6-1-1985

Coccidian Parasites (Apicomplexa: Eimeriidae) of *Microtus* spp. (Rodentia: Arvicolidae) from the United States, Mexico, and Japan, with Descriptions of Five New Species

Tedman L. Vance
Louisiana State University

Donald W. Duszynski
University of New Mexico, eimeria@unm.edu

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs

Part of the [Parasitology Commons](http://digitalcommons.unl.edu/parasitologyfacpubs)

Vance, Tedman L. and Duszynski, Donald W., "Coccidian Parasites (Apicomplexa: Eimeriidae) of *Microtus* spp. (Rodentia: Arvicolidae) from the United States, Mexico, and Japan, with Descriptions of Five New Species" (1985). *Faculty Publications from the Harold W. Manter Laboratory of Parasitology*. Paper 161.
http://digitalcommons.unl.edu/parasitologyfacpubs/161

This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Coccidian Parasites (Apicomplexa: Eimeriidae) of Microtus spp. (Rodentia: Arvicolidae) from the United States, Mexico, and Japan, with Descriptions of Five New Species

Author(s): Tedman L. Vance and Donald W. Duszynski

Published by: The American Society of Parasitologists

Stable URL: http://www.jstor.org/stable/3282011

Accessed: 21/04/2010 00:43

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=asp.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The American Society of Parasitologists is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Parasitology.
COCCIDIAN PARASITES (APICOMPLEXA: EIMERIIDAE) OF MICROTUS SPP. (RODENTIA: ARVICOLIDAE) FROM THE UNITED STATES, MEXICO, AND JAPAN, WITH DESCRIPTIONS OF FIVE NEW SPECIES

Tedman L. Vance* and Donald W. Duszynski
Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131

ABSTRACT: Beginning in July 1980, 149 voles (Microtus spp.) representing 9 species and 14 subspecies collected in Japan, Mexico and the United States were examined for coccidia; 67 (45%) had oocysts in their feces. These included 1 of 3 (33%) M. californicus sactidiegi; 0 of 1 M. longicaudus longicaudus; 0 of 1 M. l. macrurus; 48 of 111 (43%) M. mexicanus including 11 of 26 (42%) M. m. fulviventer, 1 of 2 (50%) M. m. fundatus, 13 of 31 (42%) M. m. mexicanus, 1 of 4 (25%) M. m. mogollonensis and 22 of 48 (46%) M. m. subsimus; 5 of 8 (63%) M. montanus arizonensis; 6 of 6 M. montebelli montebelli; 2 of 4 (50%) M. oregoni oregoni; 5 of 13 (38%) M. p. pennsylvanicus; 0 of 1 M. quasiater and 0 of 1 M. townsendii townsendii. The following coccidians were identified from infected voles: Eimeria saxei n. sp. (syn. E. wenrichi “B”) from M. c. sactidiegi; E. ochrogasteri, E. saxei, E. wenrichi (syn. E. wenrichi “A”), and Eimeria sp. from M. m. fulviventer, Eimeria sp. from M. m. fundatus; E. ochrogasteri, E. saxei, Eimeria tolucadensis n. sp., E. wenrichi, and Eimeria sp. from M. m. mexicanus; E. wenrichi from M. m. mogollonensis; Eimeria coahuiliensis n. sp., E. saxei, Eimeria subsimi n. sp., E. wenrichi, Eimeria sp., and Isospora mexicanasubsimi n. sp. from M. m. subsimus; E. tamiasiuri and E. wenrichi from M. m. arizonensis; Eimeria spp. from M. m. montebelli; E. saxei and E. wenrichi from M. o. oregoni; and E. ochrogasteri and E. wenrichi from M. p. pennsylvanicus. Sporulated oocysts of Eimeria coahuiliensis n. sp. were ellipsoid, 29.6 x 19.6 (27-34 x 18-22) μm with ovoid sporocysts 14.4 x 8.9 (13-18 x 8-10) μm. Sporulated oocysts of Eimeria saxei n. sp. were subspheroid, 13.0 x 11.0 (11-14 x 10-12) μm with ovoid sporocysts 7.5 x 4.0 (6-9 x 4-5) μm. Sporulated oocysts of Eimeria subsimi n. sp. were ovoid/subspheroid, 25.1 x 18.7 (22-28 x 17-21) μm with ellipsoid sporocysts 13.9 x 7.4 (13-15 x 6-8) μm. Sporulated oocysts of Eimeria tolucadensis n. sp. were subspheroid, 25.4 x 20.3 (23-26 x 19-23) μm with ellipsoid sporocysts 11.3 x 7.8 (10-13 x 7-9) μm. Sporulated oocysts of Isospora mexicanasubsimi n. sp. were subspheroid, 23.7 x 23.1 (21-26 x 21-26) μm with ovoid sporocysts 14.9 x 10.8 (12-16 x 10-12) μm. Only 6 of 67 (9%) infected voles were found to be naturally infected with more than a single coccidium. The world literature on coccidian parasites of voles (1 caryosporan, 31 eimerians, 1 frankelian, 2 isosporans, 4 sarcocystans, exclusive of the 5 new species described here) was reviewed.

In an ongoing study at the University of New Mexico we are examining the evolutionary relationships of various groups of small mammals using morphologic (skin, skeleton), genetic (karyotypes, enzyme electrophoresis) and parasite (mainly coccidia) data. When the distributions and genetic relatedness of many different host species are clearly documented we may, perhaps, have a better understanding of host susceptibility, parasite burdens, host specificity (or lack thereof), and coevolutionary mechanisms. The first 2 papers on parasites reviewed the coccidia from jumping mice, Zapus spp. (Duszynski et al., 1982), and kangaroo rats, Dipodomys spp. (Stout and Duszynski, 1983). Here we review the world literature on coccidians from voles (Microtus spp.) and report 5 new species found in hosts from Japan, Mexico and the United States.

Received 2 August 1984; revised 22 January 1985; accepted 22 January 1985. * Current address: School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803.

MATERIALS AND METHODS
Fecal samples were collected from hosts live-trapped in the field and stored in 2% (w/v) aqueous potassium dichromate (K2Cr2O7) as previously described (Duszynski et al., 1982) except that samples taken in Japan were collected and stored in 2% (v/v) aqueous sulfuric acid (H2SO4). Methods for storing and processing of fecal samples upon return to the lab and for concentrating, measuring and photographing oocysts have been described in detail (Duszynski et al., 1982; Stout and Duszynski, 1983). All measurements are in micrometers with size ranges in parentheses following the means.

RESULTS
The coccidians, the hosts they infected, and our collection localities are presented in Table I.

Coccidians

Eimeria coahuiliensis n. sp. (Figs. 1-3, 14)

Description
Oocyst ellipsoid, slightly flattened at end opposite micropyle (arrow, Fig. 1), wall ~2.0 (1.5-2.3), com-
Table I. Eimeria and Isospora spp. recovered from 14 subspecies of Microtus collected from the United States, Mexico and Japan.

<table>
<thead>
<tr>
<th>Microtus spp.</th>
<th>Country: county and/or state (%)</th>
<th>No. hosts infected/examined</th>
<th>Eimeria/Isospora identified (see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>california sactidiegi</td>
<td>USA: San Bernadino Co., CA</td>
<td>1/3 (33.3)</td>
<td>saxei†</td>
</tr>
<tr>
<td>longicaudus longicaudus</td>
<td>USA: Apache Co., AZ</td>
<td>0/1</td>
<td>—</td>
</tr>
<tr>
<td>longicaudus macrurus</td>
<td>USA: Kittitas Co., WA</td>
<td>0/1</td>
<td>—</td>
</tr>
<tr>
<td>mexicanus fulviventer</td>
<td>Mexico: Oaxaca</td>
<td>11/26 (42.3)</td>
<td>ochrogasteri,† saxei,† wenrichi,† sp.§</td>
</tr>
<tr>
<td>mexicanus fundatus</td>
<td>Mexico: Michoacan</td>
<td>1/2</td>
<td>sp†</td>
</tr>
<tr>
<td>mexicanus mexicanus</td>
<td>Mexico: Oaxaca</td>
<td>5/14 (35.7)</td>
<td>ochrogasteri,† saxei,† tolucadensis,† sp.§</td>
</tr>
<tr>
<td>mexicanus mogollonensis</td>
<td>USA: Apache Co., AZ</td>
<td>0/3</td>
<td>—</td>
</tr>
<tr>
<td>mexicanus subsimus</td>
<td>Mexico: Coahuila</td>
<td>22/48 (45.8)</td>
<td>coahuilensis,† saxei,† subsimi,† wenrichi,† sp,‡ mexicanasubsimi†‡</td>
</tr>
<tr>
<td>montanus arizonensis</td>
<td>USA: Apache Co., AZ</td>
<td>5/8 (62.5)</td>
<td>tamiasciuri,† wenrichi†</td>
</tr>
<tr>
<td>montebelli montebelli</td>
<td>Japan: Nezano, Honshu</td>
<td>6/6</td>
<td>sp†</td>
</tr>
<tr>
<td>oregoni oregoni</td>
<td>USA: Clallam Co., WA</td>
<td>2/4</td>
<td>saxei,† wenrichi‡</td>
</tr>
<tr>
<td>pennsylvanicus pennsylvanicus</td>
<td>USA: Ashtabula Co., CA</td>
<td>0/1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Franklin Co., WA</td>
<td>5/11 (36.4)</td>
<td>ochrogasteri,† wenrichi†</td>
</tr>
<tr>
<td></td>
<td>Warren Co., PA</td>
<td>0/1</td>
<td>—</td>
</tr>
<tr>
<td>quasiate</td>
<td>Mexico: Veracruz</td>
<td>0/1</td>
<td>—</td>
</tr>
<tr>
<td>townsendii townsendii</td>
<td>USA: Pierce Co., WA</td>
<td>0/1</td>
<td>—</td>
</tr>
</tbody>
</table>

* New host record.
† New locality (state or country) record.
‡ Unsporulated oocysts of one (sp.) or more (spp.) morphs; unable to identify.

Prevalence: Found in 2 of 22 (9%) infected M. m. subsimus collected in San Antonio de las Alazanas.
Site of infection: Unknown, oocysts recovered from fecal contents.
Etymology: The specific name is derived from the locality of the host.

Eimeria ochrogasteri Ballard, 1970

Oocysts of this species were found in 3 of 11 (27%) infected M. m. fulviventer, 2 of 13 (15%) infected M. m. mexicanus, and 1 of 5 (20%) infected M. p. pennsylvanicus. This species has already been well described and our observations agree with those of Ballard (1970).

Eimeria saxei n. sp.
(Fig. 11)

Description

Oocyst small-ellipsoid to subspheroid with smooth, thin wall (<1.0); micropyle and oocyst residuum absent, but a polar body is present; sporulated oocysts (n = 20) 13.0 x 11.0 (11–14 x 10–12) with L:W ratio

Taxonomic summary

Diagnosis: This eimerian does not resemble any previously described coccidian from voles.
Locality: 14.8 km E of San Antonio de las Alazanas, Coahuila, Mexico.
1.8 (1.10–1.40); sporocysts (n = 20) ovoid 7.5 × 4.0 (6–9 × 3–5) with L:W ratio 1.87 (1.50–2.25); Stieda body and compact sporocyst residuum are present. Oocysts were 418 days old when measured.

Taxonomic summary

Diagnosis: This species corresponds to the 'small form' or "Eimeria wenrichi species B" of Saxe et al. (1960). In the original description of *E. wenrichi*, the authors noted 2 distinct groups of similar oocysts that did not overlap in oocyst or sporocyst dimensions, but which otherwise shared all other structural features. In their paper, based on 87 oocysts from 1 *M. pennsylvanicus*, they found 56 oocysts ("species A") were 18.9 × 14.3 (16–22 × 12–16) with sporocysts 9.7 × 6.0 (9–11 × 5–8) and 31 oocysts ("species B") were 12.8 × 9.8 (11–15 × 8–11) with sporocysts 6.9 × 4.0 (6.5–7.5 × 4.0) and concluded, "... the two series of oocysts ... formed completely separate populations." For some reason, however, they decided it did not appear wise to assign them different names, even though future studies may show they differ in some other way and are actually separate species." There is certainly sufficient precedent in the literature to show that coccidians with similar structural features, but distinctly different oocyst and sporocyst dimensions, are distinct species. Many eimerians (see Duszynski, 1971 for review) are known to have oocysts that increase or decrease in size during patency. However, if this were the case with *E. wenrichi*, one would expect length-width dimensions to vary over a continuous range. In the original description, a distinct bimodal size distribution was seen and in all the hosts we saw infected with either *E. wenrichi* ("species A") or *E. saxei* ("*E. wenrichi* species B") oocysts were either one size or the other, with no intermediate forms. Based on these data we feel it is warranted to separate the 2 forms of *E. wenrichi* into separate species.

Type host: *Microtus pennsylvanicus* (Ord, 1815).

Type locality: Pennsylvania, U.S.A.

Other hosts and localities: See Table I.

Prevalence: Found in 1 *M. pennsylvanicus* (Saxe et al., 1960). In this study it occurred in the 1 infected *M. c. sactidiegi*, in 1 of 11 (9%) infected *M. m. fulviventer*, in 1 of 13 (8%) infected *M. m. mexicanus*, in 3 of 22 (14%) infected *M. m. subsimus*, and in 1 of 2 infected *M. o. oregoni*.

Site of infection: Unknown, oocysts recovered from fecal contents.

Etymology: This parasite is named for Dr. L. H. Saxe who was senior author of the paper that first described it (Saxe et al., 1960).

Eimeria subsimi n. sp.

(Figs. 4–8, 15)

Description

Oocysts ovoid (Fig. 5) to subspheroid, wall 1.6 (1.5–1.8) with outer layer slightly sculptured comprising ~% of total thickness; polar body present, but oocyst residuum and microple are absent; sporulated oocysts (n = 47) 25.1 × 18.7 (22–28 × 17–21) with L:W ratio 1.31 (1.03–1.54); sporocysts (n = 45) ellipsoid 13.9 × 7.4 (13–15 × 6–8) with L:W ratio 1.93 (1.63–2.00); Stieda and substieda bodies present (arrows, Fig. 4); sporocysts contain a compact, faceted residuum (aster, Fig. 6) which may be associated with a few dispersed granules; sporozoites lie head to tail within sporocyst and contain refractile bodies. Oocysts were 155–363 days old when measured.

Taxonomic summary

Diagnosis: This species somewhat resembles *E. iradiensis* Veisov, 1963, in general size, shape and color, but differs by having oocysts that have a slightly sculptured outer wall (vs. smooth), by having a polar body, and by having longer sporocysts (x = 14 vs. x = 11) that possess a substieda body which *E. iradiensis* lacks. Host and geographic distance may also dictate we are dealing with a new species.

Host: *Microtus mexicanus subsimus* Goldman, 1938, Museum of Southwestern Biology, Division of Mammalogy, NK 9515 (female), L. L. Janecek #130, 23 July 1982 and NK 9542 (female), D. W. Moore #1027, 24 July 1982.

Locality: 16.1 km E of San Antonio de las Alazanas (NK 9515), and 14.8 km E of San Antonio de las Alazanas (NK 9542), Coahuila, Mexico.

Prevalence: Found in 2 of 22 (9%) infected *M. m. subsimus* collected in Coahuila, Mexico.

Site of infection: Unknown, oocysts recovered from fecal contents.

Etymology: The specific name is derived from the subspecific part of the scientific name of the host.

Eimeria tamiasciuri Levine, Ivens, and Kruidenier, 1957

(Figs. 7 and 8)

Description

Oocyst ellipsoid smooth wall ~1.0, appears single-layered; a polar body, sometimes (11%) associated with one pole (Fig. 8), is present but a microple and oocyst residuum are lacking; sporulated oocysts (n = 104) 30.3 × 17.1 (23–37 × 13–19) with L:W ratio 1.80 (1.60–2.55); sporocysts (n = 102) ellipsoid 14.8 × 6.7 (10–17 × 6–8) with L:W ratio 2.18 (1.60–2.80); a

prominent, conical Stieda body (arrow, Fig. 7) and a finely granular, dispersed sporocyst residuum are present; sporozoites with at least 1 refractile body each. Oocysts were 97 days old when measured.

Taxonomic summary

Diagnosis: Oocysts of this parasite do not resemble those from any eimerian reported from voles and our initial thought was to describe it as new. However, the geographic range of the red squirrel Tamiasciurus hudsonicus mogollonensis in Arizona completely overlaps the limited distribution of *M. m. arizonensis* in eastern Arizona (Hall, 1981a, 1981b). Levine et al. (1957) described *E. tamiasciuri* oocysts from the red squirrel, *T. h. mogollonensis*, in Arizona and the oocysts we found in *M. m. arizonensis* from eastern Arizona are indistinguishable from them. They are also indistinguishable from *E. tamiasciuri* oocysts we have recovered from chipmunks (*Eutamias* spp.) in Arizona, California and Mexico (unpubl.). Although oocysts were found in large numbers in our infected vole, this may be a spurious finding since only 1 Arizona vole was found to harbor them. On the other hand, until cross-transmission studies can prove otherwise, *E. tamiasciuri* may be a valid parasite of *Microtus*.

Host: Microtus montanus arizonensis Bailey, 1898, Museum of Southwestern Biology, Division of Mammalogy, MSB 53569 (male), D. W. Moore #1179, 24 September 1983.

Locality: 25.7 km W, 6.4 km S Alpine, TSN R28E, SW ¼ sec. 29, Westfork Campground, Apache Co., Arizona.

Prevalence: Found in 1 of 5 (20%) infected *M. m. arizonensis* collected from Apache Co., Arizona.

Site of infection: Unknown, oocysts recovered from fecal contents.

Eimeria tolucadensis n. sp.

(Figs. 9, 10, 16)

Description

Oocysts subspheroid or nearly so, wall 2.3 (2–3) with outer, multilaminar layer comprising ~½ of total thickness (Fig. 10); inner layer smooth; 1 or more polar bodies present, but micropyle and oocyst residuum are absent; sporulated oocysts (*n* = 11) 25.4 × 20.3 (23–26 × 19–23) with *L/W* ratio 1.25 (1.15–1.40); sporocysts (*n* = 11) ellipsoid 11.3 × 7.8 (10–13 × 7–9) with *L/W* ratio 1.44 (1.26–1.70); an inconspicuous Stieda body is present (Fig. 9), but not a substieda body; sporocyst residuum present and consists of 4 to 6 small globules; sporozoites contain 1 or 2 refractile bodies. Oocysts were 313 days old when measured.

Taxonomic summary

Diagnosis: Oocysts of this species do not fit the description of oocysts from any eimerian previously described from voles; they are similar, however, to *E. baiomys* Levine, Ivens, and Kruidenier, 1958 described from *Baiomys taylori* (Thomas), which shares a common habitat range, Michoacan to Veracruz, with *M. m. mexicanus* (Hall, 1981b), except that *E. baiomys* is proportionally smaller, has a single-layered oocyst wall and contains a conspicuous oocyst residuum which is missing in *E. tolucadensis*.

Host: Microtus mexicanus mexicanus (Saussure, 1861), Museum of Southwestern Biology, MSB 48299 (female), L. L. Janecek #192, 5 August 1982.

Locality: 17.5 km S, 7.0 km W of Toluca, Nevado de Toluca, Mexico, Mexico.

Prevalence: Found in 1 of 5 (20%) infected *M. m. mexicanus* collected from Toluca, Nevado de Toluca, Mexico, Mexico.

Site of infection: Unknown, oocysts recovered from fecal contents.

Etymology: The specific name is derived from the locality where the infected host was collected.

+Eimeria wenrichi Saxe, Levine, and Ivens, 1960+ (Fig. 12)

Description

Oocysts of this species were seen in 1 of 11 (9%) infected *M. m. fulviventer*, 4 of 13 (31%) infected *M. m. mexicanus*, the only infected *M. m. mogollonensis*,

8 of 22 (36%) infected M. m. subsimis, 4 of 5 (80%) infected M. m. arizonensis, both infected M. o. oregoni, and all 5 infected M. p. pennsylvanicus. Photomicrographs of this species have not been published previously, so 1 is included (Fig. 12). All oocysts that we identified as E. wenrichi fit the description for the 'large form' or "E. wenrichi species A" in the original description by Saxe et al. (1960) (for explanation, see Diagnosis section for E. saxei, above).

Isospora mexicanasubsimi n. sp.
(Figs. 13 and 17)

Description
Oocyst spheroid or nearly so, wall ~1.5, bilayered with a lightly pitted outer surface and a smooth, somewhat darker inner layer; sporulated oocysts (n = 10) 23.7 × 23.1 (21–26 × 21–26) with L:W ratio 1.03 (1.00–1.13); micropyle, oocyst residuum, and polar
Oocysts were 198-213 days old when measured. Hosts (Fig. 13) as well as a dispersed, homogeneous residu-um. Oocysts were 198-213 days old when measured.

Taxonomic summary

Diagnosis: Only 2 isosporans have been reported as parasites of the genus *Microtus*. *I. mcdowelli* Saxe et al., 1960 from *M. pennsylvanicus* and *I. arvalis* Mikkeladze, 1974 reported from *M. arvalis*. Two other species, though, have been reported from hosts also within the family Arvicolidae. These are: *I. laguri* Iwanoff-Gobzen, 1934 and *I. teres* Iwanoff-Gobzem, 1934 reported from *Lagurus lagurus* (Pallas). The coccidian described herein did not resemble these previously reported species.

Host: *Microtus mexicanus subsimus* Goldman, 1938, Museum of Southwestern Biology, Division of Mammalogy, MSB 48337 (female), L. L. Janecek #121, 23 July 1982 and MSB 48332 (female), L. L. Janecek #149, 23 July 1982.

Locality: 16.1 km E of San Antonio de las Alazanas, Coahuila, Mexico.

Prevalence: Found in 2 of 22 (9%) infected *M. m. subsimus* collected from Coahuila, Mexico.

Site of infection: Unknown, oocysts recovered from fecal contents.

Etymology: The specific name is derived from the specific and subspecific parts of the scientific name of the host.

Hosts

Of those hosts with coccidia at the time they were collected, the following parasites, or groups of parasites were seen.

Microtus californicus sactiegi Kellogg, 1918. The 1 infected vole of this species had oocysts of *E. saxeii* in its feces.

Microtus mexicanus fulvivent Merriam, 1898. All 11 infected voles were singly-infected with either *E. ochrogasteri* (3), *E. saxeii* (1), *E. wenrichi* (1), or *Eimeria* sp. (6).

Microtus mexicanus fundatus Hall, 1948. The only infected vole was singly-infected with unsporulated oocysts of a single morph.

Microtus mexicanus mexicanus (Saussure, 1861). We found 12 of 13 (92%) infected voles singly-infected with either *E. ochrogasteri* (1), *E. saxeii* (1), *E. wenrichi* (4), or *Eimeria* sp. (6); 1 vole harbored 2 coccidians: *E. ochrogasteri* and *E. tolucadensis*.

Microtus mexicanus mogollonensis (Mearns, 1890). The only infected vole was singly-infected with *E. wenrichi*.

Microtus mexicanus subsimus Goldman, 1938. Nineteen of 22 (86%) infected voles were singly-infected with either *E. coahuliensis* (1), *E. saxeii* (2), *E. wenrichi* (5), *I. mexicanus subsimus* (2), or *Eimeria* sp. (9); 2 voles were doubly-infected, 1 with *E. wenrichi* and *E. saxeii* and 1 with *E. wenrichi* and *E. subsimus*; 1 vole was infected with 3 species, *E. coahuliensis*, *E. subsimus*, and *E. wenrichi*.

Microtus montanus arizonensis Bailey, 1898. All 5 infected voles were singly-infected with either *E. tami-asciuri* (1) or *E. wenrichi* (4).

Microtus montebelli montebelli (Milne-Edwards, 1872). All 6 infected voles had oocysts that never sporulated. Four of 6 (67%) had oocysts of only a single morph; the other 2 infected hosts had oocysts of 2 distinctly different morphs.

Microtus oregoni oregoni (Bachman, 1839). One of 2 infected voles was singly-infected with *E. wenrichi*, the other was doubly-infected with *E. saxeii* and *E. wenrichi*.

Microtus pennsylvanicus pennsylvanicus (Ord, 1815). Four of 5 (80%) infected voles were singly-infected with *E. wenrichi*; 1 infected vole was infected with both *E. ochrogasteri* and *E. wenrichi*.

DISCUSSION

The majority of the literature on the Coccidia of voles (*Microtus* spp.) originates from Eurasian sources, which describe 29 eimerians, 1 isosporan, and 2 sarcocystans; in North America, only 7 species (*Caryospora microti*, *Frenkelia microti*, *Eimeria ochrogasteri*, *E. wenrichi* "A" and "B", *Isospora mcdowelli*, *Sarcocystis microti* and *S. montanaensis*) have been reported prior to the species we describe here (Table II). According to recent taxonomic schemes (Honacki et al., 1982), *Microtus* is the most specious of 20 genera assigned to the family Arvicolidae. In addition to the 39 coccidians described previously from *Microtus* spp., 6 other genera in the family (*Alticola*, *Clethrionomys*, *Discrostonyx*, *Ellobius*, *Lagurus*, *Ondatra*) have been identified as hosts of at least 17 additional coccidian species (Levine, 1951; Levine and Ivens, 1965; Pellérdy, 1974; Golemsky, 1979). None of the 56 coccidians previously described from arvicolids resembled the new species described here, other than the similarities already noted.

On the other hand, as we measure and identify numerous coccidians from thousands of specimens of both closely related and unrelated mammalian species, we are beginning to see oocysts that are identical or nearly so from genetically unrelated, but geographically sympatric host species. For example, here we point out that oocysts of *E. tamiasciuri*, originally described from the red squirrel (*T. h. mogollonensis*) were also found in large numbers in a *M. m. arizonensis* and in several groups of chipmunks (unpubl.). Also in our work with other genera of small mammals we have seen more substantive examples of oocysts described from one host genus commonly found in the feces of unrelated hosts (e.g., *Perognathus* and *Dipodomys* spp.; *Peromyscus* and *Neotoma* spp.; and others, unpubl. data). Obviously, there is much cross-transmission work to be done before such prob-
TABLE II. Coccidian parasites of Eurasian and North American Microtus spp. described to date.

<table>
<thead>
<tr>
<th>Coccidian spp.</th>
<th>Microtus spp.</th>
<th>Reference used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caryospora microti</td>
<td>pennsylvanicus</td>
<td>Saxe et al., 1960</td>
</tr>
<tr>
<td>Eimeria abuschevi</td>
<td>majori</td>
<td>Veisov, 1962</td>
</tr>
<tr>
<td>E. arvicola</td>
<td>arvalis, nivalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. bicrustae</td>
<td>majori</td>
<td>Veisov, 1962</td>
</tr>
<tr>
<td>E. chudatica</td>
<td>middendorfii</td>
<td>Arnastauskene, 1980</td>
</tr>
<tr>
<td>E. coahuiliensis</td>
<td>socialis</td>
<td>Musaev et al., 1963</td>
</tr>
<tr>
<td>E. correptionis</td>
<td>majori</td>
<td>Veisov, 1962</td>
</tr>
<tr>
<td>E. cubinica</td>
<td>socialis</td>
<td>Musaev et al., 1963</td>
</tr>
<tr>
<td>E. cusarica</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. daziaflammiss</td>
<td>socialis</td>
<td>Petérdey, 1974</td>
</tr>
<tr>
<td>E. gomuchaica</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. guentherii</td>
<td>guentheri</td>
<td>Golemansky, 1978</td>
</tr>
<tr>
<td>E. hadrutica</td>
<td>socialis</td>
<td>Musaev et al., 1963</td>
</tr>
<tr>
<td>E. iwanoffi</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. kolabski</td>
<td>socialis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. kolonica</td>
<td>arvalis</td>
<td>Petérdey, 1974</td>
</tr>
<tr>
<td>E. kotuji</td>
<td>middendorfii</td>
<td>Arnastauskene, 1980</td>
</tr>
<tr>
<td>E. lutola</td>
<td>middendorfii</td>
<td>Arnastauskene, 1980</td>
</tr>
<tr>
<td>E. majorici (syn. E. arvalis)</td>
<td>majori</td>
<td>Veisov, 1962</td>
</tr>
<tr>
<td>E. micropiliana</td>
<td>socialis</td>
<td>Musaev et al., 1963</td>
</tr>
<tr>
<td>E. microtina</td>
<td>socialis</td>
<td>Petérdey, 1974</td>
</tr>
<tr>
<td>E. middendorfii</td>
<td>middendorfii</td>
<td>Arnastauskene, 1977</td>
</tr>
<tr>
<td>E. monocrustae</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. ochrogastreri</td>
<td>ochrogastreri, mexicanus, pennsylvanicus</td>
<td>Ballard, 1970, present study</td>
</tr>
<tr>
<td>E. pitmydis</td>
<td>Pitymys subterraneus*</td>
<td>Golemansky, 1979</td>
</tr>
<tr>
<td>E. primbelica</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>E. schelkovskovi</td>
<td>schelkovskovi</td>
<td>Musaev, 1967</td>
</tr>
<tr>
<td>E. saxei (syn. E. wenrichi “B”)</td>
<td>californicus, mexicanus, oregoni</td>
<td>present study</td>
</tr>
<tr>
<td>E. subsimi</td>
<td>mexicanus</td>
<td>present study</td>
</tr>
<tr>
<td>E. tamyrca</td>
<td>middendorfii</td>
<td>Arnastauskene, 1977</td>
</tr>
<tr>
<td>E. tamiasciuri</td>
<td>montanas</td>
<td>present study</td>
</tr>
<tr>
<td>E. toludennis</td>
<td>mexicanus</td>
<td>present study</td>
</tr>
<tr>
<td>E. wenrichi (syn. E. wenrichi “A”)</td>
<td>pennsylvanicus</td>
<td>Saxe et al., 1960</td>
</tr>
<tr>
<td>E. zwandica</td>
<td>arvalis</td>
<td>Veisov, 1963</td>
</tr>
<tr>
<td>Frenkelia microti</td>
<td>agrestis</td>
<td>Biocca, 1968</td>
</tr>
<tr>
<td>Isospora arvalis</td>
<td>arvalis</td>
<td>Miklóde, 1974</td>
</tr>
<tr>
<td>I. mcdowelli</td>
<td>pennsylvanicus</td>
<td>Saxe et al., 1960</td>
</tr>
<tr>
<td>I. mexicanasubsimi</td>
<td>mexicanus</td>
<td>present study</td>
</tr>
<tr>
<td>Sarcocystis cernae</td>
<td>arvalis</td>
<td>Levine, 1977</td>
</tr>
<tr>
<td>S. microti</td>
<td>pennsylvanicus</td>
<td>Dubey, 1983</td>
</tr>
<tr>
<td>S. montanaensis</td>
<td>pennsylvanicus</td>
<td>Dubey, 1983</td>
</tr>
<tr>
<td>S. putorii</td>
<td>arvalis, agrestis</td>
<td>Tadros and Laarman, 1978</td>
</tr>
</tbody>
</table>

* According to Nowak and Paradiso (1983) Pitymys is now a subgenus of Microtus.

It seems axiomatic that certain groups of mammals would be at greater risk of infection by coccidians than other mammalian groups simply because of the natural environments in which they live. For example voles, which live in mesic grasslands should have a higher incidence of infection with coccidians than say kangaroo rats (Dipodomys spp.) which live in xeric environments simply because the former environments (grassland) would be more conducive to oocyst survival than the latter (desert). At least some support for this generalization is available. In a previous study (Stout and Duszynski, 1983) only 104 of 361 (29%) kangaroo rats (7 species, 13 collection localities) harbored coccidia when examined; whereas in the present study 67 of 149 (45%) voles (9 species, 15 collection localities) had oocysts in their feces when examined.
When we examine the individual infected animals in this and our other recent surveys we see that a very high percentage of infected hosts had only one coccidian species when examined. In Zapus spp. (Duszynski et al., 1982) 29 of 29 (100%) infected hosts, in Dipodomys spp. (Stout and Duszynski, 1983) 88 of 104 (85%) infected hosts, in Peromyscus spp. (Reduker et al., 1985) 97 of 106 (92%) infected hosts, and in Microtus spp. (this study) 61 of 67 (91%) infected hosts had only single species infections when examined. This may indicate there is strong selective advantage for certain host groups to maintain only one coccidian species at any one time. It will be interesting to learn if this observation is consistent from host to host as more data become available.

It should be noted that all oocysts recovered from the feces of M. m. montebelli were deteriorated and/or unsporulated when examined. Samples taken from this host species were stored and processed in 2% (v/v) aqueous H2SO4; though others (Frenkel and Dubey, 1975; Ruiz and Frenkel, 1980) have used 2% H2SO4 to sporulate and store coccidial oocysts (e.g., Hammondia, Isospora, Toxoplasma), it has been our experience in this and previous field collections that H2SO4, when used for any long period as a storage medium, is detrimental to the survival and structural integrity of eimerian oocysts.

Finally, we note that 3 of the new species we describe, E. coahuiliensis, E. subsimi and I. mexicanus subsimi were all parasites in a unique karyotypic race, Microtus mexicanus subsimus, that is found only in our northernmost collection locality of Mexico, San Antonio de las Alazanas. All voles collected in this area had diploid numbers of 44 whereas all other voles taken in Mexico except subsimus had only diploid numbers of 48 (Moore, pers. comm.). Alterations in chromosomes, and the subsequent amino acid sequencing, may produce slight changes in metabolic pathways or enzyme properties to change a host's gastrointestinal physiology. Certain coccidians then might be more likely to establish, others might be rejected, while still others might be stimulated to undergo a speciation event.

ACKNOWLEDGMENTS

This study was supported by HHS NIH grant RR-08139 and, in part, by NSF grant DEB-8004685. We are indebted to the following students and staff in the Department of Biology, The University of New Mexico, for their help in the collection and/or processing of voles: L. L. Janecek, D. W. Moore, S. L. Gardner and C. A. Stout. The major trip to Mexico during which many of the hosts in this study were collected was supported by a grant from Sigma Xi to D. W. Moore. Thanks to D. W. Moore also for providing information and comments on the genetic relatedness of subspecies of M. mexicanus and to Dr. Norman D. Levine, The University of Illinois for helping retrieve some of the Russian literature and for giving us access to pertinent sections of the 2nd edition of The Coccidian Parasites of Rodents (in press).

LITERATURE CITED

 gracias a los siguientes estudiantes de dife

