
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2010

A First Practical Algorithm for High Levels of
Relational Consistency
Shant Karakashian
University of Nebraska - Lincoln, shantk@cse.unl.edu

Robert J. Woodward
University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Christopher Reeson
University of Nebraska - Lincoln, creeson@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska - Lincoln, choueiry@cse.unl.edu

Christian Bessiere
University of Montpellier, France, bessiere@lirmm.fr

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Karakashian, Shant; Woodward, Robert J.; Reeson, Christopher; Choueiry, Berthe Y.; and Bessiere, Christian, "A First Practical
Algorithm for High Levels of Relational Consistency" (2010). CSE Conference and Workshop Papers. Paper 175.
http://digitalcommons.unl.edu/cseconfwork/175

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/175?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages

A First Practical Algorithm for High
Levels of Relational Consistency

Shant Karakashian, Robert Woodward, Christopher
Reeson, Berthe Y. Choueiry & Christian Bessiere

 Constraint Systems Laboratory, University of Nebraska-Lincoln

LIRMM-CNRS, University of Montpellier

Acknowledgements:

• Kostas Stergiou and anonymous reviewers

• Experiments conducted at UNL’s Holland Computing Center

• NSF CAREER Award #0133568

• Robert Woodward supported by a UNL undergraduate research grant (UCARE) & by a B.M. Goldwater
Scholarship

1

Outline

• Introduction
• Relational Consistency R(*,m)C :

– Definition, Naïve algorithm, Properties

• Preliminaries: Dual CSP
• Our Approach

– Algorithm
– Index-Tree Data Structure
– Advantages

• A weakened version of R(*,m)C: wR(*,m)C
• Experimental Evaluations
• Conclusions & Future Work

2

Introduction

• Local consistency techniques are at the heart of
solving CSPs

• Low level consistency properties such as GAC are
easy to apply & are effective for many problems

• There are problems that require higher levels of
consistency for finding a solution in a reasonable
amount of time

• We present a practical algorithm for enforcing
relational m-wise consistency: R(*,m)C

3

Definition of R(*,m)C

• A CSP is R(*,m)C iff

– Every tuple in a relation can be extended to the variables
in the scope of any (m-1) other relations in an assignment
satisfying all m relations simultaneously

..…

∀ m-1 relations

∀ tuple

∀ relation

4

Naïve Algorithm for R(*,m)C

• R(*,m)C can be enforced on a CSP by

– joining every combination of m relations and

– projecting the product on the individual relations

∀ Ri ∈ {R1, …, Rm}, Ri  πscope(Ri) (⋈j=1..mRj)

5

Properties of R(*,m)C

• It does not change the structure of the
constraint network

• R(*,m)C p RmC [Dechter & van Beek ’97]

• It filters the relations by removing tuples

• It is parameterized

– We can control the level of consistency (m)

6

Preliminaries

• The dual graph of a CSP is a graph where
– The nodes represent the relations
– The edges are added between two relations with at

least one common variable

• Connected combination of m relations is a set of
relations that induce a connected component in
the dual graph

AB

EF

BC

DE

CFG

R1

R3

R2

R4

R5 m = 3

7

• Consider ω = {R1,R2,…,Rm} a set of m relations

• Pω is the dual CSP induced by ω where

– The dual variables represent the m relations

– The domains are the tuples of the relations Ri

– The constraints in Pω are binary & enforce equality
on the CSP variables shared by the two relations

R1

A B
R2

BCD

The Induced Dual CSP

..…

m relations

Dual
variable

Domain of a
dual variable

Rm

CDE

Constraints CCD CB

8

Enforcing R(*,m)C on the Induced Dual CSP Pω

R1

R3

R5

For each τ in R
Assign τ as a value for R
Solve Pω (with τ fixed) with forward checking

Extract <ω,R> from Q
Q

<ω1,R1>

<ω1,R2>

<ω1,R5>

<ω2,R2>

<ω2,R5>

<ω2,R4>
<ω3,R3>

<ω3,R4>

<ω3,R5>

ω1

ω2 ω3

AB

CB

R1: A B R2: B C

R5: C F G

CC

If no solution found: delete τ

Define CSP Pω

DE

CB

R3: D E R4: E F

R5: C F G

CC

Add <ω’, R’> to Q: Ri≠R’, Ri∈ω’ and R’∈ω’

10

ω1

ω2

ω3
R2

R4

BC

EF

CFG

Index-Tree Data Structure

• When solving Pω, for a tuple τ, Forward checking
requires identifying all tuples matching τ in the
neighboring relations

• We propose a new data structure: index-tree
– Given a tuple τ of R1 and a relation R2
– Identifies all the tuples of R2 that match τ

12

τ

R1 R2
0

0 1

1 1

1

1

1

t1 t2

t3

t4

Advantages of Our Approach

• The memory requirement of the operation

∀ Ri ∈ {R1, …, Rm}, Ri = πscope(Ri) (⋈j=1..mRj)

– O(tm), t: max number of tuples in a relation

– For relations with 10,000 tuples, enforcing R(*,3)C
requires in the order of 1TB of memory

• With our approach, the memory requirement is
dominated by the index-tree structures

– O(kte2), k: max arity of relations, e: number of relations

– While slightly decreasing the time complexity

14

CF

CG

• Some edges are redundant for m=2
• Removing them reduces the number of combinations
• For m>2, removal of these edges weakens R(*,m)C
• Example

– Assume that no assignment satisfies variables A, B & C simultaneously
– To detect this inconsistency, need to consider R1R2R4 simultaniously
– This inconsistency is not detected because we removed the

combination R1R2R4

Weakening Relational Consistency: wR(*,m)C

AD

AE

ABD

ACEG

BCF

ADE

CFG

R1

R3

R2

R4

R5
A

B

C

R1 R2 R3

R1 R2 R4

R1 R2 R5

R1 R3 R4

R2 R3 R4

R2 R4 R5

R3 R4 R5

R1 R2 R3

R1 R2 R5

R1 R3 R4

R2 R4 R5

R3 R4 R5

15

R(*,m)C versus wR(*,m)C

16

R(*,m)C is defined for m ≥ 2

m = 2 R(*,2)C ≡ wR(*,2)C [Janssen+ ‘89]

m > 2 R(*,2)C p wR(*,m)C p R(*,m)C

m < n
 R(*,m)C p R(*,n)C
wR(*,m)C p wR(*,n)C

 A p B: A is strictly weaker than B

Experimental Results
Benchmark Algorithm #Nodes

Visited
Time [sec] #Completed

in 1 hour
#Fastest #Backtrack

Free

modifiedRenault GAC 1,324,309.8 402.44 26 14 4/50

Max #tuples: 48,721 maxRPWC 2,110.8 305.37 31 3 19/50

wR(*,2)C 192.5 2.99 46 27 41/50

wR(*,3)C 82.5 7.55 50 4 48/50

wR(*,4)C 82.5 33.88 50 2 50/50

rand-8-20-5 GAC 30,501.7 1,795.26 9 2 0/20

Max #tuples :78,799 wR(*,2)C 941.3 1,162.22 16 14 0/20

dag-rand wR(*,2)C 0.0 27.21 25 25 25/25

Max #tuples: 150,000 wR(*,3)C 0.0 37.75 25 0 25/25

aim-200 GAC 1,876,247.6 542.48 8 0 0/24

Max #tuples: 7 maxRPWC 842,488.8 414.05 8 1 0/24

wR(*,2)C 2,670.2 35.51 12 7 4/24

wR(*,3)C 580.2 35.91 14 7 8/24

wR(*,4)C 443.8 240.13 14 2 9/24

Conclusions & Future Work

• We studied the relational consistency property R(*,m)C
– Proposed a weaker variant wR(*,m)C

– Presented a parameterized algorithm for enforcing it

– Designed a new data structure (index tree) for efficiently
checking the consistency of tuples between two relations

– Evaluated it against GAC & maxRPWC

• Future work:
– Handle relations defined as conflicts or in intension by

domain filtering

– Automatically identify the appropriate consistency level

– Use R(*,m)C in a solver to identify tractable classes of CSPs

18

Thank You for Your Attention

Questions?

19

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2010

	A First Practical Algorithm for High Levels of Relational Consistency
	Shant Karakashian
	Robert J. Woodward
	Christopher Reeson
	Berthe Y. Choueiry
	Christian Bessiere

