10-mm follicles, which may  reflect
differences in MYC  expression from these COCs.

During prenatal development, oogonia undergo mito-
sis from primordial germ cells to form diploid oocytes
(Wassarman and Albertini, 1994). These diploid oocytes
enter into meiosis I, which ultimately generate haploid
oocytes that can be fertilized with haploid sperm to form
viable zygotes. Shortly before (i.e., cattle) or after birth
(i.e., mice), the oocyte undergoes its first meiotic arrest

(Wassarman and Albertini, 1994). The oocyte then under-
goes a growth phase to develop from immature oocytes
into mature oocytes. This growth phase is the time that
many maternal mRNAs accumulate within the oocyte
(Bettegowda et al., 2008). Mature oocytes have the ability to
resume meiosis, at which time they have the ability to com-
plete their first meiotic reductive divisions and progress
into meiosis II. The formation of the antrum within the
follicle signifies meiotically competent, mature oocytes
(Mehlmann, 2005). The COCs evaluated in the current
study to identify miRNAs, corresponded to these types
of oocytes (i.e., meiotically competent, mature oocytes).
Shortly after ovulation, the oocyte enters its second mei-
otic arrest. The final resumption and completion of meiosis
occurs after fertilization or parthenogenetic activation at
which time the embryo undergoes subsequent cleavages
by means of mitosis (Wassarman and Albertini, 1994). This
entire process is referred to as meiotic maturation and is
regulated by the maturation promoting factor, which is
a complex of CDK1 and cyclinB (Murray and Kirschner,
1989).
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The activity of the maturation promoting factor remains
elevated in mature oocytes until shortly after ovulation
(Murray and Kirschner, 1989). The protein kinase, WEE1A,
inhibits the maturation promoting factor by phosphorylat-
ing CDK1 at the Thr14 and Try15, which inactivates CDK1
and causes decreased activity and subsequent meiotic
arrest (Mehlmann, 2005). A previous study using immature
and mature mouse oocytes demonstrated that a reduction
of WEE1A protein was necessary for the acquisition of mei-
otic competence and the ability of the mature oocytes to
resume meiosis (Mitra and Schultz, 1996). In the current
study, we provide evidence that WEE1A is a putative target
for miR-106a in cattle. Interestingly, miR-106a has been
associated with proliferation of a number of carcinomas
and shown to accelerate the cell cycle of these carcino-
mas  (Jiang et al., 2011; Xiao et al., 2009). Therefore, it
is possible that miR-106a may  inhibit WEE1A in mature
oocytes; thereby, ensuring proper acquisition of meiotic
competence in these oocytes. From the small RNA cDNA
library, miR-106a was abundantly expressed in the bovine
COCs. Additionally, Taqman miRNA assays demonstrated
that miR-106a was significantly increased in denuded
oocytes compared with COCs and granulosa cells, suggest-
ing that miR-106a is specifically up-regulated in the bovine
oocyte. In contrast, WEE1A mRNA expression was reduced
in denuded oocytes compared with COCs and granulosa
cells. However, there was no difference in the expression
of miR-106a expression in COCs from small and large fol-
licles. Similarly, WEE1A mRNA expression did not differ
in COCs from small and large follicles. Furthermore, all of
the miRNA processing genes were highly overexpressed in
the denuded oocyte, which likely enhance the function of
available miRNAs within the oocyte. Taken together; these
observed expression patterns for miR-106a and WEE1A
mRNA illustrate a classic pattern of post-transcriptional
regulation such that miR-106a may  decrease the expres-
sion of WEE1A within the oocyte.

In summary, this study identified 64 known and 5 novel
miRNA clusters in the bovine COC. Let-7b, let-7i, and miR-
106a expression was confirmed in denuded oocytes, COCs
and granulosa cells from various sized follicles. The expres-
sion of miR-106a and the miRNA processing genes were
greater in denuded oocytes, suggesting greater function of
the miRNA pathway within the oocyte. As a result, there
was a decrease in the expression of MYC  and WEE1A mRNA
in these oocytes, which could have an inhibitory effect of
the mitotic cell cycle in the case of MYC  or a stimulatory
effect of the resumption of meiosis in the case of WEE1A.
In conclusion, these results demonstrate specific miRNAs
within bovine COCs during late oogenesis and provide evi-
dence that miRNAs may  play a role regulating maternal
mRNAs in bovine oocytes.
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