2010

A First Practical Algorithm for High Levels of Relational Consistency

Shant Karakashian
University of Nebraska - Lincoln, shantk@cse.unl.edu

Robert J. Woodward
University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Christopher Reeson
University of Nebraska - Lincoln, creeson@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska - Lincoln, choueiry@cse.unl.edu

Christian Bessiere
University of Montpellier, France, bessiere@lirmm.fr

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the [Computer Sciences Commons](http://digitalcommons.unl.edu/cseconfwork)

Karakashian, Shant; Woodward, Robert J.; Reeson, Christopher; Choueiry, Berthe Y.; and Bessiere, Christian, "A First Practical Algorithm for High Levels of Relational Consistency" (2010). *CSE Conference and Workshop Papers*. 175.

http://digitalcommons.unl.edu/cseconfwork/175

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A First Practical Algorithm for High Levels of Relational Consistency

Shant Karakashian, Robert Woodward, Christopher Reeson, Berthe Y. Choueiry & Christian Bessiere

Constraint Systems Laboratory, University of Nebraska-Lincoln
LIRMM-CNRS, University of Montpellier

Acknowledgements:
• Kostas Stergiou and anonymous reviewers
• Experiments conducted at UNL’s Holland Computing Center
• NSF CAREER Award #0133568
• Robert Woodward supported by a UNL undergraduate research grant (UCARE) & by a B.M. Goldwater Scholarship
Outline

• Introduction
• Relational Consistency $R(\ast, m)C$:
 – Definition, Naïve algorithm, Properties
• Preliminaries: Dual CSP
• Our Approach
 – Algorithm
 – Index-Tree Data Structure
 – Advantages
• A weakened version of $R(\ast, m)C$: $wR(\ast, m)C$
• Experimental Evaluations
• Conclusions & Future Work
Introduction

• Local consistency techniques are at the heart of solving CSPs
• Low level consistency properties such as GAC are easy to apply & are effective for many problems
• There are problems that require higher levels of consistency for finding a solution in a reasonable amount of time
• We present a practical algorithm for enforcing relational m-wise consistency: $R(\ast,m)C$
Definition of $R(\ast,m)C$

- A CSP is $R(\ast,m)C$ iff
 - Every tuple in a relation can be extended to the variables in the scope of any $(m-1)$ other relations in an assignment satisfying all m relations simultaneously.
Naïve Algorithm for $R(\ast,m)C$

- $R(\ast,m)C$ can be enforced on a CSP by
 - joining every combination of m relations and
 - projecting the product on the individual relations

$$\forall R_i \in \{R_1, \ldots, R_m\}, R_i \leftarrow \pi_{\text{scope}(R_i)} (\bowtie_{j=1..m} R_j)$$
Properties of $R(\ast, m)C$

- It does not change the structure of the constraint network
- $R(\ast, m)C \prec RmC$
 \[\text{[Dechter & van Beek ’97]}\]
- It filters the relations by removing tuples
- It is parameterized
 - We can control the level of consistency (m)
Preliminaries

• The **dual graph** of a CSP is a graph where
 – The nodes represent the relations
 – The edges are added between two relations with at least one common variable

• **Connected combination** of \(m \) relations is a set of relations that induce a connected component in the dual graph
The Induced Dual CSP

• Consider $\omega = \{R_1, R_2, \ldots, R_m\}$ a set of m relations
• P_ω is the dual CSP **induced** by ω where
 – The dual variables represent the m relations
 – The domains are the tuples of the relations R_i
 – The constraints in P_ω are binary & enforce equality on the CSP variables shared by the two relations
Enforcing R(*,m)C on the Induced Dual CSP P_ω

For each τ in R

Assign τ as a value for R

Solve P_ω (with τ fixed) with forward checking

If no solution found: delete τ

Add <ω', R'> to Q: R_i ≠ R'_i, R_i ∈ ω' and R'_i ∈ ω'
Index-Tree Data Structure

• When solving P_ω, for a tuple τ, Forward checking requires identifying all tuples matching τ in the neighboring relations

• We propose a new data structure: index-tree
 – Given a tuple τ of R_1 and a relation R_2
 – Identifies all the tuples of R_2 that match $\tau
Advantages of Our Approach

• The memory requirement of the operation
 \[\forall R_i \in \{R_1, \ldots, R_m\}, R_i = \pi_{\text{scope}(R_i)} (\bowtie_{j=1..m} R_j) \]
 – \(O(t^m)\), \(t\): max number of tuples in a relation
 – For relations with 10,000 tuples, enforcing \(R(*,3)C\) requires in the order of 1TB of memory

• With our approach, the memory requirement is dominated by the index-tree structures
 – \(O(kte^2)\), \(k\): max arity of relations, \(e\): number of relations
 – While slightly decreasing the time complexity
Some edges are redundant for \(m=2 \)
Removing them reduces the number of combinations
For \(m>2 \), removal of these edges weakens \(R(\ast, m)C \)

Example
- Assume that no assignment satisfies variables A, B & C simultaneously
- To detect this inconsistency, need to consider \(R_1R_2R_4 \) simultaneously
- This inconsistency is not detected because we removed the combination \(R_1R_2R_4 \)
R(\(*,m\)C versus wR(\(*,m\)C

R(\(*,m\)C is defined for \(m \geq 2\)

<table>
<thead>
<tr>
<th>(m) (\geq 2)</th>
<th>(R(*,2)C \equiv wR(*,2)C)</th>
<th>[Janssen+ ‘89]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m > 2)</td>
<td>(R(*,2)C \prec wR(*,m)C) (\prec R(*,m)C)</td>
<td></td>
</tr>
<tr>
<td>(m < n)</td>
<td>(R(*,m)C \prec R(*,n)C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(wR(*,m)C \prec wR(*,n)C)</td>
<td></td>
</tr>
</tbody>
</table>

A \prec B: A is strictly weaker than B
Experimental Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Algorithm</th>
<th>#Nodes Visited</th>
<th>Time [sec]</th>
<th>#Completed in 1 hour</th>
<th>#Fastest</th>
<th>#Backtrack Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>modifiedRenault</td>
<td>GAC</td>
<td>1,324,309.8</td>
<td>402.44</td>
<td>26</td>
<td>14</td>
<td>4/50</td>
</tr>
<tr>
<td>Max #tuples: 48,721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>maxRPWC</td>
<td>2,110.8</td>
<td>305.37</td>
<td>31</td>
<td>3</td>
<td>19/50</td>
</tr>
<tr>
<td></td>
<td>wR(*,2)C</td>
<td>192.5</td>
<td>2.99</td>
<td>46</td>
<td>27</td>
<td>41/50</td>
</tr>
<tr>
<td></td>
<td>wR(*,3)C</td>
<td>82.5</td>
<td>7.55</td>
<td>50</td>
<td>4</td>
<td>48/50</td>
</tr>
<tr>
<td></td>
<td>wR(*,4)C</td>
<td>82.5</td>
<td>33.88</td>
<td>50</td>
<td>2</td>
<td>50/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rand-8-20-5</td>
<td>GAC</td>
<td>30,501.7</td>
<td>1,795.26</td>
<td>9</td>
<td>2</td>
<td>0/20</td>
</tr>
<tr>
<td>Max #tuples: 78,799</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wR(*,2)C</td>
<td>941.3</td>
<td>1,162.22</td>
<td>16</td>
<td>14</td>
<td>0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dag-rand</td>
<td>wR(*,2)C</td>
<td>0.0</td>
<td>27.21</td>
<td>25</td>
<td>25</td>
<td>25/25</td>
</tr>
<tr>
<td>Max #tuples: 150,000</td>
<td>wR(*,3)C</td>
<td>0.0</td>
<td>37.75</td>
<td>25</td>
<td>0</td>
<td>25/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aim-200</td>
<td>GAC</td>
<td>1,876,247.6</td>
<td>542.48</td>
<td>8</td>
<td>0</td>
<td>0/24</td>
</tr>
<tr>
<td>Max #tuples: 7</td>
<td>maxRPWC</td>
<td>842,488.8</td>
<td>414.05</td>
<td>8</td>
<td>1</td>
<td>0/24</td>
</tr>
<tr>
<td></td>
<td>wR(*,2)C</td>
<td>2,670.2</td>
<td>35.51</td>
<td>12</td>
<td>7</td>
<td>4/24</td>
</tr>
<tr>
<td></td>
<td>wR(*,3)C</td>
<td>580.2</td>
<td>35.91</td>
<td>14</td>
<td>7</td>
<td>8/24</td>
</tr>
<tr>
<td></td>
<td>wR(*,4)C</td>
<td>443.8</td>
<td>240.13</td>
<td>14</td>
<td>2</td>
<td>9/24</td>
</tr>
</tbody>
</table>
Conclusions & Future Work

• We studied the relational consistency property \(R(*,m)C \)
 – Proposed a weaker variant \(wR(*,m)C \)
 – Presented a parameterized algorithm for enforcing it
 – Designed a new data structure (index tree) for efficiently checking the consistency of tuples between two relations
 – Evaluated it against GAC & maxRPWC

• Future work:
 – Handle relations defined as conflicts or in intension by domain filtering
 – Automatically identify the appropriate consistency level
 – Use \(R(*,m)C \) in a solver to identify tractable classes of CSPs
Thank You for Your Attention

Questions?