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A time-implicit numerical method and benchmarks for the relativistic
Vlasov–Ampere equations

Michael Carri�ea) and B. A. Shadwickb)

Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

(Received 31 August 2015; accepted 2 December 2015; published online 4 January 2016)

We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of

equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the

generalization of the work presented here to higher dimensions keeping the linear aspect of the

resulting discrete set of equations. The implicit method is benchmarked against linear theory results

for the relativistic Landau damping for which analytical expressions using the Maxwell-J€uttner

distribution function are derived. We note that, independently from the shape of the distribution

function, the relativistic treatment features collective behaviours that do not exist in the

nonrelativistic case. The numerical study of the relativistic two-stream instability completes the

set of benchmarking tests. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938035]

I. INTRODUCTION

An accurate treatment of the phase space dynamics is of

fundamental importance to a broad range of relativistic

plasma physics topics, including laser-based particle acceler-

ators and radiation sources.1,2 The dynamics in this context

is governed by the Vlasov–Maxwell system of equations.

Obtaining numerical solutions of this system, even in the

simplest electrostatic case, presents some difficulties. For

example, the nonlinear dependence of the relativistic factor

on momentum requires advanced numerical methods when

using a semi-Lagrangian method.3 Eulerian phase space

methods are attractive relative to macro-particle models due

to the absence of effects related to sampling noise4–7 and, at

least in some circumstances, there is evidence that Eulerian

methods can be more computationally efficient.8

Here, we restrict our attention to one spatial dimension,

i.e., two phase space dimensions. While this restriction elimi-

nates physics associated with magnetic field generation, it pro-

vides for a convenient setting for analyzing and benchmarking

our proposed numerical method. Although there are draw-

backs in adopting a purely electrostatic representation to study

phase space dynamics, a one-dimensional, relativistic plasma

response has been widely used in the literature to analyse a

wide range of phenomena (see, for example, Refs. 9–22).

We consider a purely Eulerian approach (i.e., we solve

for the distribution function on a phase space grid) with an

implicit time-advance. To avoid solving a large nonlinear

system of equations in the time-advance, operator splitting is

used to convert the discrete equations into a set of low-

bandwidth, linear systems. The implicit time-stepping results

in unconditional numerical stability, and thus, the time-step

is only constrained by accuracy considerations. Given the

significant resources (computational and development)

required to explore new Eulerian solvers, it is appropriate to

begin the analysis of new algorithms in one spatial dimen-

sion; good performance in one spatial dimension, of course,

does not necessarily imply this performance will carry over

to higher dimensions. Poor 1-D performance of an algorithm,

however, would be a contraindication to pursuing a higher

dimensional implementation. The extension of this method to

high dimensional systems is straightforward (CPU and mem-

ory usage aside): additional splittings for the Vlasov equation

must be introduced for each dimension, but at each level, the

operators have the same structure as in the one dimensional

case. (Of course, Ampere’s law must be replaced by the full

Maxwell equations, which can also be handled with operator

splitting and an implicit time-advance.)

The paper is organized as follows. In Sec. II, we outline

the Vlasov–Ampere equations and examine the linearized sys-

tem. In Secs. III and IV, we survey the relevant phenomenol-

ogy of the relativistic Vlasov–Ampere system. In Sec. V, we

present our time-implicit numerical method, and in Sec. VI, we

present benchmarks of our algorithm using various results from

Secs. III and IV. We finally conclude the paper in Sec. VII.

II. THE 1D VLASOV-AMPERE SYSTEM OF EQUATIONS

We consider a one-dimensional (i.e., a two-dimensional

phase-space), spatially periodic, relativistic plasma with a

single mobile species of charge q and mass m and a fixed,

neutralizing background of density n0. While it is possible to

express the distribution function in terms of position and

velocity, it is more natural to use position and momentum (in

which case the distribution function is a relativistic scalar23).

If the plasma is sufficiently tenuous, the distribution function

for the mobile species, f ðx; p; tÞ, obeys the Vlasov equation

@f

@t
þ p

m c
@f

@x
þ q E

@f

@p
¼ 0; (1)

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2c2

p
is the usual Lorentz factor, c is the

speed of light, and E is the electric field satisfying Ampere’s law

@E

@t
¼ �4pJ (2)

with current density J defined by
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J ¼ q

ðþ1
�1

p

m c
f dp : (3)

We consider a spatially uniform equilibrium distribution

f ð0ÞðpÞ and examine first-order departures from equilibrium,

f ð1Þ and Eð1Þ. Assuming first-order quantities vary as eiðkx�xtÞ

and defining v ¼ p=mc, the linearization of (1), (2), and (3)

formally matches the nonrelativistic calculation,24 ultimately

yielding the dispersion relation

�ðx; kÞEð1Þ ¼ 0 (4)

with the plasma dielectric function given by

� x; kð Þ ¼ 1þ
m x2

p

k2

ðþ1
�1

1

vp � v

dfeq

dp
dp; (5)

where x2
p ¼ 4p n0 q2=m; vp ¼ x=k, and feq is defined by f ð0Þ

¼ n0 feq. Normal modes of the system must satisfy �ðx; kÞ ¼ 0.

For Imx 6¼ 0, the integral in (5) is unambiguous. Using (A4),

we have

� x; kð Þ ¼ 1�
m x2

p

k2
P

ð
1

v� vp

dfeq

dp
dp

7i p
m2x2

p c3
p

k2

dfeq

dp

���
p¼cpvp

; Imx! 06; (6)

where cp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p=c2
q

and P denotes the principal part.

For the purpose of finding normal modes, this sign difference

is immaterial, and the embedded neutral modes (Case class

1c25) satisfy Re� ¼ 0. In the non-relativistic case, the exis-

tence of a neutral mode requires that the mode phase velocity

corresponds to a critical point of the equilibrium distribution

function.25,26 In the relativistic case, as can be seen from (5),

there is no singularity in the integrand for Imx ¼ 0 provided

vp � c (since all particle speeds must, of course, be below c).

Thus, the existence of superluminal neutral modes is generic

in the relativistic case.

In addition to the normal modes of the system, the time-

asymptotic behaviour of the initial-value problem can also

yield wake-like solutions.27,28 As in the non-relativistic case,

this asymptotic behaviour is governed by roots in the lower

half-plane of the analytically continued dielectric function,

Nðx; kÞ. Following (A5), we have

N x;kð Þ¼ � x;kð Þ�
0; xi� 0;

2p i
m2x2

p c3
p

k2

dfeq

dp

����
p¼cpvp

; xi < 0:

8>><
>>: (7)

Roots of Nðx; kÞ in the lower half-plane give the Landau

“quasi-modes” while roots in the upper half-plane (including

the axis), which are also roots of �ðx; kÞ, correspond to true

normal modes. Complex roots, of course, come in conjugate

pairs; for each unstable mode, there is a decaying mode cor-

responding to a root of �ðx; kÞ in the lower half-plane.

III. MONOTONIC EQUILIBRIUM

We begin our analysis of solutions of the dispersion

relation by considering monotonic equilibria, in particular,

the Maxwell–J€uttner distribution function23

feq pð Þ ¼
1

2m c K1 lð Þ
e�l c; (8)

where l ¼ mc2=T, T is the temperature, and K1 is the modi-

fied Bessel function of the second kind.29 It proves beneficial

to introduce the following normalized quantities:

X ¼ x
xp
;

K ¼ k c

xp
;

N ¼ k c

x
¼ K

X
¼ c

vp
;

(9)

where vp is the wave phase velocity and N is the refractive

index. By splitting the integral in (5) into positive and nega-

tive momentum parts and transforming the integration vari-

able by p ¼ 6m c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
, the dielectric function can be

written as

� x; kð Þ ¼ 1� l

X2 K1 lð Þ

ð1
1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
c2 1� N2ð Þ þ N2

e�lc dc: (10)

The linear stability of the equilibrium (8) can be easily

established through the relativistic version of the Penrose cri-

terion.30 As a result, the only possible solutions of (4) must

correspond to xi ¼ 0, i.e., only neutral mode solutions exist.

For ReN � 1, the integrand is non-singular for all N and � is

analytic and Im�! 0 as Imx! 0. For ReN > 1, the inte-

grand has a pole when ImN ¼ 0 and Im� has a discontinuity

as Imx! 0. Thus neutral modes can exist only for N � 1.

For ReN � 1, � is analytic, thus N ¼ � and quasi-modes are

excluded for ReN � 1. Using (10), (A3), and (A4), we have

N x; kð Þ ¼ 1� 1

X2

l
K1 lð Þ

�

ð1
1

e�lcc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
c2 1� N2ð Þ þ N2

dc ; ImX > 0;

P

ð1
1

e�lcc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
c2 1� N2ð Þ þ N2

dc� i
p
2

e�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2= N2�1ð Þ
p

N2 � 1ð Þ3=2
; ImX ¼ 0;

ð1
1

e�lcc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
c2 1� N2ð Þ þ N2

dc� i p
e�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2= N2�1ð Þ
p

N2 � 1ð Þ3=2
; ImX < 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

(11)
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This result can also be obtained from (7) using the same vari-

able transformation leading to (10).

A. Neutral modes

First consider N2 ¼ 1 for which vp¼ c and (10) becomes

� x; kð Þ ¼ 1� 1

X2

l
K1 lð Þ

ð1
1

e�lcc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
dc: (12)

Using the identity29

ð1
1

e�lcc
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
dc ¼

K2 lð Þ
l

; (13)

we obtain

X2 ¼
K2 lð Þ
K1 lð Þ

: (14)

This leads to a temperature dependent condition on the initial

wave vector perturbation

kc ¼
xp

c

ffiffiffiffiffiffiffiffiffiffiffiffi
K2 lð Þ
K1 lð Þ

s
; (15)

corresponding to the transition between superluminal modes

and subluminal quasi-modes.

From (10), for real X, it is easy to show that dX=dN > 0

implying dk=dN > 0 and thus for N< 1 (i.e., for vp > c),

k < kc. Particles cannot interact resonantly with the wave,

and there is no net energy transfer between particles and the

wave. This is the main difference with the non-relativistic

case where monotonic equilibria generically only support

quasi-modes. In the non-relativistic case, there is no upper

bound for the particle speed, and the wave-particle resonance

is generally always present.

B. Quasi-modes

Quasi-modes are solutions of the analytically continued

dielectric function, Nðx; kÞ, with Imx < 0. As we discussed

above, this requires ReN > 1, and thus, quasi-modes will have

wavenumbers greater than kc. It does not appear possible to

evaluate (11) in terms of elementary functions. To evaluate

(11) numerically, we restrict the interval of integration to ½0; 1�
by introducing a new variable c ¼ 1� 4=l log½sinðp�=2Þ�.31

The domain of integration is divided into 100 subdomains on

which a 7-point Gaussian quadrature is applied. We show in

Fig. 1 the real and imaginary parts solutions of Nðx; kÞ ¼ 0

for different values of the perturbation wave number K and

equilibrium temperature T.

IV. NON-MONOTONIC EQUILIBRIUM

In one dimension, only longitudinal instabilities can be

excited whereas other instabilities with directions orthogonal

to the direction of propagation could have more detrimental

effects on the wave or beam propagation properties (as it is

the case in the inertial confinement fusion (ICF) context32).

Although studying a relativistic system without including

magnetic fields is questionable, it provides an excellent

framework to benchmark numerical methods. It is in this

vein that we consider the relativistic two-stream instability.

To describe the relativistic two-stream equilibrium in the

laboratory frame, we use two shifted Maxwell–J€uttner distri-

butions with both beams having the same magnitude of the

bulk momentum and temperature

feq pð Þ¼
1

4mcK1 lð Þ
e�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p�p0ð Þ2=m2c2
p

þe�l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pþp0ð Þ2=m2c2
ph i

:

(16)

(There are other, physically reasonable, relativistic two-

stream equilibria; see Refs. 32 and 33.) To find the stability

condition, we apply the relativistic Penrose criterion30

ðþ1
�1

dfeq

dp

1

p=mc� vmin

dp > 0; (17)

where vmin corresponds to the local minimum of feq (vmin ¼ 0

in our case) to our two-stream equilibrium, (16). The integral

in (17) has a removable singularity at p¼ 0 and can be easily

computed numerically. Fig. 2 shows the region of parameters

space where the instability can develop. As in the non-

relativistic case, the separation between the streams deter-

mines stability; for a given temperature, once the separation

exceeds a threshold value, the system becomes unstable.

The stable region resembles the monotonic equilibrium

case; we have superluminal neutral modes and (damped)

quasi-modes. In the unstable region, in addition to the neutral

and quasi-modes, we have (one or more) exponentially

growing and damped modes. In this regime, the growing

modes dominate the plasma response. Subsequently, we

FIG. 1. Solutions of the dispersion relation N¼ 0 as a function of K and tem-

perature: (a) ReX and (b) ImX. The black line denotes the transition between

superluminal neutral modes and subluminal quasi-modes.
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focus on the unstable modes, looking for purely imaginary

solutions of �¼ 0.

Since our equilibrium is an even function of p, we can

write the dielectric function, (5), as

� x; kð Þ ¼ 1þ 2mc

X2

ð1
0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ p2

p
p2 1� N2ð Þ þ m2c2

dfeq

dp
dp: (18)

For ImX > 0, (18) can be evaluated straightforwardly

numerically. An exhaustive study of the growth rate involves

a three dimensional parameter space (K, l, and p0). Here, we

consider parameters values relevant to ICF: temperatures of

a few hundred of keV and bulk energy of the order of

1 MeV.

In Fig. 3, we plot the growth rate for different bulk

momenta and a temperature of T � 100 keV. The maximum

growth rate (as a function of K) depends on p0, having a

peak for p0 ¼ 1:5 mc. For a lower temperature, T � 5 keV

(see Fig. 4), the growth rate has its maximum at lower bulk

momentum and peaks around K¼ 1, i.e., for perturbation of

the order of the electron plasma wavelength.

For electron distribution parameters relevant to ICF,

there is an intermediate situation where the instability can

develop. The growth rates are maximum for low tempera-

tures, and low bulk momentum and the instability can be

suppressed by increasing the temperature (bulk width) and/or

the bulk velocity. We also note that for these range of param-

eters, collisions (ignored here) can play an important role by

dissipating some of the electron kinetic energy having the

effect of reducing the instability growth rate.32

V. NUMERICAL ALGORITHM

Here, we consider a purely Eulerian numerical solution

of (1) and (2), that is, we will solve (1) on a phase space grid

without recourse to characteristics. This method is the relativ-

istic extension of a method we developed for the

Vlasov–Poisson system.34–36 We construct a regular, uniform

grid of points (xk, pj) over phase space of size Nx � Np with

xk ¼ x1 þ ðk � 1ÞDx; k ¼ 1;…;Nx, where Dx ¼ ðxNx
� x1Þ=

ðNx� 1Þ and pj ¼ p1 þ ðj� 1ÞDp; j ¼ 1;…;Np, where

Dp ¼ ðpNp
� p1Þ=ðNp � 1Þ. Periodicity in x is imposed by

identifying xNx
þ Dx with x1 and consequently x1 � Dx with

xNx�1. The periodicity length, L, of the spatial domain is then

L ¼ xNx
þ Dx� x1. The momentum grid is assumed to con-

tain the support of f; thus, we take f ðx; p1 � Dp; tÞ ¼ 0

¼ f ðx; pNp
þ Dp; tÞ. We take a fixed time-step Dt and put

tn ¼ t1 þ ðn� 1ÞDt. Without loss of generality, we may

assume t1 ¼ 0. In what follows, we take f n
kj to be the numeri-

cal approximation of f ðxk; pj; tnÞ. We use the Crank–Nicolson

time-centered scheme37 with phase-space derivatives repre-

sented by second-order central differences

@f

@t

���tnþ1=2

xk ;pj

¼
f nþ1
kj � f n

kj

Dt
þO Dt2ð Þ; (19a)

@f

@x

���tnþ1=2

xk ;pj

¼ 1

2

f nþ1
kþ1j � f nþ1

k�1j

2Dx
þ

f n
kþ1j � f n

k�1j

2Dx

� �

þO Dx2ð Þ þ O Dt2ð Þ; (19b)

@f

@p

���tnþ1=2

xk ;pj

¼ 1

2

f nþ1
kjþ1 � f nþ1

kj�1

2Dp
þ

f n
kjþ1 � f n

kj�1

2Dp

 !

þO Dp2
� �

þO Dt2ð Þ; (19c)

f
���tnþ1=2

xk ;vj

¼ 1

2
f nþ1
kj þ f n

kj

� 	
þO Dt2ð Þ: (19d)

Applying this discretization directly to (1) and (2) leads

to a large nonlinear system of equations that must be solved

at each time step. The size of the system precludes the use of

direct methods even in one spatial dimension.

An alternative is to split the Vlasov–Ampere equations into

@f

@t
þ p

m c
@f

@x
¼ 0;

@E

@t
¼ 0;

(20a)
FIG. 3. Growth rate ImX as a function of K for a fixed temperature l�1 ¼ 0:2
and different bulk momenta.

FIG. 4. Growth rate ImX as a function of K for l�1 ¼ 0:01 and various bulk

momenta. The crosses indicate numerical results of Sec. V.
FIG. 2. Instability region for the equilibrium (16).
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@f

@t
¼ 0;

@E

@t
¼ �4p q

ð
p

m c
f dp

(20b)

and

@f

@t
þ q E

@f

@p
¼ 0 ;

@E

@t
¼ 0;

(20c)

which has the effect of removing the nonlinearity. This is

essentially the same splitting used by Cheng and Knorr38 in

their semi-Lagrangian method, by Schumer and Holloway39

in their Hermite spectral algorithm, and by Sircombe and

Arber40 in constructing explicit Eulerian methods. To second

order accuracy in time, we can compute the time evolution

using the symmetric Strang approach.41 Let the operators

U1ðDtÞ; U2ðDtÞ, and U3ðDtÞ give the evolution of f and E
from t to tþ Dt corresponding to (20a), (20b), and (20c),

respectively. Provided the Ui are at least second-order accu-

rate in Dt (or first-order accurate and time-reversible42), the

evolution corresponding to (1) and (2) from t to tþ Dt is

given by

U1ðDt=2ÞU2ðDt=2ÞU3ðDtÞU2ðDt=2ÞU1ðDt=2Þ ; (21)

accurate to second order in Dt. We apply the Crank–Nicolson

discretization (19) to (20) to obtain the update operators Ui.

In each case, it is at most necessary to solve a tri-diagonal

linear system of equations, for which fast direct methods

exist.43 This scheme conserves the total particle number,

momentum, and enstrophy,
Ð

f 2dx dp, to machine preci-

sion.34–36 The total energy is conserved consistent with the

second-order truncation error of the method. Further, as in

the non-relativistic case,34–36 the method is unconditionally

stable; thus, the time step is only limited by accuracy

considerations.

Of importance when solving Vlasov equation on a phase

space grid is ensuring positivity of the distribution function.

Our numerical scheme does not include any dissipation

mechanisms. As a consequence, when the spatial gradients

of the distribution function reach the grid size level, oscilla-

tions are produced in the solution, giving rise to negative

values of f. The generation of negative values of f is not

unique to our method and has been observed in numerous

studies using a phase-space grid.38,44,45

The consequences of these negative values appear

negligible compared to other numerical artefacts and does

not influence the dynamics of the system.44 Schemes for

maintaining positivity are under active investigation and

require the use of techniques adapted from the computa-

tional fluid dynamics community. These methods bring

with them the disadvantage of not conserving fundamen-

tal invariant except the particle number.34–36,46 There is

ultimately a trade-off between positivity and invariant

conservation depending on the physics problem being

studied.

VI. EXAMPLES

All computations are performed in normalized variables:

the plasma frequency is use to set temporal and spatial

scales; momenta are normalized to mc; the electric field is

normalized to mcxp=e; and the background density n0 scales

out. Oscillations are excited by initializing the distribution

function with a spatial modulation of wave number k

f ðt ¼ 0; x; pÞ ¼ n0ð1þ A cos kxÞfeqðpÞ (22)

with k ¼ 2pn=L, where n is an integer. We identify f ð1Þ

¼ A n0 cosðkxÞ feqðpÞ. We use a simulation box of ½0; 4p� �
½�5; 5� in the x and p directions, respectively (in normalized

units). For the following simulation results, unless specified

otherwise, we use a phase space grid xpDt¼ 0:1;
Dp¼ 0:01mc, and xpDx¼ 0:0245c (Nx¼512 and Np¼1000).

A. Monotonic equilibrium

We solve the linearized system of equations taking a

Maxwell-J€uttner equilibrium distribution function with A¼ 0.1.

In Fig. 5, we plot the time evolution of the electric field for

K¼ 0.5 and T ¼ 0:1 mc2 corresponding to an undamped

mode. The linear theory gives x ¼ 0:9645 xp. The oscillation

frequency of the numerical solution agrees to the third digit

with this set of grid parameters. For this temperature, according

to expression (15), the transition between superluminal and

subluminal mode is given by kc c � 1:074 xp.

Fig. 6 shows the solution for the same temperature T¼ 0.1

but with K¼ 2, which corresponds to a damped quasi-mode.

The linear theory gives a damping rate xi ¼ �0:098 xp and a

frequency xr ¼ 1:468 xp. From the numerical solution, we

find xi ¼ �0:097 xp and xr ¼ 1:467 xp. Since our method

does not introduce any noise (numerical collisions or dissipa-

tion), we can observe the decay over 12 decades. As in the

non-relativistic case, we can define a recurrence time for the

free streaming case given by xp tr ¼ ð2p=kÞDp. With this set

of parameters, we have xp tr ¼ 314:15, and we observe the

maximum of the electric recurrence around xp t ¼ 317.

In the Laplace transform treatment of the relativistic ini-

tial value problem, in addition to contributions to the electric

field from poles (which give rise to the usual quasi-modes),

there are contributions from branch cuts due to the upper

bound on particle velocity. The asymptotic structure of the

electric field due to these branch cuts was first determined by

Godfrey et al.9 and later refined by Sartori and Coppa.11 This

FIG. 5. Fundamental electric field mode for A¼ 0.1, K¼ 0.5, and T ¼ 0:1 mc2.
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behavior makes for a sensitive benchmark as the electric

field must be followed for a large number of oscillations.

This phenomenon appears inaccessible to macro-particle

methods5,6 as unmanageably large numbers of macropar-

ticles would be necessary to keep sampling noise low

enough. To see this effect, it is necessary to chose k and T
such that the quasi-mode solution is damped very rapidly

and the branch cut contribution is non-negligible. To this

end, we take K¼ 8, T ¼ 0:2 mc2 and solve the linearised sys-

tem of equations with xpDt ¼ 0:015; Dp ¼ 0:005 mc, and

xpDx ¼ 0:0245 c. For these parameters, the quasi-mode has

xr ¼ 7:903 xp and xi ¼ �2:576 xp and thus decays rapidly.

The amplitude of the electric field decays as9,11

E / t1=6 exp � 3
ffiffiffi
3
p

4
l2k c t
� �1=3


 �
: (23)

The electric field from the numerical solution is shown in

Fig. 7 (blue line) along with amplitude given by (23) (red

line). We see that very early in the calculation, the system

enters the time-asymptotic behavior arising from the branch

cut and there is an excellent agreement between the numeri-

cal solution and the amplitude (23).

Sartori and Coppa11 provide a corrected expression for the

full time-dependence of the electric field [cf. (19) in Ref. 11]

E / t1=6 exp � 3
ffiffiffi
3
p

4
l2kc t
� �1=3


 �

� sin kc t� 3

4
l2kc t
� �1=3 þ p

12


 �
: (24)

Comparing this to our numerical solution, we observe a

phase error as can be seen in Fig. 8. To understand the origin

of this discrepancy, we assume the time dependence derived

by Sartori to be correct and attempt to fit the numerical solu-

tion to

E ¼ C t1=6 e�p1 t1=3

sin ðp2 t� p3 t1=3 þ p4Þ: (25)

The results of a least-squares fit (except for C which is unin-

teresting) are shown in Table I along with the corresponding

values from (24). Fig. 9 shows the electric field from the

numerical solution and the result of fitting (25). We have

repeated this procedure for different initial wavenumbers

and equilibrium temperatures, and in all cases, we find the

phase constant to be approximately 1.9. These results

strongly suggest that the constant phase in (24) is incorrect.

(Analytically determining the value of p4 is beyond the scope

of this work.)

B. Non-monotonic equilibrium

We conclude this section by considering the relativistic

two-stream instability with the equilibrium distribution func-

tion (16). We take p0 ¼ 0:5 mc; T ¼ 0:01 =mc2, and K ¼ 1

and compute the full nonlinear solution. The initial ampli-

tude of the perturbation is set to A ¼ 10�6 to observe the

linear growth during the first stage of the simulation. The

linear theory gives xi ¼ 0:277 xp compared to the value

determined from the numerical solution of 0:276 xp. After a

period of exponential growth, the electric field saturates,

and we observe a BGK mode as in the non-relativistic case.

Fig. 10 shows the electron distribution function at the end of

the simulation. Negative values are clearly visible, but they

appear to be harmless with respect to the electric field evolu-

tion. We show in Fig. 4 the growth rate as a function of K
obtained from numerical solutions for T ¼ 0:01 =mc2 and

various values of p0. With this set of grid parameters, the

FIG. 6. Fundamental electric field mode for A¼ 0.1, K¼ 2, and

T ¼ 0:1 mc2.

FIG. 7. Electric field for A¼ 0.1, kc=xp ¼ 8 and T=mc2 ¼ 0:2 (blue) along

with the amplitude given by (23) (red).

FIG. 8. A comparison or the numerical solution (blue) with (24) (red). The

section shown is representative of the electric field behavior over the full

time interval.

TABLE I. Result of a least-squares fit the numerical solution to (25) com-

pared the coefficients in (23).

p1 p2 p3 p4

Fit 7.54 7.94 4.39 1.92

(19) of Ref. 11 7.59 8.00 4.38 0.26
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relative error between theoretical and numerical growth rates

is on the order of 10�3.

VII. CONCLUSIONS

In this work, we extended a numerical method devel-

oped for the non-relativistic Vlasov–Ampere system to the

relativistic case.35,36 We applied our algorithm to both the

full nonlinear system and to the linearized equations and

found excellent agreement in a variety of benchmarks. While

this algorithm is capable of producing negative values for

the distribution function, these negative values did not signif-

icantly affect the evolution of the electric field. As long as

no mechanism to maintain the distribution positivity is intro-

duced (collisions, limiters, TVD methods, etc.), negative

values can be expected when solving on a phase space grid.

In the non-relativistic case, we have seen that attempts to

prevent negative values of the distribution function introduce

other errors on phase space that appear to be more detrimen-

tal than the negative values;34–36 we expect this behavior to

carry over to the relativistic case. We examined the long-

time behavior of the electric field—possible only with an

Eulerian numerical method—arising from a branch cut and

identified a possible error in previously derived asymptotic

expression11 for the electric field. We plan to extend this

algorithm to the electromagnetic case in four phase-space

dimensions for studying laser-plasma interactions and will

report those results in due course.
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APPENDIX: A SINGULAR INTEGRALS

For y 2 C and Imy 6¼ 0, and with rather generous

restrictions on /ðxÞ,47 the integral

w yð Þ ¼
ð

dx
/ xð Þ
x� y

(A1)

is well-defined, analytic in the upper and lower half-planes,

and47

lim
Imy! 06

ð
dx

/ xð Þ
x� y

¼ P

ð
dx

/ xð Þ
x� y

6i p / yð Þ ; (A2)

where P denotes the principal part. (The domain of integra-

tion is immaterial as long as y is restricted to its interior.)

Clearly, wðyÞ has a jump as y crosses the real axis, and thus,

w is not analytic in the plane. It is straightforward to analyti-

cally continue w into either the lower or upper half-plane. As

a generalization, let aðx; yÞ have a simple root at x¼ x0 for y
real and considerð

dx
/ xð Þ

a x; yð Þ
¼
ð

dx
1

x� y

x� y

a x; yð Þ
/ xð Þ


 �
: (A3)

For Imy 6¼ 0, the term in brackets is regular, while for Imy ¼ 0

it has a removable singularity at x¼ y. Under suitable condi-

tions on / and a, this integral is well-defined in the upper and

lower planes and

lim
Imy! 06

ð
dx

/ xð Þ
a x; yð Þ

¼ P

ð
dv

/ xð Þ
a x; yð Þ

6i p
/ xð Þ

@a x; yð Þ=@x

���
x¼x0

:

(A4)

We can construct the analytic continuation, W, of (A3)

from the upper to lower half plane as

WðyÞ ¼
ð

dx
/ xð Þ

a x; yð Þ
þ

0; Im y � 0;

2i p
/ xð Þ

@a x; yð Þ=@x

���
x¼x0

; Im y < 0:

8><
>:

(A5)
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