3-23-2007

Lifetime Difference and CP-Violating Phase in the B_s^0 System

V.M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Gregory R. Snow
University of Nebraska-Lincoln, gsnow1@unl.edu

D0 Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsbloom/171

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Lifetime Difference and CP-Violating Phase in the B_d^0 System

V. M. Abazov,35 B. Abbott,75 M. Abolins,65 B. S. Acharya,28 M. Adams,51 T. Adams,49 E. Aguilo,5 S. H. Ahn,30 M. Ahsan,59 G. D. Alexeev,35 G. Alkhazov,39 A. Alton,64 G. Alver,63 G. A. Alves,7 M. Anastasio,34 L. S. Ancu,4 T. Andeen,53 S. Anderson,45 B. Andrieu,16 M. S. Anzelec,53 Y. Arnould,13 M. Arron,52 A. Askew,49 B. Åsman,40 A. C. S. Assis Jesus,3 O. Atramentov,49 C. Autermann,20 C. Avila,7 C. Ay,23 F. Badaud,13 A. Baden,61 L. Bagby,52 B. Baldin,50 D. V. Bandurin,59 P. Banerjee,59 S. Banerjee,28 E. Barberis,63 A.-F. Barfuss,14 P. Bargassa,58 P. Baringer,58 N. Parua,53 C. Barnes,43 J. Barreto,2 J. F. Bartlett,50 U. Bassler,16 D. Bauer,43 S. Beale,5 J. Bean,58 M. Begalli,3 M. Begel,71 C. Beangler-Champagne,40 L. Bellantoni,50 A. Bellavance,67 J. A. Benitez,62 S. B. Ber,26 G. Bernardi,16 R. Bernhard,22 L. Berntzon,14 I. Bertram,42 M. Besançon,17 R. Beuselinck,43 V. A. Bezzubov,38 P. C. Bhat,50 V. Bhatnagar,26 M. Binder,24 C. Biscarati,19 I. Blacker,43 G. Blazey,52 F. Blekman,43 S. Blessing,56 D. Bloch,18 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,16 R. Bernhard,22 K. Bloom,67 A. Boehnlein,50 D. Boline,62 T. A. Bolton,59 G. Borissow,42 K. Bos,35 T. Bose,77 A. Brandt,78 R. Brock,65 G. Brooijmans,70 A. Bross,50 D. Brown,78 N. J. Buchanan,49 D. Buchholz,53 M. Buehler,51 V. Buescher,22 S. Burdin,24 J. A. Benitez,65 S. B. Beri,26 G. Bernardi,
26Panjab University, Chandigarh, India
27Delhi University, Delhi, India
28Tata Institute of Fundamental Research, Mumbai, India
29University College Dublin, Dublin, Ireland
30Korea Detector Laboratory, Korea University, Seoul, Korea
31SungKyunKwan University, Suwon, Korea
32CINVESTAV, Mexico City, Mexico
33FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
34Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
35Joint Institute for Nuclear Research, Dubna, Russia
36Institute for Theoretical and Experimental Physics, Moscow, Russia
37Moscow State University, Moscow, Russia
38Institute for High Energy Physics, Protvino, Russia
39Petersburg Nuclear Physics Institute, St. Petersburg, Russia
40Lund University, Lund, Sweden,
Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
41Physik Institut der Universität Zürich, Zürich, Switzerland
42Lancaster University, Lancaster, United Kingdom
43Imperial College, London, United Kingdom
44University of Manchester, Manchester, United Kingdom
45University of Arizona, Tucson, Arizona 85721, USA
46Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
47California State University, Fresno, California 93740, USA
48University of California, Riverside, California 92521, USA
49Florida State University, Tallahassee, Florida 32306, USA
50Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
51University of Illinois at Chicago, Chicago, Illinois 60607, USA
52Northern Illinois University, DeKalb, Illinois 60115, USA
53Northwestern University, Evanston, Illinois 60208, USA
54Indiana University, Bloomington, Indiana 47405, USA
55University of Notre Dame, Notre Dame, Indiana 46556, USA
56Purdue University Calumet, Hammond, Indiana 46323, USA
57Iowa State University, Ames, Iowa 50011, USA
58University of Kansas, Lawrence, Kansas 66045, USA
59Kansas State University, Manhattan, Kansas 66506, USA
60Louisiana Tech University, Ruston, Louisiana 71272, USA
61University of Maryland, College Park, Maryland 20742, USA
62Boston University, Boston, Massachusetts 02215, USA
63Northeastern University, Boston, Massachusetts 02115, USA
64University of Michigan, Ann Arbor, Michigan 48109, USA
65Michigan State University, East Lansing, Michigan 48824, USA
66University of Mississippi, University, Mississippi 38677, USA
67University of Nebraska, Lincoln, Nebraska 68588, USA
68Princeton University, Princeton, New Jersey 08544, USA
69State University of New York, Buffalo, New York 14260, USA
70Columbia University, New York, New York 10027, USA
71University of Rochester, Rochester, New York 14627, USA
72State University of New York, Stony Brook, New York 11794, USA
73Brookhaven National Laboratory, Upton, New York 11973, USA
74Langston University, Langston, Oklahoma 73050, USA
75University of Oklahoma, Norman, Oklahoma 73019, USA
76Oklahoma State University, Stillwater, Oklahoma 74078, USA
77Brown University, Providence, Rhode Island 02912, USA
78University of Texas, Arlington, Texas 76019, USA
79Southern Methodist University, Dallas, Texas 75275, USA
80Rice University, Houston, Texas 77005, USA
81University of Virginia, Charlottesville, Virginia 22901, USA
82University of Washington, Seattle, Washington 98195, USA
(Received 10 January 2007; published 21 March 2007)
From an analysis of the decay $B^0 \to J/\psi \phi$, we obtain the width difference between the light and heavy mass eigenstates $\Delta \Gamma = (\Gamma_L - \Gamma_H) = 0.17 \pm 0.09 \text{(stat)} \pm 0.02 \text{(syst)} \text{ps}^{-1}$ and the CP-violating phase $\phi_s = -0.79 \pm 0.56 \text{(stat)} \pm 0.04 \text{(syst)}$. Under the hypothesis of no CP violation ($\phi_s = 0$), we obtain $1/\Gamma = \bar{\tau}(B^0) = 1.52 \pm 0.08 \text{(stat)} \pm 0.03 \text{(syst)} \text{ps}$ and $\Delta \Gamma = 0.12 \pm 0.10 \text{(stat)} \pm 0.02 \text{(syst)} \text{ps}^{-1}$. The data sample corresponds to an integrated luminosity of about 1.1 fb$^{-1}$ accumulated with the D0 detector at the Fermilab Tevatron collider. This is the first direct measurement of the CP-violating mixing phase in the B^0_s system.

DOI: 10.1103/PhysRevLett.98.121801

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

In the standard model (SM), the light (L) and heavy (H) eigenstates of the mixed B^0_s system are expected to have a sizable mass and decay width difference $\Delta M = M_H - M_L$ and $\Delta \Gamma = \Gamma_L - \Gamma_H$. The CP-violating phase, defined as the relative phase of the off-diagonal elements of the mass and decay matrices in the $B^0_s \bar{B}^0_s$ basis, is predicted to be small. Thus, to a good approximation, the two mass eigenstates are expected to be CP eigenstates. New phenomena may alter the CP-violating mixing phase ϕ_s, leading to a reduction of the observed $\Delta \Gamma$ compared to the SM prediction $\Delta \Gamma_{\text{SM}}$: $\Delta \Gamma = \Delta \Gamma_{\text{SM}} \times \cos \phi_s$. While the mass difference has recently been measured to high precision [2,3], the CP-violating phase remains unknown.

The decay $B^0 \to J/\psi \phi$, proceeding through the quark process $b \to c \bar{c} s$, gives rise to both CP-even and CP-odd final states. It is possible to separate the two CP components of the decay $B^0 \to J/\psi \phi$, and thus to measure the lifetime difference, through a study of the time-dependent angular distribution of the decay products of the J/ψ and ϕ mesons. Moreover, with a sizable lifetime difference, there is sensitivity to the mixing phase through the interference terms between the CP-even and CP-odd waves.

Previous analyses [4,5] of the decay chain $B^0 \to J/\psi \phi$, $J/\psi \to \mu^+ \mu^-$, $\phi \to K^+ K^-$ extracted the average lifetime of the B^0_s system $\bar{\tau} = 1/\bar{\Gamma}$, where $\bar{\Gamma} = (\Gamma_H + \Gamma_L)/2$, and $\Delta \Gamma/\bar{\Gamma}$ under the assumption of CP conservation. Here we present new D0 results, based on a twofold increase in statistics. In addition to $\bar{\tau}$ and $\Delta \Gamma$, we extract for the first time the CP-violating phase ϕ_s. We also measure the magnitudes of the decay amplitudes and their relative phases. The data, collected with the D0 detector [6] between June 2002 and January 2006, correspond to an integrated luminosity of about 1.1 fb$^{-1}$.

Events triggered by the presence of at least one muon are required to include two reconstructed muons of opposite charge, with a momentum in the plane transverse to the beam greater than 1.5 GeV and pseudorapidity $|\eta| < 2$. ($\eta = -\ln(\tan(\Theta/2))$, and Θ is the polar angle with respect to the proton beam direction.) Each muon is required to be detected as a track segment in at least one of the three layers of the muon system and to be matched to a central track. At least one muon is required to have segments both inside and outside the toroid magnet.

To select the B^0_s candidate sample, we set the minimum values of momenta in the transverse plane for B^0_s, ϕ, and K meson candidates at 6.0, 1.5, and 0.7 GeV, respectively. J/ψ candidates are accepted if the invariant mass of the muon pair is in the range 2.9–3.3 GeV. Successful candidates are constrained to the world average mass of the J/ψ meson [7]. Decay products of the ϕ candidates are required to satisfy a fit to a common vertex and to have an invariant mass in the range 1.01–1.03 GeV. We require the $(J/\psi, \phi)$ pair to be consistent with coming from a common vertex and to have an invariant mass in the range 5.0–5.8 GeV. In the case of multiple ϕ meson candidates, we select the one with the highest transverse momentum. Monte Carlo (MC) studies show that the p_T spectrum of the ϕ mesons coming from B^0_s decay is harder than the spectrum of a pair of random tracks from hadronization. We define the signed decay length of a B^0_s meson $L_{b/\phi}$ as the vector pointing from the primary vertex to the decay vertex projected on the B^0_s transverse momentum. To reconstruct the primary vertex, we select tracks with $p_T > 0.3$ GeV that are not used as decay products of the B^0_s candidate and apply a constraint to the average beam spot position. The proper decay length ct is defined by the relation $ct = L_{b/\phi} \cdot M_{b/\phi} / p_T$, where $M_{b/\phi}$ is the measured mass of the B^0_s candidate. The distribution of the proper decay length uncertainty $\sigma(ct)$ of B^0_s mesons peaks around 25 μm. We accept events with $\sigma(ct) < 60$ μm. The invariant mass distribution of the accepted 23 343 candidates is shown in Fig. 1. The curves are
projections of the maximum likelihood fit, described below. The fit assigns 1039 ± 45 (stat) events to the B^0 decay.

We perform a simultaneous unbinned maximum likelihood fit to the proper decay length, three decay angles, and mass. The likelihood function L is given by

$$ L = \prod_{i=1}^{N} [f_{\text{sig}} F_{\text{sig}}^{i} + (1 - f_{\text{sig}}) F_{\text{bck}}^{i}], $$

where N is the total number of events, and f_{sig} is the fraction of signal in the sample. The function F_{sig}^{i} describes the distribution of the signal in mass, proper decay length, and the decay angles. For the signal mass distribution, we use a Gaussian function with free mean and width. The proper decay length distribution of the L or H component of the signal is parametrized by an exponential convoluted with a Gaussian function with the width taken from the event-by-event estimate of $\sigma(ct)$. F_{bck}^{i} is the product of the background mass, proper decay length, and angular probability density functions. Background is divided into two categories. A “prompt” background is due to directly produced J/ψ mesons accompanied by random tracks arising from hadronization. This background is distinguished from a “nonprompt” background, where the J/ψ meson is a product of a B hadron decay while the tracks forming the ϕ candidate emanate from a multibody decay of the same B hadron or from hadronization.

The time evolution of the angular distribution of the products of the decay of flavor untagged B^0 mesons, i.e., summed over B^0 and \bar{B}^0, expressed in terms of the linear polarization amplitudes A_\perp and their relative phases δ_i is [8]

$$ \frac{d^3\Gamma(t)}{d\cos\theta d\phi d\cos\psi} \propto 2|A_0(0)|^2 T_+ \cos^2\psi \{1 - \sin^2\theta \cos^2\varphi + \sin^2\varphi [|A_0(0)|^2 T_+ (1 - \sin^2\theta \sin^2\varphi) + |A_\perp(0)|^2 T_- \sin^2\theta] \\
+ \frac{1}{\sqrt{2}} \sin2\psi |A_0(0)||A_\perp(0)| \cos(\delta_2 - \delta_1) T_+ \sin^2\theta \sin2\varphi \\
+ \frac{1}{\sqrt{2}} |A_0(0)||A_\perp(0)| \cos\delta_2 \sin2\psi \sin2\theta \cos\varphi - |A_0(0)||A_\perp(0)| \cos\delta_1 \sin^2\psi \sin2\theta \sin\varphi \}
$$

where $T_+ = \frac{1}{2} [(1 + \cos\phi_\perp) e^{-\Gamma t} + (1 + \cos\phi_\parallel) e^{-\Gamma t}]$.

In the coordinate system of the J/ψ rest frame [where the ϕ meson moves in the x direction, the z axis is perpendicular to the decay plane of $\phi \rightarrow K^+ K^-$, and $p_{\psi}(K^+) \geq 0$], the transversity polar and azimuthal angles (θ, φ) describe the direction of the μ^+, and ψ is the angle between \vec{p}_{K^+} and $-\vec{p}(J/\psi)$ in the ϕ rest frame.

We model the acceptance and resolution in the three angles by fits using polynomial functions, with parameters determined using Monte Carlo simulations. We have used the SVV HELAMP model in the EVTGEN generator [9], interfaced to the PYTHIA program [10]. Simulated events were reweighted to match the kinematic distributions observed in the data.

![FIG. 2 (color online). The transversity polar angle distribution for the signal-enhanced subsample: $c/t/\alpha(ct) > 5$ and signal mass range. The curves show the total signal contribution [dashed (red) curve], the CP-even (dotted curve) and CP-odd (dashed-dotted curve) contributions of the signal, the background [light solid (green) curve], and the total [solid (blue) curve].](121801-5)
The proper decay length distribution shape of the background is described as a sum of a prompt component, simulated as a Gaussian function centered at zero, and a nonprompt component, simulated as a superposition of one exponential for the negative \(ct \) region and two exponentials for the positive \(ct \) region, with free slopes and normalization. The mass distributions of the backgrounds are parametrized by first-order polynomials. The distributions in the transversity polar and azimuthal angles are parametrized as

\[
\frac{1}{0.0135} x \cos^2(\phi/0.0135) \quad \text{and} \quad \frac{1}{0.0135} x \cos^4(\phi/0.0135),
\]

respectively. For the background dependence on the angle \(\phi \), we use the function

\[
\frac{1}{0.0135} z \cos^2(\phi/0.0133) \quad \text{and} \quad \frac{1}{0.0135} \text{interference term of the } \text{CP}-\text{even waves,}
\]

with one free coefficient. For each of the above background functions, we use two separate sets of parameters for the prompt and nonprompt components.

Our results for the hypothesis of CP conservation and for the case of free \(\phi_s \) are presented in Table I. Figures 2–5 show the fit projections on the angular distributions and the

Figures

Fig. 3 (color online). The transversity azimuthal angle distribution for the signal-enhanced subsample: \(ct/\sigma(ct) > 5 \) and signal mass range. The curves show the signal contribution [dashed (red) curve], the background [light solid (green) curve], and the total [solid (blue) curve].

Fig. 4 (color online). The \(\psi \) angle distribution for the signal-enhanced subsample: \(ct/\sigma(ct) > 5 \) and signal mass range. The curves show the signal contribution [dashed (red) curve], the background [light solid (green) curve], and the total [solid (blue) curve].

Fig. 5 (color online). The proper decay length \(ct \) of the \(B^0_s \) candidates in the signal mass region. The curves show the signal contribution [dashed (red) curve], the CP-even (dotted curve) and CP-odd (dashed-dotted curve) contributions of the signal, the background [light solid (green) curve], and the total [solid (blue) curve].

Fig. 6 (color online). The \(\Delta \ln(L) = 0.5 \) contour (error ellipse) in the plane \((\Delta \Gamma, \phi_s) \) for the fit to the \(B^0_s \rightarrow J/\psi\phi \) data. Also shown is the band representing the relation \(\Delta \Gamma = \Delta \Gamma_{SM} \times |\cos(\phi_s)| \), with \(\Delta \Gamma_{SM} = 0.10 \pm 0.03 \text{ ps}^{-1} \) [11]. The fourfold ambiguity is discussed in the text.
proper decay length. Figure 6 shows the $\Delta \ln(L) = 0.5$ error ellipse contour (corresponding to the confidence level of 39%) in the plane $(\Delta \Gamma, \phi_s)$. As seen from Eq. (2), the sign of $\sin \phi_s$ is reversed with the simultaneous reversal of the signs of $\cos \delta_1$ and $\cos \delta_2$. For the case $\cos \delta_1 < 0$ and $\cos \delta_2 > 0$, expected in the absence of final state interactions (cf. Table I in Ref. [8]), our measurement correlates two possible solutions for ϕ_s: $\phi_s = -0.79 \pm 0.56 \text{(stat)}, \Delta \Gamma > 0$, and $\phi_s = 2.35 \pm 0.56, \Delta \Gamma < 0$. For the case $\cos \delta_1 > 0$ and $\cos \delta_2 < 0$, the two solutions are $\phi_s = 0.79 \pm 0.56, \Delta \Gamma > 0$, and $\phi_s = -2.35 \pm 0.56, \Delta \Gamma < 0$.

We perform a test using pseudoexperiments with similar statistical sensitivity, generated with the same parameters as obtained in this analysis under the condition of no CP violation. When fits allowing for CP violation are performed, $\approx 50\%$ of the experiments have a fitted $\cos(\phi_s)$ less than the measured value. About 80% of experiments have the statistical uncertainty of ϕ_s greater than that for the data.

We verify the procedure by performing fits on MC samples passed through the full chain of detector simulation, event reconstruction, and maximum likelihood fitting. We assign systematic uncertainties due to the statistical precision of this procedure test. We repeat the fits to the data with the parameters describing the acceptance varied by $\pm 1\sigma$. Uncertainties from the data processing reflect the stability of the results with respect to different versions of the track and vertex reconstruction algorithms. The “interference” term in the background model accounts for the collective effect of various physics processes. However, its presence may be partially due to the detector acceptance effects. Therefore, we interpret the difference between fits with and without this term as a systematic uncertainty associated with the background model. Effects of the imperfect detector alignment are estimated using a modified geometry of the silicon microstrip tracker, with silicon sensors moved within the known uncertainty. The effects of systematic uncertainties are listed in Table II.

From a fit to the CP-conserving time-dependent angular distribution of the untagged decay $B^0_s \rightarrow J/\psi \phi$, we obtain the average lifetime of the B^0_s system $\bar{\tau}(B^0_s) = 1.52 \pm 0.08 \text{(stat)} ^{+0.01}_{-0.03} \text{(syst)} \text{ps}$ and the width difference between the two mass eigenstates $\Delta \Gamma = 0.12 ^{+0.08}_{-0.10} \text{(stat)} \pm 0.02 \text{(syst)} \text{ps}^{-1}$.

Allowing for CP violation in B^0_s mixing, we provide the first direct constraint on the CP-violating phase $\phi_s = -0.79 \pm 0.56 \text{(stat)} ^{+0.14}_{-0.01} \text{(syst)}$.

We thank U. Nierste for useful discussions. We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.

<table>
<thead>
<tr>
<th>Source</th>
<th>$\tau(B^0_s)$ (\mu\text{m})</th>
<th>$\Delta \Gamma \text{ ps}^{-1}$</th>
<th>R_L</th>
<th>ϕ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure test</td>
<td>2.0</td>
<td>0.02</td>
<td>0.01</td>
<td>\ldots</td>
</tr>
<tr>
<td>Acceptance</td>
<td>0.5</td>
<td>0.001</td>
<td>0.003</td>
<td>0.01</td>
</tr>
<tr>
<td>Reco. algorithm</td>
<td>-8.0, +1.3</td>
<td>+0.001</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>Background model</td>
<td>+1.0</td>
<td>+0.01</td>
<td>-0.01</td>
<td>+0.14</td>
</tr>
<tr>
<td>Alignment</td>
<td>2.0</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>Total</td>
<td>-8.8, +3.3</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.01, +0.14</td>
</tr>
</tbody>
</table>