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Eikonal perturbation theory in photoionization
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1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,
Pasteura 5, 02-093 Warszawa, Poland
2 Department of Physics and Astronomy, University of Nebraska, Lincoln,
Nebraska 68588-0299, USA

E-mail: katarzyna.krajewska@fuw.edu.pl

Abstract. The eikonal perturbation theory is formulated and applied to photoionization by
strong laser pulses. A special emphasis is put on the first order approximation with respect
to the binding potential, which is known as the generalized eikonal approximation [2015 Phys.
Rev. A 91 053417]. The ordinary eikonal approximation and its domain of applicability is
derived from the generalized eikonal approximation. While the former approach is singular for
the electron trajectories which return to the potential center, the generalized eikonal avoids this
problem. This property makes it a promising tool for further investigations of rescattering and
high-order harmonic generation processes.

1. Introduction
The strong-field approximation (SFA), originated from works of Keldysh [1], Faisal [2] and
Reiss [3], has had a pivotal role in the development of strong-laser physics. It describes
the situation when the laser field is considered to be much more intense than the atomic
interaction experienced by ionized electrons with their residual ions. In other words, it neglects
the interaction of electrons with their parent ions after ionization. While frequently used, its
application to the analysis of photoionization of neutral atoms remains questionable due to the
long-range nature of the Coulomb potential. Thus, many efforts have been undertaken in order
to include the effects of long-range potentials into this theory. For example, in the improved
strong-field approximation, the Coulomb interaction is included as a perturbation, leading to the
Born series expansion [4, 5, 6]. In this context, the Coulomb-Volkov ansatz [7, 8, 9, 10], which
accounts for the asymptotic phase of the atomic field-free wave function, was also introduced.
The latter, combined with the quantum trajectory method [11, 12, 13, 14, 15], have made
considerable improvements in the SFA to include the Coulomb interactions [14].

In another effort to introduce the binding potential in the theory, the eikonal approximation
was applied to describe photoionization processes. In general, this quasiclassical approximation
is extensively used to analyze scattering processes at high energies and small angles [16, 17],
regime for which the perturbation theory is not good enough (see, also Ref. [18]). It has been
applied, for instance, to study the electron scattering with laser fields in the relativistic and non-
relativistic frameworks [19]. The application of the so-called Molière-Glauber eikonal [20, 21] to
ionization provided a new tool to treat photoelectron dynamics in the presence of strong laser
fields [22, 23]. In this context, the eikonal-Volkov approximation was also introduced [24, 25].
This consisted in including the laser field in full extent by means of the Volkov wave function,
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together with the ionic potential treated within the eikonal approximation. This approach was
further developed to describe molecular ionization [26].

Following our recent work [27], we present the eikonal perturbation theory and its application
to strong-field ionization. This approach in the first order with respect to the binding potential,
which we call the generalized eikonal approximation, avoids a singularity at the potential center.
Thus, in contrast to the original eikonal approximation [20, 21], it is not singular for returning
electron trajectories. This is illustrated in this paper numerically by direct comparison between
the generalized and ordinary eikonals calculated along the complex-time quantum trajectories.
As a result, we avoid an unphysical behavior of probability distributions of ionization, which is
observed when the ordinary eikonal approximation is used [27].

Throughout this paper, the atomic units (a.u.) are used, in which ~ = 1 but we explicitly
keep the electron charge (e < 0) and mass (m) in the equations. In numerical calculations, both
quantities are set to |e| = 1 and m = 1.

2. Generalized eikonal approximation
Consider an electron of charge e < 0 and mass m placed in an external potential V (r, t) and in
a laser field; the latter being characterized by the vector potential A(t). The propagator that
describes the electron dynamics in the velocity gauge, KV (r, t; r′, t′), satisfies the equation,(

−i
∂

∂t′
− 1

2m
[i∇′ − eA(t′)]2 − V (r′, t′)

)
KV (r, t; r′, t′) = iδ(t− t′)δ(r − r′). (1)

We seek for the solution of this equation using the proper time representation [19],

KV (r, t; r′, t′) =

∫ ∞
0

ds

∫
dΩ d3k

(2π)4
exp

[
−iΩ(t− t′) + ik · (r − r′) + is

(
Ω− k2

2m
+ iε

)
+iΦk(t′, s) + iχk(r′, t′, s)

]
, (2)

where ε > 0 is introduced for convergence. Plugging this ansatz into Eq. (1), we obtain two
independent equations satisfied by the unknown functions, Φk(t′, s) and χk(r′, t′, s),( ∂

∂t′
− ∂

∂s

)
Φk(t′, s) =− e

m
A(t′) ·

[
k − e

2
A(t′)

]
, (3)( ∂

∂t′
− ∂

∂s

)
χk(r′, t′, s) =− 1

m

[
k − eA(t′)

]
·∇′χk(r′, t′, s) + V (r′, t′)

+
1

2m

(
∇′χk(r′, t′, s)

)2 − i

2m
∆′χk(r′, t′, s). (4)

Eq. (3) can be easily solved, leading to

Φk(t′, s) =

∫ t′+s

t′
dτ

e

m
A(τ) ·

[
k − e

2
A(τ)

]
. (5)

Eq. (4), on the other hand, is a nonlinear second order differential equation which can be solved
explicitly only for particular potentials. Other than that, one can formulate a general approach
of treating Eq. (4) perturbatively.

As shown in Ref. [27], the solution of Eq. (4), the so-called eikonal, can be represented in the
form

χk(r′, t′, s) =−
∫ t′+s

t′
dσ

∫
d3ρ

( m

2πi(σ − t′)

)3/2
exp
( im

2(σ − t′)
[Rk(r′, t′, σ)− ρ]2

)
×Wk(ρ, σ, t′ + s− σ). (6)
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Here,

Rk(r′, t′, σ) = r′ +
1

m

∫ σ

t′
dτ [k − eA(τ)] (7)

is interpreted as a free electron trajectory in the laser field and Wk(r′, t′, s) is defined as

Wk(r′, t′, s) = V (r′, t′) +
1

2m

(
∇′χk(r′, t′, s)

)2
. (8)

This is the starting point for developing the eikonal perturbation theory. Specifically, in the first
approximation, when

W
(1)
k (r′, t′, s) ≈ V (r′, t′), (9)

one obtains

χ
(1)
k (r′, t′, s) = −

∫ t′+s

t′
dσ

∫
d3ρ

( m

2πi(σ − t′)

)3/2
exp
( im

2(σ − t′)
[Rk(r′, t′, σ)− ρ]2

)
V (ρ, σ).

(10)

In the following, we shall call χ
(1)
k (r′, t′, s) the generalized eikonal. Note that it also defines the

propagator (2) in the first order eikonal approximation,

K
(1)
V (r, t; r′, t′) =

∫
d3k

(2π)3
exp

[
ik ·(r−r′)− i(t−t′) k

2

2m
+iΦk(t′, t−t′)+iχ

(1)
k (r′, t′, t−t′)

]
, (11)

where, in Eq. (2), we have explicitly performed the integrals over s and Ω.
For our further purpose, let us represent the generalized eikonal (10) such that

χ
(1)
k (r′, t′, s) = −

∫ t′+s

t′
dσ V

(1)
eff

(
Rk(r′, t′, σ), t′, σ

)
, (12)

where we have introduced the effective potential,

V
(1)

eff

(
Rk(r′, t′, σ), t′, σ

)
=

∫
d3ρ

( m

2πi(σ − t′)

)3/2
exp
( im

2(σ − t′)
[Rk(r′, t′, σ)− ρ]2

)
V (ρ, σ).

(13)
As argued in Ref. [27], the effective potential differs from the classical one, V (r, t), by quantum
corrections which vanish in the limit ~ → 0. This means that the effective potential accounts
for the spreading of the electron wave packet during the time evolution. Thus, it eliminates the
problem with rescattering trajectories, as it will be illustrated numerically in Sec. 4.

In closing this Section we note that, for the generalized eikonal approximation [Eq. (9)] to be

applicable, it must hold that
(
∇′χk(r, t, s)

)2 � 2m|V (r, t)|. This condition is very well satisfied
for numerical illustrations presented in Sec. 4. Following the first order approximation, we note
that Eq. (8) allows us to define the recurrence relation,

W
(n+1)
k (r′, t′, s) = V (r′, t′) +

1

2m

(
∇′χ(n)

k (r′, t′, s)
)2

(14)

and, as a consequence, to define the generalized eikonal (6) in subsequent orders. Investigations
of higher order terms in the eikonal perturbation theory are, however, beyond the scope of this
paper.
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3. Generalized eikonal for the Coulomb potential
For the Coulomb potential describing the interaction of an electron and a nucleus of charge −Ze,
where Z = 1, 2, ... is the atomic number, we have V (r, t) = −Zαc/r. Here, α = e2/(4πε0c) is the
fine structure constant (in a.u., αc = 1). Thus, the generalized eikonal defined in (10) becomes

χ
(1)
k (r′, t′, s) =

∫ t′+s

t′
dσ

∫
d3ρ

( m

2πi(σ − t′)

)3/2Zαc

ρ
exp
( im

2(σ − t′)
[Rk(r′, t′, σ)− ρ]2

)
. (15)

Performing the integral over ρ, we arrive at

χ
(1)
k (r′, t′, s) = Zαc

∫ t′+s

t′
dσ

1

|Rk(r′, t′, σ)|
erf
(√ m

2i(σ − t′)
|Rk(r′, t′, σ)|

)
, (16)

where erf(z) is the error function.
The originally used eikonal [20, 21, 19, 26],

χk,original(r
′, t′, s) = Zαc

∫ t′+s

t′
dσ

1

|Rk(r′, t′, σ)|
, (17)

is recovered from Eq. (16), if
√

m
2(σ−t′) |Rk(r′, t′, σ)| � 1. Note that this condition is satisfied

for short-time intervals σ ≈ t′, given that |Rk(r′, t′, σ)| 6= 0. For σ 6≈ t′, it requires that
|Rk(r′, t′, σ)| 6→ 0. As it was shown in Ref. [27], in the limit when |Rk(r′, t′, σ)| → 0, the
generalized eikonal (16) presents an integrable singularity. This suggests that the generalized
eikonal approximation is applicable even to cases when the electron trajectory can return back
to the origin of the Coulomb potential. This is in contrast to the original eikonal (17), which
diverges logarithmically for such trajectories.

4. Application of the generalized eikonal approximation to ionization
In this paper, we apply the generalized eikonal approximation to ionization of a hydrogen-like
atom by a modulated laser pulse. We assume that the pulse lasts for time T , i.e., it is described
by the electric field E(t) which vanishes for t < 0 and t > T . The pulse duration T defines the
fundamental frequency of field oscillations, ω = 2π/T . One can also introduce the field phase,
φ = ωt, which allows us to rewrite the above condition such that E(φ) vanishes for φ < 0 and
φ > 2π. We also assume that the driving pulse is linearly polarized along the z-axis.

4.1. Model of the laser pulse
In the dipole approximation, we describe the laser field by the electric field vector

E(φ) = E0fE(φ)ez, (18)

where E0 is related to the amplitude of field oscillations. We consider the shape function fE(φ)
such that

fE(φ) =

{
sin2(Nrep

φ
2 ) sin(Nrepφ), φ ∈ [0, 2π],

0, otherwise.
(19)

This means that the pulse consists of Nrep modulations (Nrep = 1, 2, 3, ...), each one being a
single-cycle pulse. We also define the shape function for the vector potential A(φ) such that

fA(φ) = −
∫ φ

0
fE(ϕ)dϕ, (20)

which leads to

A(φ) =
E0

ω
fA(φ)ez. (21)

Note that, for our choice of the shape function (19), the condition A(2π) = A(0) = 0 holds.
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4.2. Probability amplitude of ionization using the generalized eikonal approximation
As derived in Ref. [27], under the generalized eikonal approximation, the probability amplitude
to ionize a hydrogen-like atom equals

A(1)(p) =− i

∫ T

0
dt ′ei p2

2m
T−iE0t′

∫
d3r

∫
d3r′ψ

(−)∗
p (r)K

(1)
L (r, T ; r′, t′)(−eE(t′) · r′)ψ0(r′). (22)

Here, we assume that ψ0(r) = λ
√

λ
π e−λr is the ground state of a hydrogen-like atom with energy

E0 = − λ2

2m [λ = (Za0)−1, a0 is the Bohr radius] whereas ψ
(−)
p (r) is the scattering state describing

the ionized electron of momentum p. Note that the probability amplitude (22) is expressed in

the length gauge. Thus, K
(1)
L (r, T ; r′, t′) represents the electron propagator in the length gauge

as well. More specifically,

K
(1)
L (r, t; r′, t′) =

∫
d3k

(2π)3
exp

[
i(k − eA(t)) · r − i(k − eA(t′)) · r′ − i(t− t′) k

2

2m

+iΦk(t′, t− t′) + iχ
(1)
k (r′, t′, t− t′)

]
, (23)

which follows from Eq. (11) after applying the gauge transformation [27].

In order to proceed, it was assumed in Ref. [27] that the final electron state ψ
(−)
p (r) is

essentially the plane wave. This made it possible to explicitly perform the integral over r in
Eq. (22). The remaining integrals were reformulated such that

A(1)(p) = −i
ei(p2/2m−E0)T

ω

∫ 2π

0
dφ

∫
d3r′e−i(p−eA(φ))·r′

(−eE(φ) · r′)ψ0(r′)eiW [φ,p|rcl]. (24)

Here, the functional W [φ,p|rcl], which depends on the classical electron trajectory,

rcl(σ; r′, φ,p) ≡ rcl(σ) = Rp

(
r′,

φ

ω
,
σ

ω

)
, (25)

has been introduced. More specifically,

W [φ,p|rcl] = S[φ|rcl] +mωrcl(φ) · r′cl(φ)− p · rcl(2π), (26)

with the action and the effective Lagrangian equal to

S[φ|rcl] =
1

ω

∫ 2π

φ
dσLeff(rcl(σ), r′cl(σ), σ), (27)

Leff(rcl(σ), r′cl(σ), σ) =
mω2

2
[r′cl(σ)]2 + eE(σ) · rcl(σ)− V (1)

eff (rcl(σ), σ − φ) + E0, (28)

respectively. Since the effective potential describing the interaction of the photoelectron and its
parent ion oscillates rapidly, in Eq. (24) we apply the saddle-point method. While the details of
the derivations are presented in Ref. [27], we remind that, instead of classical trajectories, the
complex-time quantum trajectories are used in these derivations.

4.3. Complex-time quantum trajectories
The complex-time quantum trajectory is the solution of the classical Newton equation in the
laser field,

r′′q (φ;p, φs) =
e

mω2
E(φ), (29)
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where the ‘prime’ means the derivative with respect to φ. Here, φs defines the initial phase for
which the following conditions are satisfied,

Re[rq(φs;p, φs)] = 0, [mωr′q(φs;p, φs)]
2 = −λ2. (30)

It turns out that the initial phase is the solution of the equation,

∂

∂φ
G(p, φ)

∣∣∣
φ=φs

= 0, (31)

with

G(p, φ) =
1

ω

∫ φ

0
dφ′
{ [p− eA(φ′)]2

2m
− E0

}
. (32)

The quantum trajectories, satisfying the conditions (30), can be written in the form [27]

rq(φ;p, φs) =
p

mω
[φ− Re(φs)] +

e

m
α(φ)− e

m
Re[α(φs)], (33)

where α(φ) = − 1
ω

∫ φ
0 A(ϕ)dϕ. In addition, the trajectories (33) satisfy the conditions,

Im[rq(Reφ;p, φs)] = 0, Im[r′q(Reφ;p, φs)] = 0. (34)

Since we deal with the Coulomb-free trajectories, if the laser pulse is switched off the electron
will carry the momentum p. In other words,

mωr′q(2π;p, φs) = p. (35)

This agrees with the assumption that the electron final state is approximated by the plane wave
solution.

4.4. Probability amplitude of ionization using the saddle-point approach
After applying the saddle-point method along with the complex-time quantum trajectories with
respect to Eq. (24), the probability amplitude of ionization of a hydrogen-like atom by a finite
laser pulse becomes

A(1)
saddle(p) = −2

√
λ

π

( πλ
mω

)2
eiΦ0(p)

∑
s

eiG(p,φs)+iχ
(1)
q (p,φs)

G′′(p, φs)
. (36)

The summation is over all solutions of Eq. (31) with Im[φs] > 0 (since now on, called the saddle
points). Let us note, however, that the most important contributions to the sum in (36) come
from these saddle points which satisfy the conditions,

Im[G(p, φs)] > 0, Im[G′′(p, φs)] > 0, (37)

and result in the smallest value of Im[G(p, φs)]. Therefore, only those points will be considered
in our numerical illustrations presented in the next Section. In Eq. (36), we have also introduced

the abbreviation Φ0(p) =
( p2

2m − E0

)
T − G(p, 2π). Moreover, χ

(1)
q (p, φs) present there is the

generalized eikonal (16) calculated along the quantum trajectory (33) starting at φs,

χ(1)
q (p, φs) =

Zαc

ω

∫ 2π

φs

dσ
1

|rq(σ;p, φs)|
erf
(√ mω

2i(σ − φs)
|rq(σ;p, φs)|

)
. (38)

Following Eq. (17), one can also define the original eikonal,

χq,original(p, φs) =
Zαc

ω

∫ 2π

φs

dσ
1

|rq(σ;p, φs)|
. (39)

It defines the respective probability amplitude of ionization, which is essentially the same as

Eq. (36) except that χ
(1)
q (p, φs) has to be replaced by χq,original(p, φs).
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Figure 1. Real (solid blue lines) and imaginary (dashed red lines) parts of the quantum
trajectories (in a.u.), calculated from Eq. (33), for an electron with the kinetic energy Ep =
3.13eV. The electron is ionized by a modulated pulse defined by Eqs. (18) and (19) where
Nrep = 3, ωL = 1.55eV and I = 3.125×1013W/cm2. Each panel represents a trajectory starting
at a different saddle point φs. Only the essential saddle points are considered.

4.5. Numerical illustrations
To illustrate numerically the introduced theory, we calculate first the complex-time quantum
trajectories defined by Eq. (33). For this purpose, we consider a Ti:sapphire laser working at
frequency ωL = 1.55eV. We assume that it produces a modulated pulse, as defined by Eqs. (18)
and (19), which consists of three single-cycle modulations (Nrep = 3). The averaged intensity

carried out by the pulse, which in general is defined as I =
〈
cε0E2

〉
= 1

2π

∫ 2π
0 cε0E2(φ)dφ, equals

I = 3.125×1013W/cm2. Let us also remind that the pulse is linearly polarized in the z-direction.
As introduced in Ref. [27], one can define the ponderomotive energy of electron free oscillations
in such a laser field, Up. For the current parameters, Up = 1.024ωL.

In Fig. 1, we present the quantum trajectories starting at saddle points φs for a photoelectron
that is detected with energy Ep = 3.13eV ≈ 3Up at the polar angle θp = 0.2π. The same but for
the electron with energy Ep = 12.22eV ≈ 12Up is shown in Fig. 2. Since the laser field is linearly
polarized the results are independent of the azimuthal angle of the electron, ϕp. Actually, for
the laser field consider in this example there are 24 saddle points. However, only those saddle
points which satisfy the conditions (37) and posses the smallest Im[G(p, φs)] have been chosen
for numerical illustrations. As we have checked this numerically, the remaining saddle points
have a marginally small contribution to the probability amplitude of ionization (36). Therefore,
we do not consider them for the purpose of these and subsequent figures. Here, we plot the
real (solid blue lines) and imaginary (dashed red lines) parts of the quantum trajectories which
originate from the essential saddle points. As we have checked this, these saddle points relate
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Figure 2. The same as in Fig. 1 but for Ep = 12.22eV.

to either the maximum or minimum of the electric field. The trajectories starting at the former
points are plotted in the left column of Figs. 1 and 2, whereas the trajectories starting at the
latter points are plotted in the right column of Figs. 1 and 2. Note that these trajectories are
parametrized by Cartesian coordinates xq and zq. When comparing Figs. 1 and 2, we note a
significant difference of the scale of xq.

It can be seen in Fig. 1 that, for Ep = 3.13eV ≈ 3Up, the real part of some of the quantum
trajectories approach the ion after the electron is ionized. This is shown in the top and middle
panels of the left column. For Ep = 12.22eV ≈ 12Up (Fig. 2), already shortly after ionization,
xq acquires large values and the electron never comes back near the potential center. As it will
become clear shortly, the trajectories which come back to its center lead to singularities in the
formulation based on the original eikonal approximation. Our generalized eikonal approximation
avoids this problem.

In Fig. 3, we plot the real and imaginary parts of the original eikonal, χq, original(p, φs), which
is defined by Eq. (39). The eikonal is calculated along the quantum trajectories which start at
the saddle points at either the maximum (solid blue lines) or minimum (dashed red lines) of
the laser field. As before, these saddle points fulfill the conditions (37) and have the smallest
Im[G(p, φs)]. As we can observe, the real parts of χq,original(p, φs) exhibit the sharp peaks at
two instances. This happens for those trajectories which return very close to the origin of the
Coulomb potential, and which are plotted in Fig. 1. Note that the fact that the original eikonal is
singular for the returning trajectories is a consequence of its definition, i.e., Eq. (39). Moreover,
we see in Fig. 3 that the rapid change of Reχq, original(p, φs) happens when the photoelectron
energy passes through the value 3Up. This explains why in Fig. 10 of Ref. [27] the corresponding
energy distribution of ionization shows unphysical wiggles around this energy. In contrast, such a
behavior is not observed in [27] when the generalized eikonal approximation is used. The reason

24th International Laser Physics Workshop (LPHYS’15) IOP Publishing
Journal of Physics: Conference Series 691 (2016) 012003 doi:10.1088/1742-6596/691/1/012003

8



0 10 20 30
0

10

20

Ep/ωL

R
e
χ
q,
o
ri
g
in
a
l

0 10 20 30

−0.6

−0.4

−0.2

0

Ep/ωL

Im
χ
q,
o
ri
g
in
a
l

0 10 20 30
0

10

20

Ep/ωL

R
e
χ
q,
o
ri
g
in
a
l

0 10 20 30

−0.6

−0.4

−0.2

0

Ep/ωL

Im
χ
q,
o
ri
g
in
a
l

0 10 20 30
0

0.5

1

Ep/ωL

R
e
χ
q,
o
ri
g
in
a
l

0 10 20 30

−0.6

−0.4

−0.2

0

Ep/ωL

Im
χ
q,
o
ri
g
in
a
l

Figure 3. Imaginary and real parts of the original eikonal, χq, original(p, φs), calculated according
to Eq. (39), as a function of the electron energy. Solid blue lines represent the trajectories starting
at the essential saddle points which appear at the maximum of the electric field whereas the
dashed red lines are for the essential saddle points which appear at the minimum of the electric
field. The laser field parameters are ωL = 1.55eV, I = 3.125× 1013W/cm2 and Nrep = 3.
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Figure 4. The same as in Fig. 3 but for the generalized eikonal, χ
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q (p, φs), given by Eq. (38).
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being that the generalized eikonal, χ
(1)
q (p, φs), defined by Eq. (38), is not singular even for those

trajectories which come back to the potential center (see, Fig. 4). Thus, the lack of spurious
behavior of trajectories returning back to the vicinity of the parent ion makes the approach
presented here an attractive tool for investigations of ionization, rescattering and high-order
harmonic generation by strong laser pulses. This includes also more complex systems such as
diatomic molecules or fullerenes.

5. Conclusions
In this paper, we have presented the basics of the eikonal perturbation theory. We have
focused on its first term, the generalized eikonal approximation [27], when applied to strong-field
ionization. A comparison with the original eikonal approximation, introduced in Refs. [20, 21],
was performed. It turned out that, while the original eikonal is singular for electron trajectories
which return to the Coulomb potential center, the generalized eikonal does not share this
property. Thus, in contrast to the original eikonal, the newly developed approach does not lead
to unphysical behavior of the probability distributions of ionization [27]. Its further applications
to rescattering and high-order harmonic generation are being considered.
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[19] Kamiński J Z 1984 Acta Phys. Pol. A 66 517
[20] Molière G 1947 Z. Naturforsch. 2 133
[21] Glauber R J 1959 Lectures in Theoretical Physics ed. W E Brittin and L G Dunham (New York: Interscience)

vol 1 pp 315-414
[22] Banerji J and Mittelman M H 1981 J. Phys. B 14 3717
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