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Introduction 

• Local  consistency  techniques are at the heart of 
solving CSPs 

• Low level consistency properties such as GAC are 
easy to apply & are effective for many problems 

• There are problems that require higher levels of 
consistency for finding a solution in a reasonable 
amount of time 

• We present a practical algorithm for enforcing 
relational m-wise consistency: R(*,m)C 
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Definition of R(*,m)C 

• A CSP is R(*,m)C iff  

– Every tuple in a relation can be extended to the variables 
in the scope of any (m-1) other relations in an assignment 
satisfying all m relations simultaneously 

..… 

∀ m-1 relations 

∀ tuple 

∀ relation 
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Naïve Algorithm for R(*,m)C 

• R(*,m)C can be enforced on a CSP by  

– joining every combination of m relations and 

– projecting the product on the individual relations 

∀ Ri ∈ {R1, …, Rm}, Ri  πscope(Ri) (⋈j=1..mRj) 
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Properties of R(*,m)C 

• It does not change the structure of the 
constraint network 

• R(*,m)C p RmC                      [Dechter & van Beek ’97] 

• It filters the relations by removing tuples 

• It is parameterized 

– We can control the level of consistency (m) 
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Preliminaries 

• The dual graph of a CSP is a graph where 
– The nodes represent the relations 
– The edges are added between two relations with at 

least one common variable 
 
 
 
 

• Connected combination of m relations is a set of 
relations that induce a connected component in 
the dual graph  

AB 

EF 

BC 

DE 

CFG 

R1 

R3 

R2 

R4 

R5 m = 3 
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• Consider ω = {R1,R2,…,Rm} a set of m relations 

• Pω  is the dual CSP induced by ω where 

– The dual variables represent the m relations 

– The domains are the tuples of the relations Ri 

– The constraints in Pω are binary & enforce equality 
on the CSP variables shared by the two relations 

R1 

A B 
R2 

BCD 

The Induced Dual CSP 

..… 

m relations 

Dual 
variable 

Domain of a 
dual variable 

Rm 

CDE 

Constraints CCD CB 
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Enforcing R(*,m)C on the Induced Dual CSP Pω 

R1 

R3 

R5 

For each τ in R 
Assign τ as a value for R 
Solve Pω (with τ fixed) with forward checking 

Extract <ω,R> from Q  
Q 

<ω1,R1> 

<ω1,R2> 

<ω1,R5> 

<ω2,R2> 

<ω2,R5> 

<ω2,R4> 
<ω3,R3> 

<ω3,R4> 

<ω3,R5> 

ω1 

ω2 ω3 

AB 

CB 

R1: A B R2: B C 

R5: C F G 

CC 

If no solution found: delete τ 

Define CSP Pω 

DE 

CB 

R3: D E R4: E F 

R5: C F G 

CC 

Add <ω’, R’> to Q: Ri≠R’, Ri∈ω’ and R’∈ω’ 
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ω1 

ω2 

ω3 
R2 

R4 

BC 

EF 

CFG 



Index-Tree Data Structure 

• When solving Pω, for a tuple τ, Forward checking 
requires identifying all tuples matching τ in the 
neighboring relations 

• We propose a new data structure: index-tree 
– Given a tuple τ of R1 and a relation R2 
– Identifies all the tuples of R2 that match τ 
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τ 

R1 R2 
0 

0 1 

1 1 

1 

1 

1 

t1 t2 

t3 

t4 



Advantages of Our Approach 

• The memory requirement of the operation 

∀ Ri ∈ {R1, …, Rm}, Ri = πscope(Ri) (⋈j=1..mRj) 

– O(tm), t: max number of tuples in a relation 

– For relations with 10,000 tuples, enforcing R(*,3)C 
requires in the order of 1TB of memory 

• With our approach, the memory requirement is 
dominated by the index-tree structures 

– O(kte2),  k: max arity of relations, e: number of relations 

– While slightly decreasing the time complexity 
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CF 

CG 

• Some edges are redundant  for m=2 
• Removing them reduces the number of combinations 
• For m>2, removal of these edges weakens R(*,m)C 
• Example  

– Assume that no assignment satisfies variables A, B & C simultaneously 
– To detect this inconsistency, need to consider R1R2R4  simultaniously 
– This inconsistency is not detected because we removed the 

combination R1R2R4 

 
 

Weakening Relational Consistency: wR(*,m)C 

AD 

AE 

ABD 

ACEG 

BCF 

ADE 

CFG 

R1 

R3 

R2 

R4 

R5 
A 

B 

C 

R1 R2 R3 

R1 R2 R4 

R1 R2 R5 

R1 R3 R4 

R2 R3 R4 

R2 R4 R5 

R3 R4 R5 

R1 R2 R3 

 
R1 R2 R5 

R1 R3 R4 

 
R2 R4 R5 

R3 R4 R5 
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R(*,m)C versus wR(*,m)C 
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R(*,m)C is defined for m ≥ 2 

m = 2    R(*,2)C  ≡  wR(*,2)C       [Janssen+ ‘89] 

m > 2    R(*,2)C   p   wR(*,m)C   p  R(*,m)C 

m < n 
   R(*,m)C  p  R(*,n)C 
wR(*,m)C  p  wR(*,n)C 

                        A p B:  A is strictly weaker than B 



Experimental Results 
Benchmark Algorithm #Nodes 

Visited 
Time [sec] #Completed 

in 1 hour 
#Fastest #Backtrack 

Free 

modifiedRenault GAC 1,324,309.8 402.44 26 14 4/50 

Max #tuples: 48,721 maxRPWC 2,110.8 305.37 31 3 19/50 

wR(*,2)C 192.5 2.99 46 27 41/50 

wR(*,3)C 82.5 7.55 50 4 48/50 

wR(*,4)C 82.5 33.88 50 2 50/50 

rand-8-20-5 GAC 30,501.7 1,795.26 9 2 0/20 

Max #tuples :78,799 wR(*,2)C 941.3 1,162.22 16 14 0/20 

dag-rand wR(*,2)C 0.0 27.21 25 25 25/25 

Max #tuples: 150,000 wR(*,3)C 0.0 37.75 25 0 25/25 

aim-200 GAC 1,876,247.6 542.48 8 0 0/24 

Max #tuples: 7 maxRPWC 842,488.8 414.05 8 1 0/24 

wR(*,2)C 2,670.2 35.51 12 7 4/24 

wR(*,3)C 580.2 35.91 14 7 8/24 

wR(*,4)C 443.8 240.13 14 2 9/24 



Conclusions & Future Work 

• We studied the relational consistency property R(*,m)C 
– Proposed a weaker variant wR(*,m)C 

– Presented a parameterized algorithm for enforcing it 

– Designed a new data structure (index tree) for efficiently 
checking the consistency of tuples between two relations  

– Evaluated it against GAC & maxRPWC 

• Future work: 
– Handle relations defined as conflicts or in intension by 

domain filtering 

– Automatically identify the appropriate consistency level 

– Use R(*,m)C in a solver to identify tractable classes of CSPs 
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Thank You for Your Attention 
 

Questions?  
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