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Abstract

Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for
both residential and industrial applications. Although some countries have banned the use of the product for some applications, others
have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated
wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within
landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal
option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate
of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between land-
filling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon
production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US
disposal rate to occur in 2008, at 9.7 million m3. CCA-treated wood, when disposed with construction and demolition (C&D) debris and
municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because
MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills.
Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when oper-
ated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon
emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries.
Although metals are concentrated in the ash in the WTE scenario, the MSW landfill scenario releases a greater amount of arsenic from
leachate in a more dilute form. The WTE scenario releases more chromium from the ash on an annual basis. The WTE facility and sub-
sequent ash disposal greatly concentrates the chromium, often oxidizing it to the more toxic and mobile Cr(VI) form. Elevated arsenic
and chromium concentrations in the ash leachate may increase leachate management costs.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction and background

Because of the metal content of CCA-treated wood, it has
been relatively difficult to manage as a solid waste. Under US
EPA standardized testing conditions, CCA-treated wood
shows characteristics of a hazardous waste because of the
leachability of arsenic and chromium (Townsend et al.,
2004), yet it is exempt from federal regulation as a hazardous
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waste in the US (CFR, 2003). CCA-treated wood may
become commingled in the municipal solid waste (MSW)
stream and managed along with MSW in regulated landfills.
CCA-treated wood, when co-disposed with MSW, has been
found to increase arsenic and chromium concentrations in
leachate (Jambeck, 2004). Since wood is a construction prod-
uct, CCA-treated wood is often managed as construction
and demolition (C&D) debris when discarded (Solo-Gabri-
ele and Townsend, 1999).

C&D Debris is often targeted for recycling. CCA-treated
wood mixed in with recycled wood can contaminate mulch
made from this recycled wood (Townsend et al., 2003;
Solo-Gabriele et al., 2004). If CCA-treated wood is inciner-
ated, it releases emissions of arsenic that must be captured
in accordance with US requirements; and arsenic, copper
and chromium become concentrated in the ash (Solo-Gabri-
ele et al., 2002; Iida et al., 2004). Also, when CCA-treated
wood is incinerated, the chromium can be oxidized into the
more toxic and mobile form of chromium, Cr(VI) (Song
et al., 2006). Some countries (e.g., Germany) ban the wood
(materials with total organic carbon greater than 5%
banned) from landfill disposal and, after all reuse options
have been exhausted, require it to be incinerated (Peek,
2004). Furthermore, the EU Landfill Directive includes tar-
gets for the diversion of landfilled biodegradable waste at
75% of the 1995 level within 5 years of implementation,
50% of the 1995 level 8 years after implementation and
35% of the 1995 level within 15 years after implementation
(European Union, 1999). Currently in the US, CCA-treated
wood is typically disposed in landfills. In the US, 54% of the
states do not require bottom liners for C&D debris landfills
(Clark et al., 2006). Therefore, leachate produced at these
landfills infiltrates the underlying ground. Co-disposal of
CCA-treated wood with C&D debris has been shown to ele-
vate arsenic and chromium concentrations in the leachate
(Jang and Townsend, 2003; Jambeck, 2004).

A voluntary phase out of CCA-treated wood took effect
January 1, 2004 for most residential uses (US EPA, 2002).
This phase out of treated wood production was initiated
due to concerns associated with possible health effects from
contact with treated wood and the availability of non-arsen-
ical wood preservatives (US EPA, 2001, 2002, 2003). How-
ever, because of the 10–40 year service life of treated wood
(McQueen and Stevens, 1998; Alderman et al., 2003; Coo-
per, 1994; Solo-Gabriele and Townsend, 1999), disposal of
CCA-treated wood will continue long into the future. Coo-
per (1994) estimated and projected amounts of CCA-treated
wood removed from service in both the US and Canada.
These projections estimated the amounts of CCA-treated
wood coming out of service in the year 2010 at approxi-
mately 10 million m3 in the US and 0.8 million m3 in Can-
ada. The impacts to of treated wood within different waste
management options (e.g., incineration and landfilling) have
been evaluated (Jang and Townsend, 2003; Solo-Gabriele
et al., 2002; Iida et al., 2004; Jambeck, 2004).

However, regulators and the solid waste industry con-
tinue to struggle with identifying the best management

option for the treated wood waste. The Waste and
Resources Action Program (WRAP) in the United King-
dom has recently completed a report assessing the options
and risk for treated wood management as well (WRAP,
2005). Since MSW landfills are required to be lined in the
US, disposal in an MSW landfill has been recommended;
however, the other option to landfilling is combusting the
wood and recovering the energy. The WRAP (2005) dis-
cusses combustion with energy recovery as well, and the
European Waste Incineration Directive (WID) provides
various guidelines for this practice including air emission
guidelines. This paper begins to explore this dilemma by
examining the differences between the management of
CCA-treated wood via WTE or MSW landfills in the US,
with a more detailed case study of these disposal scenarios
for the State of Florida. Although CCA-treated wood is
currently primarily managed in C&D debris landfills in
Florida, Florida is considering new regulations, and the
purpose of this study was to evaluate new options for man-
agement, in addition to those currently used.

The municipal solid waste decision support tool (MSW
DST) is a linear programming (LP)-based decision model
to aid in identifying environmentally and economically effi-
cient strategies for integrated MSW management (Solano
et al., 2002a,b). The tool was developed by the US EPA’s
National Risk Management Research Laboratory (NRML)
in cooperation with RTI International and North Carolina
State University (NCSU). Environmental and economic
aspects for hypothetical integrated solid waste management
alternatives are estimated using life-cycle assessment and
full-cost accounting methodologies, respectively (Weitz
et al., 1999). The tool provides a quantitative comparison
of many aspects taken into consideration when waste man-
agement decisions are made, including cost and many envi-
ronmental parameters such as emissions of carbon
monoxide (CO), carbon dioxide (CO2) (both biomass and
fossil fuel derived), nitrogen oxides (NOx), sulfur oxides
(SOx), total particulate matter (PM), carbon equivalents
(MTCE), energy consumption and metals released into the
environment. The model bases calculated emissions on the
entire waste management system including waste collection,
transportation, recycling, treatment, and disposal (Thor-
neloe and Weitz, 2004). The holistic nature of this model
made it a useful tool in comparing the environmental aspect
resulting from landfill disposal or management via WTE of
CCA-treated wood. It should be noted that the tool does
not include the emissions associated with CCA-treated wood
production or use, but instead assesses the waste manage-
ment section of the life-cycle of CCA-treated wood.

2. Methods

2.1. CCA-treated wood management scenarios and MSW

DST input

The MSW DST contains life-cycle environmental data
for waste collection, transport, recycling, composting,
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WTE and landfilling; for the production and consumption
of energy for the US national and regional grids; and for
the production of aluminum, glass, paper, plastic, and steel
(Thorneloe and Weitz, 2004). The tool also includes US
waste composition data that includes a wood component
that was used to simulate the disposal of CCA-treated
wood (for purposes of correctly estimating BTU values).
The tool required the input of a quantity of wood, which
is taken through the entire waste management system cal-
culating and totaling life cycle energy consumption and
emissions on an annual basis. The hypothetical situation
used in the tool was to examine the differences between
the management of CCA-treated wood via WTE or
MSW landfills. A total of four scenarios were simulated
by the model: (1) the mass of CCA-treated wood estimated
to be entering the disposal stream in the US (9.7 million m3

in 2007) managed in MSW landfills and (2) managed 50%
in MSW landfills and 50% by WTE; (3) the mass of CCA-
treated wood estimated to enter the Florida disposal
stream (0.6 million m3 in 2007) managed in MSW landfills,
and (4) 100% managed by WTE. The waste collection set-
tings did not differ between the management options. For
transportation, no transfer stations were considered and
the two scenarios were equal, except for the WTE scenario,
which included transportation of the ash to an ash landfill.
The primary difference between the landfill and WTE sce-
narios was the treatment and disposal of the mass of
CCA-treated wood. In the US WTE scenario, the simula-
tion consisted of sending 50% of the wood to a WTE facil-
ity and disposal of the ash in a landfill. The remaining 50%
of the wood was directly landfilled in an MSW landfill. In
the Florida WTE scenario, 100% the wood was sent to a
WTE facility and the ash was landfilled. In the 100% land-
fill scenarios for both the US and Florida, all of the wood
was sent to a traditional MSW landfill. Table 1 outlines the
input values for each process model of the tool.

The WTE scenarios assume the air pollution control sys-
tem is in compliance with US requirements. In the tradi-
tional landfill scenario, the landfill gas is assumed to be
flared, which although not necessarily typical for Europe,
is still typical for the US. Carbon emissions can result from

the combustion of fossil fuels and the biodegradation of
organic materials (e.g., methane gas from landfills). Offsets
of carbon emissions can result from the displacement of
fossil fuels, materials recycling, and the diversion of
organic wastes from landfills. Carbon emissions in units
of tonnes are calculated in the model as follows: [(Fossil
CO2 + CH4*21)*12/44]/2000.

2.2. Estimate of disposal of CCA-treated wood in the US

The amount of CCA-treated wood entering the US dis-
posal stream (Fig. 1) was calculated based upon production
statistics, estimated life span and the phaseout of CCA-
treated wood. A similar model was developed for the state
of Florida (Khan et al., 2006a,b). Annual production sta-
tistics and industry forecasts were used to estimate quanti-
ties of CCA-treated wood produced in any give year (Pi)
from 1960 through 2003 (AWPA, 1960–1997; AWPI,
1995 and 1996). Quantities included data for two general
categories of treated wood: lumber & timbers, and utility
poles.

Removal of treated wood was assumed to occur through
construction waste and through demolition waste. Con-
struction waste, Wi, was assumed to be disposed within
the same year that the wood was produced and was esti-

Table 1
Inputs for the MSW DST scenarios

US MSW landfill scenario US 50:50 Landfill/WTE FL MSW landfill scenario FL WTE scenario

Collection Same in each scenario Same in each scenario Same in each scenario Same in each scenario
Transportation No transfer stations considered No transfer stations

considered
No transfer stations
considered

No transfer stations considered
Transport of

ash
Transport of ash considered No other transport needed Transport of ash considered

Recycling None None None None
Treatment None WTE None WTE
Mass treated None 2.4 million tonnes None 336,000 tonnes (wood)
Heat rate Not applicable Heat rate of 18,000 BTU/kWh Not applicable Heat rate of 18,000 BTU/

kWh
Mass disposed 4.8 million tonnes (wood) 2.4 million tonnes (wood)

271,400 tonnes (ash)
336,000 tonnes (wood) 38,000 tonnes (ash)
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J. Jambeck et al. / Waste Management 27 (2007) S21–S28 S23



mated at 2.5% of the production quantity (Cooper, 1994).
Demolition waste is wood disposed at the end of the trea-
ted wood service life. Three service lives were used. The ser-
vice life for lumber and timber used for residential decks,
D1a,i, was estimated at an average of 10 year (McQueen
and Stevens, 1998; Alderman et al., 2003), the service life
for the remaining lumber and timbers used for transporta-
tion, marine, and industrial uses,D1b,i, was estimated at an
average of 25 year, and the service life of utility poles,D2,i,
was estimated at 40 year (Cooper, 1994; Gutzmer and
Crawford, 1995). Since industry statistical reports used to
obtain lumber and timber quantities did not distinguish
between the uses of these for decks versus other uses, it
was assumed that in any given year an estimated 60% of
these products were intended for residential applications
and 40% used for highway, marine, and industrial pur-
poses. This distribution of the different categories of
CCA-treated wood products is consistent with those estab-
lished by the Southern Forest Products Association
(SFPA, 2000). The total disposal volume during year i,
Di, expressed in units of million cubic meters, was therefore
equal to the sum of the off-cut waste plus end-of-service life
waste as estimated from each of the sub-models (Eq. (1)).

DT;i ¼ W i þ D1a;i þ D1b;i þ D2;i ð1Þ
In order to extend the forecast beyond 2004, the produc-

tion of lumber and timbers used for decks, D1a,i, was esti-
mated at 30% of the quantity produced during 2003
(representing the applications of CCA-treated wood still
available for use). The production of utility poles, D2,i, and
lumber and timber for the remaining uses, D1b,i, were
assumed to remain at 100% of 2003 levels, as these products
were not included in the phase out. The model simulates pro-
duction and disposal through the year 2040. Based upon the
above disposal estimates, the mass of CCA-treated wood is
forecasted to vary between the years 2000 through 2030 at
6–10 million m3 per year in the US and 0.4–0.7 million m3

per year in Florida. The mass put through the model in each
respective case were for 2007, 9.7 million m3 for the US and
0.6 million m3 for Florida. The results of this disposal fore-
cast were used within the MSW DST.

2.3. MSW landfill and ash leachate concentrations

Previous experiments conducted by the authors utilizing
simulated landfills (lysimeters) showed that disposal of

CCA-treated wood can impact arsenic, chromium and cop-
per concentrations in leachate. A simulated MSW landfill
containing a quantity of 2% CCA-treated wood provided
an estimate, as well as showed trends of arsenic, copper,
and chromium leachate concentrations; further details on
the methods and results may be found in Jambeck, 2004.
The leachate concentrations used for the MSW landfill sce-
nario in the MSW DST were the average concentrations
resulting from the simulated landfill experiment reported
in Jambeck (2004). For arsenic this value was 0.54 mg/L
and for chromium it was 0.195 mg/L.

The ash landfill leachate concentrations were estimated
by previous research (Solo-Gabriele et al., 2002) for ash
made from 5% CCA-treated wood with the balance from
untreated wood. Of note was that the ash made from 5%
CCA-treated wood when subject to the toxicity character-
istic leaching procedure (TCLP) exceeded the toxicity char-
acteristic limit (5 mg/L of arsenic and chromium),
classifying it as a hazardous waste (Solo-Gabriele et al.,
2002). Therefore, if 5% CCA-treated wood was actually
fed into a WTE facility, the ash would likely need to be
managed as a hazardous waste (and smaller percentages
in Europe could be considered hazardous under the Land-
fill Directive). This would greatly increase the cost of the
WTE option in the model. However, the ash evaluated
by Solo-Gabriele et al. (2002) was also subjected to the syn-
thetic precipitation leaching procedure (SPLP), and these
concentrations were used as the input to the model (as no
other ash leachate disposal numbers were available). Using
the 5% CCA-treated wood SPLP leachate estimate for the
ash in the model is conservative; this concentration is likely
higher than would normally be encountered from ash since
it is likely that a lower percentage by mass of CCA-treated
wood would actually be incinerated at a WTE facility.
Leachate concentrations for both arsenic and chromium
were input into the model for each scenario as shown in
Table 2. Copper leachate concentrations were not included
in the model since copper was not shown to be out of the
range of normal landfill concentrations in the lysimeter
study and also was reported as below 0.05 mg/L in the
ash leachate results.

In the model, the WTE air pollution control system col-
lects any potential airborne metals in the fly ash. Then, the
fly ash and bottom ash are disposed of together. Therefore,
the only metal emissions from each scenario are produced
from the disposal module (MSW or ash). The disposal
module was tailored to Florida by utilizing an annual rain-

Table 2
Inputs for the Florida case study

FL MSW landfill scenario FL WTE scenario

Precipitation 127 cm/year 127 cm/year
Mass disposed 336,000 tonnes (wood) 38,000 tonnes (ash)
Quantity of leachate generated in 2007 from disposing

wood/ash
29.2 million L 1.24 million L

Area needed 21,850 m2 (5.4 acres) 931 m2 (0.23 acres)
Leachate concentration Arsenic – 0.54 mg/L Chromium –

0.195 mg/L
Arsenic – 1.76 mg/L Chromium –
4.79 mg/L
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fall rate of 127 cm/year. The resulting rate of arsenic and
chromium release from the landfill itself is reported here
(before treatment). The amount of metal released by the
landfill itself is reported because that quantity of each
metal will have to ultimately be managed by pollution con-
trol systems. However, it should be noted that the amount
of metals estimated to be released from the landfills would
actually be collected through leachate collection systems
and treated.

The MSW DST estimates leachate generation over the
life of the landfill for 500 years. This estimation is com-
pleted in a step-wise fashion with a percentage of precipita-
tion encountering the landfill becoming leachate. For
Leachate Production Period 1 (waste is 0–1.5 year old),
20% of precipitation becomes leachate. For Leachate Pro-
duction Period 2 (waste is 1.5–5 year old), 6.6% of precip-
itation becomes leachate. For Leachate Production Period
3 (waste is 5–10 year old), 6.5% of precipitation becomes
leachate. And finally for the final Leachate Production Per-
iod 4, when the waste is 10 year old and older, 0.04% of the
precipitation becomes leachate. This method of calculation
allowed an estimate of the total amount of arsenic and
chromium released in each landfill disposal situation to
be generated based upon the precipitation amount and
the concentration of the leachate. Leachate generation
was also calculated on a per ton basis of material landfilled
(waste or ash). This allowed both the amount of leachate
generated in the respective model year, as well as the
amount of each metal, to be calculated.

3. Results and discussion of trade-offs

Fig. 2 provides the comparable yearly costs (for landfill-
ing versus WTE only), energy consumption and carbon
equivalents emitted by the four scenarios. While WTE
results in a net offset of energy production in the utility sec-
tor and emits less carbon, it is nearly double the cost of
landfilling because of the higher construction and opera-
tion costs (resulting in higher tipping fees). This is a signif-
icant trade-off since economics often play the largest role in
decision-making. However, as energy supplies become lim-
ited and carbon emission (e.g., greenhouse gas) issues con-
tinue to become more important, economics may become
less influential. The default cost values for the US were
used in the model to calculate the cost estimate and the cost
comparison takes into account the sale of electricity for the
WTE facility, but does not take into account the cost of
land for respective land use between WTE and landfilling.
The difference in the US management scenarios and the
Florida management scenarios are due to differences in
the mass of wood in the disposal stream and the proportion
of wood sent to the WTE. However, as illustrated by
Fig. 2, even if 50% of the wood is managed through
WTE in the US, significant net savings on energy and car-
bon emissions can be achieved.

Fig. 3 shows the difference between the arsenic released
in 2007 (the mass of wood managed in 2007) by the two

disposal scenarios (MSW versus ash) for the detailed Flor-
ida case study. Although the concentration of arsenic in the
leachate from the ash is over 3 times greater than the con-
centration from MSW (1.76 mg/L versus 0.54 mg/L), the
fact that the mass of ash landfilled is less results in a lower
total arsenic release as well. For chromium, also shown in
Fig. 3, the annual rate of release is greater for the ash since
the leachate concentration from the ash is 24 times greater
than the leachate concentration from the MSW (4.8 mg/L
versus 0.2 mg/L). During the combustion process, a por-
tion of the chromium as Cr(III) (which is the species typi-
cally found in CCA-treated wood) is transformed to the
more toxic and mobile hexavalent form (Cr(VI)) (Song
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et al., 2006). The increased concentration of chromium in
the ash leachate is thus a combination of the increased con-
centration of metals in the ash, due to removal of the
organic portion of the wood, plus a conversion of the chro-
mium towards Cr(VI).

Since arsenic and chromium are concentrated in the
WTE ash and the leachate concentrations are greater, on
a per unit area basis, the amount of metals released is
greater (as shown in Fig. 4). However, the land use
trade-off associated with this should be considered. As
shown in Table 2, ash disposal would require 931 m2(less
than 1 acre) of land per year, while the MSW disposal sce-
nario would require 21,850 m2 (over 5 acres). Land require-
ments could be a significant trade-off in areas where land is
scarce and expensive and this trade-off can heavily influ-
ence decision-making. In the US, where land is often plen-
tiful, MSW landfilling still thrives. For some countries in
Europe and Asia, incineration/WTE is more popular since
it greatly reduces the amount of land needed for disposal.

The MSW landfill scenario is estimated to release more
arsenic for the simulation year, but it is less concentrated
both in the waste (2% of the waste stream in MSW) and

in the leachate generated from this waste. The ash disposal
scenario is estimated to release less over the year, but
arsenic concentrations are more concentrated in the ash
and in the leachate. If, in both scenarios, the landfills are
lined and the leachate is collected, the local groundwater
may be protected and the metals released could then be
managed through wastewater treatment. In the case of
lined landfills, some of the other trade-offs (e.g., cost, land
use, energy) may have more influence in the decision-mak-
ing process. The higher concentration of arsenic and chro-
mium in the ash leachate in comparison to MSW leachate
could increase leachate management costs based on con-
centration; however, overall leachate volumes are smaller
in the ash scenario (see Table 2).

The results of this study may be affected by several fac-
tors including the cost of disposal of the incinerator ash if it
does indeed become a hazardous waste (would increase
costs), the transportation from collection for the WTE
option is greater than that for landfilling (would increase
air emissions), and the leachate concentrations of the
MSW landfill and ash (may change over time resulting in
different metal release rates). Limitations of this model
are that a constant concentration is assumed for the leach-
ate. Both arsenic and chromium concentrations will be
dynamic, changing over time and with varying chemistry
within each respective disposal scenario. As presented here,
the model results do provide a relative comparison between
the two management scenarios for CCA-treated wood
given the input parameters incorporated into the model.

4. Summary

CCA-treated wood disposal estimates for the US were
calculated. Based upon this disposal estimate, the mass of
CCA-treated wood is forecasted to vary between the years
2000 through 2030 at 6–10 million m3 per year in the US.
In Florida the quantity varies from 0.4 to 0.7 million m3

per year. Between landfilling and WTE options for the
same mass of CCA-treated wood, WTE is more expensive
(nearly twice the cost), but when operated in accordance
with US EPA regulations, it produces energy and does
not emit fossil carbon emissions. Although arsenic and
chromium are concentrated in the ash, the mass of dis-
posed ash is less than the mass of wood disposed within
MSW. Therefore, the WTE disposal scenario releases
arsenic at a slower rate on an annual basis. However, the
total amount of each metal (e.g., arsenic and chromium)
requiring disposal on an annual basis is the same in each
situation, whether it be landfilled or managed via WTE.
There is complex chemistry involved in the release of both
arsenic and chromium from both the MSW and ash landfill
situation, which in this case are estimated through lysime-
ters containing simulated wastes and from bench-scale ash
leaching tests, and are limited by the assumption that
leaching is constant over time.

The MSW landfill scenario releases more arsenic on an
annual basis, but it is less concentrated in the waste dis-
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posed and in the leachate. The WTE facility and subse-
quent ash disposal scenario releases less arsenic on an
annual basis, but it is more concentrated in the ash and
in the leachate. The WTE facility and subsequent ash dis-
posal greatly concentrates the chromium, and often oxi-
dizes it to Cr(VI) making it more toxic and mobile. If, in
both scenarios, the landfills are lined and the leachate is
to be collected, the local groundwater may be protected
and the metals released could then be managed through
wastewater treatment. Higher concentration of arsenic
and chromium in the ash leachate (when compared to the
MSW leachate) could increase management costs, how-
ever. If the wood is managed via WTE, less landfill area
is required, which could be an influential trade-off in some
countries. Since managing wood via WTE provides benefi-
cial energy and reduces the mass of waste landfilled, further
research may be warranted on the actual impacts of CCA-
treated wood to WTE facilities, especially MSW facilities,
including an evaluation of air pollution efficiencies and
the long term leaching of the disposed ash.

Acknowledgements

Special thanks is given to Dr. Morton Barlaz at North
Carolina State University. Although the MSW DST is
associated with the US EPA, this research has not been re-
viewed by the US EPA, nor does it reflect the views of the
US EPA; no official endorsement should be inferred. This
project was supported in part by an appointment to the Re-
search Participation Program at the National Risk Man-
agement Research Laboratory administered by the Oak
Ridge Institute for Science and Education through an
interagency agreement between the US Department of En-
ergy and the US Environmental Protection Agency. The
authors also acknowledge the support from the Florida
Center for Solid and Hazardous Waste Management,
who sponsored the research focusing on the disposal fore-
cast for CCA-treated wood.

References

Alderman, D., Smith, R., Araman, P., 2003. A profile of CCA-treated

lumber removed from service in the southeastern United States

decking market. Forest Products Journal 53 (1), 38–45.

AWPA, 1960–1997. In: Annual Proceedings of the American Wood

Preservers Association. AWPA: Selma, Alabama, 1960–1981, 1983–

1988, 1990–1991, 1997.

AWPI, 1995 and 1996. Preserving Industry Production Statistical Reports.

American Wood Preservers’ Institute, Fairfax, Virginia, 1995 and

1996.

Code of Federal Regulations (CFR), 2003. Title 40 –Protection of the

Environment, Chapter 1 – Environmental Protection Agency, Part 261

– Identification and Listing of Hazardous Waste.

Clark, C., Jambeck, J., Townsend, T., 2006. A review of construction and

demolition debris regulations in the US. Critical Reviews in Environ-

mental Science and Technology 36, 141–186.

Cooper, P.A., 1994. Disposal of treated wood removed from service: the

issues. In: Environmental Considerations in the Manufacture, Use and

Disposal of Preservative-treated Society, Wood, Forest Products

Madison, WI, pp. 85–90.

European Union 1999. Council Directive 1999/31/EC of 26 April 1999 on

the landfill of waste, Official Journal of the European Communities

16.7.1999.

United States Environmental Protection Agency (US EPA) 2001.

Preliminary evaluation of the non-dietary hazard and exposure to

children from contact with chromated copper arsenate (CCA)-treated

wood playground structures and CCA-contaminated soil. In: FIFRA

Scientific Advisory Panel Meeting, October 23–25, 2001, held at the

Sheraton Crystal City Hotel, Arlington, Virginia, SAP Report No.

2001-12.

Gutzmer, D.I., Crawford, D.M., 1995. Comparison of Wood Preserva-

tives in Stake Tests, 1995 Progress Report, FPL-RN-02. US Depart-

ment of Agriculture, Forest Products Laboratory: Madison,

Wisconsin.

Iida, K., Pierman, J., Tolaymat, T., Townsend, T., Wu, C., 2004. Control

of heavy metal emissions and leaching from incineration of CCA-

treated wood using mineral sorbents. Journal of Environmental

Engineering, ASCE 1302 (2), 184–192.

Jambeck, J.R., 2004. The Disposal of CCA-Treated Wood in Simulated

Landfills: Potential Impacts. PhD Dissertation, University of Florida,

Gainesville, FL.

Jang, Y., Townsend, T., 2003. Effect of waste depth on leachate quality

from laboratory construction and demolition debris landfills. Envi-

ronmental Engineering Science 20 (3), 183–196.

Khan, B.I., Solo-Gabriele, H.M., Townsend, T., Cai, Y., 2006a. Release

of arsenic to the environment from CCA-treated wood: Part I –

leaching and speciation during service. Environmental Science and

Technology 40 (3), 988–993.

Khan, B.I., Jambeck, J., Solo-Gabriele, H.M., Townsend, T., Cai, Y.,

2006b. Release of arsenic to the environment from CCA-treated wood:

Part II – leaching and speciation during disposal. Environmental

Science and Technology 40 (3), 994–999.

McQueen, J., Stevens, J., 1998. Disposal of CCA-treated wood. Forest

Products Journal 48 (11/12), 86–90.

Peek, R-D., 2004. EU directives and national regulations for the recycling

and disposal of waste wood. Presented at the FICESS Conference,

Orlando, FL, February 8–11, 2004.

Southern Forest Products Association. Forecasted Treated Southern

Pine Markets for the US in the year 2000. SFPA, Kenner,

Louisiana, 2001.

Solano, E., Ranjithan, S.R., Barlaz, M.A., Brill, E.D., 2002a.

Life-cycle-based solid waste management. I: model develop-

ment. Journal of Environmental Engineering 128 (10), 981–

992.

Solano, E., Dumas, R.D., Harrison, K.W., Ranjithan, S.R., Barlaz, M.A.,

Brill, E.D., 2002b. Life-cycle-based solid waste management. II:

illustrative applications. Journal of Environmental Engineering 128

(10), 993–1005.

Solo-Gabriele, H., Townsend, T., 1999. Disposal practices and manage-

ment alternatives for CCA-treated wood waste. Waste Management

and Research 17, 378–389.

Solo-Gabriele, H., Townsend, T., Messick, B., Calitu, V., 2002. Charac-

teristics of chromated copper arsenate-treated wood ash. Journal of

Hazardous Materials 89, 213–232.

Solo-Gabriele, H., Townsend, T., Hahn, D., Moskal, T., Hosein, N.,

Jambeck, J., Jacobi, G., 2004. Evaluation of XRF and LIBS

technologies for on-line sorting of CCA-treated wood waste. Waste

Management 24 (4), 413–424.

Song, J., Dubey, B., Jang, Y., Townsend, T., Solo-Gabriele, H., 2006.

Implication of chromium speciation on disposal of discarded

CCA-treated wood. Journal of Hazardous Materials 128 (2–3),

280–288.

Thorneloe, S.A., Weitz, K.A., 2004. Sustainability and waste manage-

ment. Presented at the Sustainable Waste Management Conference,

November 17–19, New South Wales, Australia.

Townsend, T., Solo-Gabriele, H., Tolaymat, T., Stook, K., 2003. Impact

of chromated copper arsenate (CCA) in wood mulch. Science of the

Total Environment 309, 173–185.

J. Jambeck et al. / Waste Management 27 (2007) S21–S28 S27



Townsend, T., Tolaymat, T., Solo-Gabriele, H., Dubey, B., Stook, K.,

Wadanambi, L., 2004. Leaching of CCA treated wood: implications

for waste disposal. Journal of Hazardous Materials 114, 75–91.

United States Environmental Protection Agency (US EPA) 2002. Notice

of receipt of requests to cancel certain chromated copper arsenate

(CCA) wood preservative products and amend to terminate certain

uses of CCA products. Federal Register, 67(36), 8244–8246. US EPA,

Washington, DC.

United States Environmental Protection Agency (US EPA) 2003.

A probabilistic risk assessment for children who contact CCA-

treated playsets and decks. Draft Preliminary Report, Office of

Pesticide Programs, Antimicrobials Division, November 10,

2003.

Weitz, K., Barlaz, M., Ranjithan, R., Brill, D., Thorneloe, S.A., Ham, R.,

1999. Life cycle management of municipal solid waste. International

Journal of Life cycle Assessment 4 (4), 195–201.

Waste and Resources Action Program (WRAP), 2005. Options and Risk

Assessment for Treated Wood Waste: Summary Report, ISBN 1-

900510-46-4. <http://www.wrap.org.uk/applications/publications/pub-

lication_details.rm?id=698&publication=2236>.

S28 J. Jambeck et al. / Waste Management 27 (2007) S21–S28

http://www.wrap.org.uk/applications/publications/publication_details.rm?id=698&amp;publication=2236
http://www.wrap.org.uk/applications/publications/publication_details.rm?id=698&amp;publication=2236

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2007

	CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal
	Jenna Jambeck
	Keith Weitz
	Helena Solo-Gabriele
	Timothy Townsend
	Susan Thorneloe

	CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal
	Introduction and background
	Methods
	CCA-treated wood management scenarios and MSW DST input
	Estimate of disposal of CCA-treated wood in the US
	MSW landfill and ash leachate concentrations

	Results and discussion of trade-offs
	Summary
	Acknowledgements
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


