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Accurate and comprehensive transcriptome assemblies lay the foundation for a range of 

analyses, such as differential gene expression analysis, metabolic pathway reconstruction, 

novel gene discovery, or metabolic flux analysis. With the arrival of next-generation 

sequencing technologies it has become possible to acquire the whole transcriptome data 

rapidly even from non-model organisms. However, the problem of accurately assembling 

the transcriptome for any given sample remains extremely challenging, especially in 

species with a high prevalence of recent gene or genome duplications, those with 

alternative splicing of transcripts, or those whose genomes are not well studied. This 

thesis provides a detailed overview of the strategies used for transcriptome assembly, 

including a review of the different statistics available for measuring the quality of 

transcriptome assemblies with the emphasis on the types of errors each statistic does and 

does not detect and simulation protocols to computationally generate RNAseq data that 

present biologically realistic problems such as gene expression bias and alternative 

splicing. Using such simulated RNAseq data, a comparison of the accuracy, strengths, 

and weaknesses of seven representative assemblers including de novo, genome-guided 

methods shows that all of the assemblers individually struggle to accurately reconstruct 

the expressed transcriptome, especially for alternative splice forms.  Using a consensus of 

several de novo assemblers can overcome many of the weaknesses of individual 



	

assemblers, generating an ensemble assembly with higher accuracy than any individual 

assembler.
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Chapter 1: Introduction 

Transcriptome assembly from high-throughput sequencing of mRNA (RNAseq) is a 

powerful tool for detecting variations in gene expression and sequences between 

conditions, tissues, or strains/species for both model and non-model organisms (1, 2). 

However, the ability to accurately perform such analyses is crucially dependent on the 

quality of the underlying assembly (3). Especially for the detection of sequence 

variations, but also for isoform detection and transcript quantification, mis-assembly of 

genes of interest can increase both the false positive and false negative rates, depending 

on the nature of the mis-assembly (4). These problems are exacerbated in non-model 

organisms where genomic sequences that can be used as the references, if available at all, 

are sufficiently different than those from the individuals sequenced (5). 

Transcripts can be mis-assembled in several ways (6). Two of the most drastic 

assembly errors are fragmentation, where a single transcript is assembled as one or more 

smaller contigs, and chimeras, where a contig is assembled using part or all of more than 

one transcript. Fragmentation errors tend to result from fluctuations in the read coverage 

along a transcript, with the breaks in the transcript sequence occurring in regions that 

have lower coverage. By contrast, chimera errors often occur because of ambiguous 

overlaps within the reads, coupled with algorithms that choose the longest possible contig 

represented by the data, or by adjacent genes on the genome being merged. Both of these 

types of errors can have major impacts on transcriptome assemblies for gene 

identification. Small (single or few) nucleotide alterations to the contig sequence also 

happen as mis-assemblies. Sequence mistakes are often the result of mis-sequenced 

reads, but can also result from ambiguity for highly similar reads, both from 
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heterozygous genes and from duplicated genes. In some cases, these errors can shift the 

reading frame for the contig, which can have significant impacts on the translated protein 

sequence. Finally, transcripts can be mis-assembled when real alternative transcripts are 

collapsed into a single contig (6).  

The following sections will first review strategies used for transcriptome assembly as 

well as how their performance can be assessed. Chapter 3 presents an actual performance 

analysis of representative methods using a simulated human transcriptome and RNAseq. 

1.1 Transcriptome assembly strategies 

 De novo assemblers 

De novo assemblers generate contigs based solely on the RNAseq data (7-13). Most of 

the de novo assemblers rely on de Bruijn graphs generated from kmer decompositions of 

the reads in the RNAseq data (14). The reads are subdivided into shorter sequences of 

length k (the kmers) of a given length, and the original sequence is reconstructed by the 

overlap of these kmer sequences. One major limitation of the de Bruijn graphs is the need 

for a kmer to start at every position along the original sequence in order for the graph to 

cover the full sequence (13). This limitation creates a tradeoff in regard to the length of 

the kmers. Shorter kmers are more likely to fully cover the original sequence, but are 

more likely to be ambiguous, with a single kmer corresponding to multiple reads from 

multiple transcripts. While by using longer kmers such ambiguity can be avoided, those 

kmers may not cover the entire sequence of some transcripts causing e.g. fragmented 

assembly. Consequently, each transcript, with its unique combination of expression level 

(corresponding to the number of reads in the RNAseq data generated from that transcript) 

and sequence uniqueness, will have a different best kmer length for its assembly (15). As 
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a result, even using the same de novo assembly algorithm, performing two assemblies 

with different kmer lengths will generate a different set of contigs, and will inevitably 

have variations in which of the original transcripts were correctly assembled (16). 

Examples of popularly used de novo assemblers include idba-Tran (9), SOAPdenovo-

Trans (8), rnaSPAdes (12), and Trinity (7). Idba-Tran is unique among these de novo 

assemblers, as it runs individual assemblies across a range of kmer lengths and merges 

the results to form the final prediction. The remaining assemblers use only the results of a 

single kmer length. For SOAPdenovo-Trans and Trinity, a kmer length needs to be 

chosen (default kmer: 23 and 25, respectively), while rnaSPAdes dynamically determines 

the kmer length to be used based on the read data. While all of these tools use the same 

fundamental strategies to construct, revise, and parse the de Bruijn graph for the 

assemblies, each method uses different thresholds and different assumptions to make 

decisions. These differences lead to different subsets of transcripts being correctly 

assembled by each method. An example of how these tools produce different sets of 

contigs is shown in Section 3.1. 

 Genome-guided assemblers 

Genome-guided assemblers avoid the ambiguity of kmer decompositions used in de 

Bruijn graphs by instead mapping the RNAseq data to the reference genome. In order to 

account of introns, mapping of the reads for genome-guided assembly needs to allow 

them to be split, where the first part of the read maps to one location (an exon), and the 

other half maps to a downstream location (another exon). This mapping is done by split-

read mappers such as TopHat (17), STAR (18), HISAT (19), or HPG-aligner (20). Each 
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of these methods map the reads slightly differently, which may impact the quality of 

subsequent assembly.  

This read mapping greatly reduces the complexity of transcript assembly by 

clustering the reads based on genomic location rather than relying solely on overlapping 

sequences within the reads themselves (3). However, this approach still has some major 

drawbacks. The most obvious drawback is that genome-guided assemblers require a 

reference genome, which is not available for all organisms. The quality of the reference 

genome, if it is available, also impacts the quality of the read mapping and, by extension, 

the analysis. This impact is particularly noteworthy when genes of interest contain gaps 

in the genome assembly, preventing the reads necessary to assemble those genes from 

mapping to part or all of the transcript sequence. Ambiguity occurs also when reads map 

to multiple places within a genome. How the specific algorithm handles choosing which 

potential location a read should map to can have a large impact on the final transcripts 

predicted (6). This problem is expounded when working with organisms different from 

the reference, where not all of reads map to the reference without gaps or mismatches. 

Examples of popularly used genome-guided assemblers include Bayesembler (21), 

Cufflinks (22), and StringTie (23). While each of these methods uses the mapped reads to 

create a graph representing the splice junctions of the transcripts, how they select which 

splice junctions are real differs fundamentally. Cufflinks constructs transcripts based on 

using the fewest number of transcripts to cover the highest percentage of mapped reads. 

StringTie uses the number of reads that span each splice junction to construct a flow 

graph, constructing the transcripts based in order of the highest flow. Bayesembler 

constructs all viable transcripts for each splice junction and uses a Bayesian likelihood 
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estimation based on the read coverage of each potential transcript to determine which 

combination of transcripts is most likely. Due to these fundamentally different 

approaches, each of these tools produces different sets of transcripts from the same set of 

reads. An example of assemblies produced by these methods and how the assembled 

contigs differ is described in Section 3.2. 

 Ensemble approach 

While a core set of transcripts are expected to be assembled correctly by many different 

assemblers, many transcripts will be missed by any individual tool (24) (also see Section 

4). Through combining the assemblies produced by multiple methods, ensemble 

assemblers such as EvidentialGene (25) and Concatenation (26) attempt to address the 

limitations of individual assemblers, ideally keeping contigs that are more likely to be 

correctly assembled and discarding the rest. Both of EvidentialGene and Concatenation 

filter the contigs obtained from multiple assemblers (usually de novo) by clustering the 

contigs based on their sequences, predicting the coding region of the contig, and using 

features of the overall contig and the coding region to determine the representative 

sequence for each cluster. EvidentialGene recommends using several different tools 

across a wide range of kmer lengths. It uses the redundancy from multiple tools 

generating nearly identical sequences and clusters them, scores the sequences in each 

cluster based of the features of the sequence (e.g. lengths of the 5’ and 3’ untranslated 

regions), and returns one representative sequence from each cluster (keeping also some 

alternative sequences). In contrast, Concatenation recommends using only three 

assemblers, with one kmer length each. This method merges nucleotide sequences that 

are identical or perfect subsets, only filters contigs with no predicted coding region. 
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These approaches greatly reduce the number of contigs present by removing 

redundant and highly similar sequences. However, there is no guarantee that the correct 

representative sequence is kept for a given cluster or that each cluster represents one 

unique gene. Because they require multiple assemblies to merge, they also come at a far 

greater computational cost. An example of how these ensemble assembly strategies 

perform compared to individual de novo and genome-guided methods is shown in Section 

3.3. 

 Third generation sequencing 

All of the above methods primarily use short but highly accurate reads from Illumina 

sequencing for assembly, with or without a reference. With the rise of third-generation 

sequencing technologies from Pacific Biosciences (PacBio SMRT) and Oxford Nanopore 

Technologies (ONT MinION), it is becoming possible to sequence entire mRNA 

molecules as one very long read, though with a high error rate (27). The ability to 

sequence the entire mRNA molecule is especially beneficial for detecting alternative 

splice forms, which remain a challenge for short-read only assembly, and potentially for 

more accurate transcript quantification if there is no bias in the mRNA molecules 

sequenced.  

While many tools exist to perform genome assemblies using either these long reads 

alone or by combining long reads and Illumina reads, at present no short read 

transcriptome assemblers take advantage of long-reads in transcriptome assembly. If 

these long reads can be sufficiently error-corrected (e.g. 28, 29), they can be used for a 

snapshot of the expressed transcriptome, without requiring assembly or external 

references (30, 31). Alternatively, after an independent de novo assembly of short reads, 
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the long reads can be used to confirm alternative splice forms present in the assembly 

(32). The long reads can be also mapped to a reference genome similar to the split-read 

mapping methods used for genome-guided short-read assemblers discussed above (27, 

33-35). With their accuracy increasing, in the future long reads can be used more to 

improve transcriptome assembly quality. 

1.2 Performance metrics used for transcriptome assembly 

In this section discusses commonly used metrics to assess the quality of transcriptome 

assemblies. 

 Metrics based on contig count and lengths 

The most straightforward assembly metrics are those based on the number and lengths of 

the sequences produced (36). The number of sequences can be presented either or both 

of:  

• the number of contigs  

• the number of scaffolds  

where for contigs no further joining of the sequences is performed after assembly, and for 

scaffold contigs that have some support for being from the same original sequence are 

combined together with a gap sequence between them.  

Several different statistics are available for presenting the lengths of the sequences (either 

contigs or scaffolds). The most commonly reported metrics are: 

• minimum length (bp): the length of the shortest sequence produced 

• maximum length (bp): the length of the longest sequence produced 

• mean length (bp): the average length of the sequences produced 



	

8	

• median length (bp): the length where half of the sequences are shorter, and half of the 

sequences are longer 

• N50 (bp): a weighted median where the sum of the lengths of all sequences longer than 

the N50 is at least half of the total length of the assembly 

• L50: the smallest number of sequences whose combined length is longer than the N50 

Additional metrics similar to N50 (e.g. N90) based on different thresholds are also used. 

For genome assemblies where the target number of sequences is known (one circular 

genome plus any smaller plasmids for prokaryotic organisms and the number of 

chromosomes for eukaryotic organisms), these metrics provide an estimate for the 

thoroughness of the assembly (36). For instance, in prokaryotic assemblies, the vast 

majority of the sequence is expected to be in one long sequence, and having many shorter 

sequences indicates fragmentation of the assembly (15). In this context, longer sequences 

(e.g. larger N50) tend to indicate higher quality assemblies. For transcriptome assemblies, 

however, the length of the assembled contigs varies depending on the lengths of the 

transcripts being assembled. For the human transcriptome, for example, while the longest 

transcript (for the gene coding the Titin protein) is over 100kb, the shortest is only 186bp, 

with a median length of 2,787bp (37). Emphasizing longer contigs also rewards 

assemblers that over-assemble sequences, either by including additional sequence 

incorrectly within a gene, or by joining multiple genes together to form chimeric contigs. 

Therefore, for transcriptome assembly, metrics based on contig lengths do not necessarily 

reflect its quality. 

 Metrics based on coded protein similarity 
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Rather than focusing on the number or length of the sequences produced by the assembly, 

performing similarity searches with the assembled sequences can provide an estimate of 

the quality of the contigs or scaffolds (24, 38). Typically, the process consists of either 

similarity searches against well annotated databases (such as the protein datasets of 

related genomes or targeted orthologs, the BLAST non-redundant protein database (39) 

or the UniProt/Swiss-Prot database (40)), conserved domain search within the contig 

sequence that determines the potential function of the gene (such as PFAM or Panther 

(41, 42)), or a search against a lineage specific conserved single-copy protein database 

(such as BUSCO (43)). These similarity searches are usually performed on the predicted 

protein sequences for the contigs (e.g. using GeneMarkS (44)), but can also be performed 

directly from the assembled nucleotide sequences using BLASTX where translated 

nucleotide sequences are used to search against a protein database (38). If the organism 

being sequenced is closely related to a model organism with a well-defined 

transcriptome, nearly all of the contigs that are not erroneously assembled and code 

proteins should have identifiable potential homologs in the database. If a large percentage 

of the contigs do not have similar proteins identified in the database, there is a high 

probability that the sequences are incorrectly assembled, regardless of the length of the 

sequences. By performing similarity searches, over assemblies can be also detected as 

large gaps in the alignment between the query and the hits or contigs that cover more than 

one gene. As protein sequence annotations are necessary for most downstream analyses, 

they also provide a convenient metric without the need for additional, otherwise 

unnecessary analyses. 
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Despite these advantages, there are some limitations to using protein-similarity based 

metrics for assembler performance. First, the more divergent the organism being 

sequenced is from the sequences in the database searched and the more species-specific 

genes in the transcriptome, the lower the percentage of contigs with hits will be. This can 

result in some organisms appearing to have a lower quality assembly solely due to their 

divergence from those well represented in the databases. By extension, assemblies that 

recover more transcripts whose coded proteins have few similar sequences in the 

database will appear worse than assemblies that only recover conserved genes. This 

limitation can be somewhat mitigated by comparing only genes that are universally 

single-copy across different species, which are more likely to be conserved and similar 

enough to be identified. This is the strategy used in BUSCO (43). However, this 

comparison at best uses only a subset of the assembled contigs. Second, and more 

problematic, this metric rewards assemblies that artificially duplicate conserved genes 

with only small differences in the nucleotide sequence. In the extreme, this can result in 

several times as many contigs in the assembly than were present in the actual 

transcriptome, but with nearly all of the contigs coding conserved protein sequences. This 

is particularly an issue when the analysis depends on identifying the gene copy numbers 

in the assembly. It also has a large impact on the accuracy of contig quantification and 

differential expression analyses (45).  

 Assembly metrics based on benchmark transcriptomes 

The only way to overcome the limitations of the metrics described in the previous 

sections is to compare the assembly output against a benchmark transcriptome where 

correct sequences of all transcripts are known. When an RNAseq data generated from a 
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well-established model organism is used for assembly, many of correctly assembled 

contigs can be identified. However, variability in the transcriptome among e.g. cell types 

limits the amount of information that can be gained for incorrectly assembled contigs. It 

is also not possible to determine whether sequences from the reference that are missing 

from the assembled transcriptome are due to assembly errors, or whether they were not 

expressed in the library sequenced. Transcriptome sequences may also vary between the 

individual under study and the reference. Such variations can mask assembly errors that 

affect the contig sequences. Although this limitation can be mitigated by sequencing an 

individual that is genetically identical to the reference, it severely limits the types of 

organisms that can be used for the benchmark.  

To comprehensively assess all of the assembly errors, RNAseq data needs to be 

obtained from a transcriptome where all transcript sequences and expression patterns are 

known. Ideally, such a benchmark transcriptome would be synthetically produced and 

sequenced using standard protocols. However, currently no such synthetic mRNA library 

exists. An alternative approach is to simulate the sequencing of a given benchmark 

transcriptome. There are several tools that can generate simulated reads modelling short 

Illumina reads (46, 47) and/or long third-generation sequencing reads such as PacBio 

SMRT and ONT MinION (48, 49). These tools typically either focus on identifying the 

statistical distribution of reads across the sequences and errors within the reads, as is the 

case for RSEM (46), PBSIM (48), and Nanosim (49), or by attempting to reconstruct 

each step of the library preparation and sequencing pipeline, mimicking the errors and 

biases introduced at each step, as is the case for Flux Simulator (47). 
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Using simulated RNAseq data with a known transcriptome as a benchmark gives 

the most detailed and close to true performance metric for assemblies. Specifically, this 

strategy allows the quantification of each of the following categories: 

correctly assembled sequences (true positives or TPs) 

sequences that are assembled with errors (false positives or FPs) 

sequences in the reference that are missing from the assembly (false negatives or FNs) 

"Correctness" and "incorrectness" (or error) can be defined using varying degrees of 

sequence similarities. Using the strictest threshold, a contig sequence is assembled 

"correctly" only if the entire nucleotide or protein sequence is identical to a reference 

transcript. All other contigs found in the assembly, including those whose sequences have 

no similarity in the reference transcriptome (missing contigs), are considered to be 

assembled "incorrectly" (FPs) regardless of the similarity against the reference sequences. 

Note that true negatives (TNs) can be counted only if the assembly experiments are done 

including reads that are derived from transcripts that are not part of the reference 

transcriptome (negative transcripts). Using these categories, following assembly metrics 

can be calculated: 

• Accuracy = !"#!$
!"#%"#!$#%$

 

• Sensitivity (or Recall) = !"
!"#%$

 

• Specificity = !$
!$#%"

 

• Precision = !"
!"#%"

 

• F-measure (or F1 score) = &(!")
& !" #%"#%$

 

• False Discovery Rate (FDR) = %"
%"#!"
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Often in an RNAseq simulation, negative transcripts are not included; hence TN cannot 

be counted. In such cases, the accuracy can instead be calculated using an alternative 

metric: 

• Accuracy* = !"
!"#%"#%$

 

Despite the added benefits of simulation for measuring the performance of assemblers, 

these metrics assume that the simulation accurately reflects the nature of real RNAseq 

data. Differences in the distribution of reads or errors between the simulations and real 

data can impact the relative performance of the assemblers. Assemblers that perform well 

on simulated data may perform poorly on real data if those assumptions are not met. 

Consequently, great care must be taken to ensure that the simulated data captures the 

features of real data as accurately as possible to best characterize the performance of 

different assembly strategies.  

1.3 Contribution of Thesis 

This	thesis	contributes	to	the	field	of	transcriptome	assemblies	using	RNAseq	data	in	

three	key	ways.		First,	it	presents	the	development	of	an	RNAseq	simulation	pipeline	

that	generates	a	realistic	benchmark	library	to	measure	the	performance	of	

transcriptome	assemblers.		Second,	it	reports	a	comparative	analysis	of	seven	

commonly	used	genome-guided	and	de	novo	assemblers	using	the	benchmark	libraries	

generated	using	this	RNAseq	simulation.		Third,	it	introduces	a	consensus	method	for	

ensemble	transcriptome	assemblies	to	generate	a	more	accurate	de	novo	transcriptome	

assembly	than	any	individual	methods,	without	the	need	for	an	external	reference	
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sequence.		Taken	together,	these	contributions	show	the	current	state	of	transcriptome	

assemblies	and	highlight	strategies	to	improve	assembly	accuracy.	



	

15	

Chapter 2: Materials and Methods 

2.1 Benchmark transcriptome and simulated RNAseq 

RNAseq data sets were generated by Flux Simulator (47) using the hg38 human genome 

(available at https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg38) as the reference. The 

older hg19 human genome (available at http://genome.ucsc.edu/cgi-

bin/hgGateway?db=hg19) was also used as an alternate reference genome to assess the 

impact of using a different reference with genome-guided assemblers. The gene 

expression profile was generated by Flux Simulator using the standard parameters from 

the hg38 reference genome and transcriptome model. Approximately 250 million pairs of 

reads were generated with the given expression model with no PolyA tail. The simulated 

library construction was fragmented uniformly at random, with an average fragment size 

of 500 (± 180) nucleotides (nt). Because reads overlapping within read pairs can cause 

problems for some assemblers, fragments shorter than 150nt were removed. The 

simulated sequencing was performed using paired-end reads of read length of 76nt using 

the default error model based on the read quality of Illumina-HiSeq sequencers. Note that 

only reference transcripts with full coverage of RNAseq data were included in the 

benchmarking, as transcripts without full coverage cannot be correctly assembled as a 

single contig. This filtering removed 2,700 transcripts expressed in the benchmark 

transcriptome, leaving 14,040 unique sequences derived from 8,557 genes (5,309 have no 

alternative splicing, on average 1.64 transcripts per gene, ranging up to 13 isoforms per 

gene). 

The read pairs generated by Flux Simulator were quality filtered using Erne-filter 

version 2.0 (50). The reads were filtered using ultra-sensitive settings with a minimum 
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average quality of q20 (representing a 99% probability that the nucleotide is correctly 

reported). The filtering was performed in paired-end mode to ensure that both reads of 

the pair were either kept or discarded concurrently to keep the pairs together. The 

remaining reads were normalized using Khmer (51) with a kmer size of 32 and an 

expected coverage of 50x. The normalization was also performed in paired-end mode to 

maintain pairs. 
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Chapter 3: Results 

3.1 De novo assemblies 

This section compares the performance among four de novo transcriptome assemblers: 

idba-Tran version 1.1.1 (9), SOAPdenovo-Trans version 1.03 (8), rnaSPAdes version 

3.11.0 (12), and Trinity version 2.5.1 (7), using the simulated human RNAseq data set as 

described in the previous section. The results of the assemblies were compared against 

the benchmark transcriptome. As shown in Table 3.1, all of the tools underestimated the 

number of transcripts present, generating fewer contigs than the number of transcripts 

expected (14,040). The best performing tool among the four compared was Trinity with 

the most correct (5,782) and the highest correct/incorrect ratio (C/I = 0.8432). However, 

even with Trinity, still only 41% (5,782/14,040) of transcripts in the benchmark were 

correctly assembled; the remaining almost 60% of contigs either contained errors in the 

sequence or were missed entirely. rnaSPAdes assembled the largest number of transcripts 

(874 more unique transcripts compared to Trinity). The number of unique transcripts 

generated, 13,513, is also the closest to the expected total number of transcripts (96% of 

14,040). However, fewer of those sequences (36%) were correctly assembled than 

Trinity, lowering the overall performance across all statistics than Trinity.  

Performance statistics for each assembler is given in Table 3.2. Precision is a 

measure of how likely an assembled contig is to be correct, and recall is a measure of 

how likely the assembler is to correctly assemble a contig. In these terms, for assemblers 

with high precision, the contigs produced are more likely to be correct, but the assembly 

may miss a large number of sequences present in the sample. Conversely, assemblers 

with a high recall correctly assemble more of the sequences present in the sample, but 
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may do so at the cost of accumulating a large number of incorrectly assembled contigs. In 

these statistics, both the modified accuracy score (Accuracy*; see Section 3.3) and the F1 

score are a measure of the number of correctly assembled contigs relative to the number 

of missing and incorrectly assembled contigs. FDR is the proportion of assembled reads 

that are incorrect. Based on these statistics, Trinity is the best performing de novo 

assembler with the highest precision, recall, accuracy* and F1 score, and the lowest FDR, 

followed by rnaSPAdes then SOAPdenovo-Trans. Despite idba-Tran running multiple 

kmers and merging the results, it performed worst across every metric.  

In Table 3.1, the result from pooling (taking the union of) the outputs of multiple 

runs of each assembler across a range of kmer lengths are also shown. With these pooled 

assemblies, the proportion of correctly assembled transcripts in the benchmark for Trinity 

increased from 41% to 46%, and for rnaSPAdes from 36% to 47%. However, the pooling 

process also accumulated several times more unique incorrect sequences than additional 

correct sequences recovered. For Trinity, the C/I decreased from 0.8432 to 0.3470, and 

for rnaSPAdes this ratio decreased from 0.5900 to 0.0621.  

Although the four de novo assembly methods uses the same core approach, each 

assembler assembled a different set of sequences correctly (Figure 3.1A). Only a set of 

5,331 contigs were correctly assembled by all of the four de novo assemblers with at least 

one kmer length. Additional 813, 567, and 670 contigs were correctly assembled by at 

least three, at least two or only one of the assemblers, respectively. In contrast, the vast 

majority of the incorrectly, assembled contigs were produced by only one assembler 

(Figure 3.1B). For these contigs, 3,764 were produced by all four assemblers, while an 
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additional 2,692, 7,977 and 166,720 were produced by at least three, at least two or only 

one of the assemblers, respectively.  

3.2 Genome-guided assemblies 

This section compares the transcriptome assembly performance among three genome-

guided assemblers: Bayesembler version 1.2.0 (21), Cufflinks version 2.2.1 (22), and 

StringTie version 1.0.4 (23). To demonstrate the impact of using different reference 

genomes on genome-guided transcriptome assemblies, using both of the hg38 as well as 

hg19 genomes as the references. Assembly assessment was done against the hg38 

benchmark transcriptome.  

Table 3.3 shows the performance of each of these tools in the two scenarios 

(RNAseq data and the reference genome were derived from the same or different 

individuals or strains). As observed with de novo methods, all of these genome-guided 

methods underestimated the number of transcripts present, even more severely than de 

novo methods. In terms of the number of contigs correctly assembled, StringTie 

performed slightly better than other two methods. All three methods had comparable 

percent correct (36-41%) and C/I (0.87-0.88). While none of the genome-guided 

assemblers produced as many correctly assembled contigs as the best performing de novo 

assembler (Trinity), proportions of correctly assembled contigs were higher with 

genome-guided methods (C/I = 0.87-0.88) than with the four de novo methods (C/I = 

0.41-0.84). When the performance metrics are compared between the best performing de 

novo assembler (Trinity) and genome-guided assembler (StringTie) (Table 3.4), while 

both methods showed similar accuracy, StringTie (when using the same reference) 
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showed slightly higher precision, accuracy* and F1 and lower FDR compared to Trinity, 

but a slightly lower recall. It reflects fewer FPs and FNs produced by StringTie.  

As with the de novo assemblers, each of these tools correctly assembled a different 

set of transcripts (Figure 3.2A and C). When the assemblies were performed using the 

same reference as the simulation, all of the genome-guided tools correctly assembled a 

core set of 4,013 transcripts (Figure 3.2A). There were nearly a quarter as many (936) 

that were unique to only one genome-guided tool. When a different reference was used, 

the number of sequences correctly assembled by all of the tools dropped to 2,546 (Figure 

3.2C). Similar to the de novo assemblers, most of the incorrectly assembled contigs 

produced by each of the genome-guided assemblers were produced by only one 

assembler regardless of the reference genome used (Figure 3.2B and D). For assemblies 

using the same reference genome, 2,013 incorrectly assembled contigs were produced by 

all of the tools, while an additional 2,382 and 7,546 were produced by any two or only 

one tool, respectively (Figure 3.2B). For assemblies using a different reference genome, 

1,420 incorrectly assembled contigs were produced by all of the tools, while an additional 

1,667 and 4,772 were produced by any two or only one tool, respectively (Figure 3.2D).  

3.3 Comparison of de novo and genome-guided assemblers 

While the overall statistics are comparable between the best de novo assemblies and the 

genome-guided assemblies using the same reference genome, these tools produced 

different sets of contigs. The overlap of correctly assembled contigs between the 

assemblers from de novo with pooled kmers lengths and the three genome-guided 

assemblers are shown in Figure 3.3A. All of the de novo assemblers and at least one 

genome-guided assembler correctly assembled 4,605 contigs. An additional 629 were 
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assembled by at least three de novo and at least one genome-guided assembler and 427 

assembled by at least two de novo and at least one genome-guided assembler. 

Conversely, 3,861 contigs were correctly assembled by all of the three genome-guided 

assemblers and at least one de novo assembler, with 1,338 assembled by at least two 

genome-guided assemblers and at least one de novo assembler (Figure 3.3B). 

Additionally, these tools produced only 602 correctly assembled contigs that were not 

predicted by any de novo assembly, while 1,514 sequences were correctly assembled by 

at least one de novo assembly, but no genome-guided assemblies.  

As with the individual assemblies, fewer incorrectly assembled contigs were 

produced by all of the tools, and most are assembler specific (Figure 3.3C and D). In 

particular, only 1,387 incorrectly assembled contigs were produced by all of the de novo 

assemblers and at least one genome-guided assembler (Figure 3.3C), and only 1,593 

contigs were produced all of the genome-guided assemblers and at least one de novo 

assembler (Figure 3.3D). In contrast, 4,823 incorrectly assemblers were produced by at 

least one genome-guided assembler but no de novo assemblers, and 176,397 incorrectly 

assembled contigs were produced by at least one de novo assembler but no genome-

guided assemblers.  

Overall, these results suggest that genome-guided assemblies provide relatively few 

correctly assembled contigs relative to performing multiple de novo assemblies, even 

when using the same reference genome. However, they produce far fewer incorrectly 

assembled contigs than the pooled de novo assemblies. If the correctly assembled contigs 

produced by each of the de novo assemblies can be retained while filtering out the 

incorrectly assembled contigs, de novo assemblies can outperform all of the genome-
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guided assemblies. This result forms the motivation of ensemble assembly strategies, 

discussed in the next section.  

3.4 Ensemble assemblies  

This section compares the two ensemble transcriptome assembly methods, 

EvidentialGene version 2017.03.09 (25) and Concatenation version 1 (26) using the 

simulated RNAseq data. The strategies for these assemblies followed the 

recommendations by each method. For EvidentialGene, the pooled results from all of the 

four de novo assemblies performed across the full range of kmer lengths (described in 

Section 3.1) were used. For Concatenation, the results of a single assembly each from 

idba-Tran (using kmer length of 50), rnaSPAdes (with default kmer selection), and 

Trinity (with default kmer length). These assemblers were chosen to match the 

assemblies used in (26), substituting the commercial CLC Assembly Cell 

(https://www.qiagenbioinformatics.com/products/clc-assembly-cell/) with freely 

available rnaSPAdes.  

In addition to the two ensemble methods, we also included three "consensus" 

approaches taking the consensus of the pooled de novo methods. These consensus 

assemblies involve keeping all of the unique protein sequences produced by any two, 

three and four tools (named Consensus 2, Consensus 3 and Consensus 4, respectively). 

Note that Consensus 4 is a subset of Consensus 3, and Consensus 3 is a subset of 

Consensus 2.  

The performance of these ensemble strategies is shown in Table 3.5. Both of 

EvidentialGene and Concatenation resulted in an over-estimation in the number of 

transcripts present. Interestingly, while Concatenation produced a larger total number of 
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transcripts (19,767) than EvidentialGene (19,177), ~2,300 of those sequences were 

redundant, leading to fewer unique sequences (17,497 by Concatenation). Additionally, 

Concatenation both kept more of the correctly assembled contigs from the individual de 

novo assemblies, and removed more of the incorrectly assembled contigs than 

EvidentialGene. These differences lead Concatenation to outperform EvidentialGene 

across every statistic (Table 3.6). The performance of the consensus approach varied 

based on the number of assemblers required.  

Consensus 2 produced the most correctly assembled contigs of any method 

(6,711), but at the cost of more incorrectly assembled contigs than Concatenation 

(14,433). However, both Consensus 3 and Consensus 4 kept the majority of the correctly 

assembled contigs while reducing the number of incorrectly assembled contigs by 

roughly half or three quarters, respectively. Consensus 4 had highest precision (0.5861) 

and lowest FDR (0.4139) of any method, but the additional reduction in the number of 

correctly assembled contigs lead to Consensus 3 having the highest accuracy* (0.2998) 

and F1 score (0.4613).  

In Figure 3.4 all individual methods (both de novo and genome-guided) as well as 

ensemble methods are compared. Concatenation performed more poorly than Trinity 

despite the Trinity assembly forming part of the ensemble. In contrast, Consensus 3 kept 

more correctly assembled contigs than any individual assembly, with fewer incorrectly 

assembled than any approach except Consensus 4. This test highlights the weakness of 

ensemble assembly strategies to retain the incorrect version of a transcript, even if the 

correct version of the transcript exists in the individual assemblies. More robust methods, 
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such as the consensus approaches we showed, are needed to reliably improve over 

individual assemblies. 
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Figure 3.1: Venn diagrams showing the pooled sequences across all k-mers of each de 
novo assembler. 

A) Correctly assembled sequences, where the protein sequence of the contig matches the 
protein sequence in the benchmark transcriptome. B) Incorrectly assembled sequences, 
where the protein sequence of the contig does not exactly match any protein sequence in 
the benchmark transcriptome. 

 

  



	

26	

 
Figure 3.2: Venn diagrams showing the sequences from all of the genome-guided 
assemblers. 

A) Correctly assembled sequences using the same reference genome, where the protein 
sequence of the contig matches the protein sequence in the benchmark transcriptome. B) 
Incorrectly assembled sequences using the same reference genome, where the protein 
sequence of the contig does not exactly match any protein sequence in the benchmark 
transcriptome. C) Correctly assembled sequences using a different reference genome, 
where the protein sequence of the contig matches the protein sequence in the benchmark 
transcriptome. D) Incorrectly assembled sequences using a different reference genome, 
where the protein sequence of the contig does not exactly match any protein sequence in 
the benchmark transcriptome. 
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Figure 3.3: Venn diagrams showing the pooled sequences across all k-mers of each de 
novo assembler and the pooled sequences from all of the genome-guided assemblers. 

A) Correctly assembled sequences for each de novo assembler and combined genome-
guided assemblers. B) Correctly assembled sequences for each genome-guided assembler 
and combined de novo assemblers.  C) Incorrectly assembled sequences for each de novo 
assembler and combined genome-guided assemblers. D) for each genome-guided 
assembler and combined de novo assemblers. 
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Figure 3.4: Performance comparison among all assemblers including de novo, genome-
guided, and ensemble strategies. 

Simulated RNAseq data were used for testing, and the default parameters were used for 
each assembler. See Tables 3.1, 3.3, and 3.5 for the actual numbers. The expected 
number of contigs is 14,040. 
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Table 3.1:Performance of individual de novo assemblers on simulated RNAseq library 
using default parameters or pooled across multiple kmer lengths. 

 Totala Uniquea Correct (%)b Incorrect CI ratioc 
[Default]      
idba-Tran 11943 11941 3504 (24.96) 8437  0.4153 
SOAPdenovo-Trans 12902 11830 3754 (26.74) 8076  0.4648 
rnaSPAdes 15670 13513 5014 (35.71) 8499  0.5900 
Trinity 14044 12639 5782 (41.18) 6857  0.8432 

[Pooled]d      
idba-Tran 170358 41849 6391 (45.52) 35458  0.1802 
SOAPdenovo-Trans 297192 50504 6059 (43.16) 44445  0.1363 
rnaSPAdes 765525 113975 6665 (47.47) 107310  0.0621 
Trinity 89126 25045 6452 (45.95) 18593  0.3470 

aNumber of contigs assembled. 

bProportion (%) of transcripts in the benchmark that were correctly assembled. 

c(Number of correctly assembled contigs)/(number of incorrectly assembled contigs). 

dPooled results from using multiple kmers as follows: 15, 19, 23, 27, and 31 for Trinity; 

15 kmer values ranging from 15 to 75 in increments of 4 for SOAPdenovo-Trans and 

rnaSPAdes; 20, 30, 40, 50, and 60 for idba-Tran. 
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Table 3.2: Performance statistics of individual de novo assemblers using default 
parameters on simulated RNAseq library 

 Precision Recall Accuracy* F1 FDR 
idba-Tran 0.2934 0.2496 0.1559 0.2697 0.7066 
SOAPdenovo-Trans 0.3173 0.2674 0.1697 0.2902 0.6827 
rnaSPAdes 0.3711 0.3571 0.2225 0.3640 0.6289 
Trinity 0.4575 0.4118 0.2767 0.4334 0.5425 
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Table 3.3: Performance of individual genome-guided assemblers using default 
parameters on simulated RNAseq library with both the same and different references 
genome as the benchmark transcriptome. 
 Total Unique Correct (%) Incorrect CI Ratio 
[Same reference]     
Bayesembler 12989 11482 5327 (37.94) 6155  0.8655 
Cufflinks 11257 10733 4992 (35.56) 5741  0.8695 
StringTie 13218 12147 5696 (40.57) 6451  0.8830 
     
[Different reference]      
Bayesembler 8536 7479 3345 (23.82) 4134  0.8091 
Cufflinks 7234 6906 3078 (21.92) 3828  0.8041 
StringTie 8608 7867 3466 (24.69) 4401  0.7875 
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Table 3.4: Performance statistics of individual genome-guided assemblers using default 
parameters on simulated RNAseq library with both the same and different references 
genome as the benchmark transcriptome. 

 Precision Recall Accuracy* F1 FDR 
[Same reference]     
Bayesembler 0.4639 0.3794 0.2638 0.4174 0.5361 
Cufflinks 0.4651 0.3556 0.2524 0.4030 0.5349 
StringTie 0.4689 0.4057 0.2780 0.4350 0.5311 
      
[Different reference]     
Bayesembler 0.4473 0.2382 0.1841 0.3109 0.5527 
Cufflinks 0.4457 0.2192 0.1723 0.2939 0.5543 
StringTie 0.4406 0.2469 0.1880 0.3164 0.5594 
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Table 3.5: Performance of individual ensemble assembly strategies using the de novo 
assemblies. 

 Total Unique Correct (%) Incorrect CI Ratio 
EvidentialGene 19177 19175 2267 (16.15)  16908  0.1341 
Concatenation 19767 17497 4697 (33.45) 12800  0.3670 
Consensus 2 21444 21444 6711 (47.80) 14433  0.4650 
Consensus 3 12600 12600 6144 (43.76) 6456  0.9517 
Consensus 4 9095 9095 5331 (37.97) 3764  1.416 
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Table 3.6: Performance statistics of ensemble assembly strategies using de novo 
assemblies on simulated RNAseq library. 

 Precision Recall Accuracy* F1 FDR 
EvidentialGene 0.1182 0.1615 0.0733 0.1365 0.8818 
Concatenation 0.2684 0.3345 0.1750 0.2979 0.7316 
Consensus 2 0.3174 0.4780 0.2357 0.3815 0.6826 
Consensus 3 0.4876 0.4376 0.2998 0.4613 0.5124 
Consensus 4 0.5861 0.3797 0.2994 0.4609 0.4139 
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Chapter 4: Conclusions  

Transcriptome assembly can be approached from multiple different strategies. 

Historically, these approaches have revolved around assembling short but highly accurate 

Illumina reads with or without an existing genome assembly as a reference, referred to as 

genome-guided or de novo assemblies, respectively. All of the widely used de novo 

assemblers decompose the short reads into smaller kmers and use de Bruijn graphs built 

on these kmers to attempt to reconstruct the original transcripts. Due to the limitations of 

the de Bruijn graphs, this approach presents a trade-off between the uniqueness of the 

longer kmers and increased coverage of the shorter kmers. As a result, different kmer 

lengths can produce drastically different graphs, leading to large differences in the final 

assemblies.  

Genome-guided assemblers avoid the limitations of the de Bruijn graphs by 

mapping the reads to the reference genome. This mapping, however, introduces its own 

limitations and trade-offs. Reads that are ambiguous between splice forms in the same 

genomic locations or across multiple genomic locations create similar challenges to the 

de Bruijn graphs. These ambiguities are compounded when the mapping must take into 

account mismatches due to sequencing errors as well as biological variations.  

The limitations of the individual tools can potentially be overcome by combining 

multiple different assemblies in ensemble. As each tool and set of parameters results in a 

different set of correctly assembled contigs, accurately selecting these correctly 

assembled contigs without selecting any redundant incorrectly assembled contigs would 

leverage the strengths of each methods without the weaknesses of any. However, 

currently available ensemble strategies cannot guarantee that the correct sequence is 
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chosen, leading to ensemble assemblies that are less accurate than individual assemblies. 

As the selection criteria for ensemble methods improve, such as with the “Consensus” 

approach shown here, these methods can also leverage new assembly approaches that can 

better handle certain subsets of transcripts (e.g. alternative splice forms) that may have 

other weaknesses that prevent them from being competitive as a general transcript 

assembly tool. 

Overall, as our results demonstrated, transcriptome assemblies can still be 

improved, regardless of the approach used. While the genome-guided assemblers 

generally perform best when the assembly is performed against the same reference 

sequence that the RNAseq data was generated from, this is not universally true. 

Furthermore, when these sequences differ, the genome-guided assemblers may have 

lower accuracy than the de novo assemblers. While ensemble assembly strategies can 

potentially improve on accuracy over individual assemblies, it is also possible that they 

instead reduce the accuracy. Improving the performance of these tools, whether 

individual assemblers, ensemble strategies, or combined with long-read sequencing, will 

improve the accuracy of the reconstructed transcriptome. These improvements will also 

increase the accuracy of downstream analyses, such as sequence annotation, 

quantification, and differential expression. 
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