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Introduction

Local consistency techniques are at the heart of
solving CSPs

Low level consistency properties such as GAC are
easy to apply & are effective for many problems

There are problems that require higher levels of
consistency for finding a solution in a reasonable
amount of time

We present a practical algorithm for enforcing
relational m-wise consistency: R(*,m)C



Definition of R(*,m)C

e ACSPisR(*m)Ciff

— Every tuple in a relation can be extended to the variables
in the scope of any (m-1) other relations in an assignment
satisfying all m relations simultaneously

V tuple 2 \

Y relation

Y m-1 relations



Naive Algorithm for R(*,m)C

* R(*,m)C can be enforced on a CSP by
— joining every combination of m relations and
— projecting the product on the individual relations

V R, € {Ry, -, Rpph Ry = Tyoperi (X R)

=1.m"Y



Properties of R(*,m)C

It does not change the structure of the
constraint network

R(*,m)C < RmC
t filters the relations by removing tuples

t is parameterized
— We can control the level of consistency (m)



Preliminaries

* The dual graph of a CSP is a graph where
— The nodes represent the relations

— The edges are added between two relations with at
least one common variable

* Connected combination of m relations is a set of
relations that induce a connected component in
the dual graph




The Induced Dual CSP

* Consider w ={R,,R,,...,R,} a set of m relations
* P isthe dual CSP induced by w where

— The dual variables represent the m relations

— The domains are the tuples of the relations R,

— The constraints in P are binary & enforce equality
on the CSP variables shared by the two relations

Constraints

Dual Domain of a

variable ™ dual variable

\ J
m relations 8




Enforcing R(*,m)C on the Induced Dual CSP P,

Q Extract <w,R>from Q
<wy,Ry> Define CSP P,
<wy,Ry> | ¥1 ForeachtinR
<W,,Rc> Assign T as a value for R
<w,,R,> Solve P, (with T fixed) with forward checking
<w,,Rc> If no solution found: delete t
<w,,R,>
<w,;,R3>
<w,;,R,>
<w,,R:>




Index-Tree Data Structure

* When solving P, for a tuple t, Forward checking
requires identifying all tuples matching tin the

neighboring relations

 We propose a new data structure: index-tree
— Given a tuple Tt of R, and a relation R,
— |dentifies all the tuples of R, that match t
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Advantages of Our Approach

* The memory requirement of the operation
v Ri € {Rll ey Rm}' Ri = T[scope(Ri) (Mj=1..ij)
— O(t™), t: max number of tuples in a relation

— For relations with 10,000 tuples, enforcing R(*,3)C
requires in the order of 1TB of memory

* With our approach, the memory requirement is
dominated by the index-tree structures
— O(kte?), k: max arity of relations, e: number of relations

— While slightly decreasing the time complexity
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Weakening Relational Consistency: wR(*,m)C

R,R,R; R,R,R,
R,R, R,
R,R,R. R,R,R.
R,R;R, R,R;R,
R, Ry R,
R,R,R. R,R,R.
Some edges are redundant for m=2 R;R4Rs  R3R,R;

Removing them reduces the number of combinations
For m>2, removal of these edges weakens R(*,m)C
Example

— Assume that no assignment satisfies variables A, B & C simultaneously
— To detect this inconsistency, need to consider R,R,R, simultaniously

— This inconsistency is not detected because we removed the
combination R,R,R,
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R(*,m)C versus wR(*,m)C

R(*,m)C is defined for m > 2

m =2 R(*,2)C = wR(*,2)C

m> 2 R(*,2)C < wR(*,m)C < R(*,m)C
e 3 e 3

< R(*,m)C < R(*,n)C

wR(*,m)C < wR(*,n)C

A < B: Ais strictly weaker than B

16



Experimental Results

Benchmark

Algorithm

#Nodes
Visited

Time [sec]

#Completed #Fastest #Backtrack

in 1 hour

Free

modifiedRenault GAC 402.44 26 14 4/50 |
Max #tuples: 48,721 |maxRPWC 2,110.8 305.37 31 3 19/50
wR(*,2)C 192.5 2.99 46 27 41/50
wR(*,3)C 82.5 7.55 50 4 48/50
wR(*,4)C 82.5 33.88 50 2 50/50
rand-8-20-5 GAC 30,501.7 | 1,795.26 9 2 0/20
Max #tuples :78,799 | wR(*,2)C 941.3 | 1,162.22 16 14 0/20
dag-rand wR(*,2)C 0.0 27.21 25 25 25/25
Max #tuples: 150,000 | wR(*,3)C 0.0 37.75 25 0 25/25
aim-200 GAC 1,876,247.6 | 542.48 8 0 0/24
Max #tuples: 7 maxRPWC | 842,488.8| 414.05 8 1 0/24
wR(*,2)C 2,670.2 35.51 12 7 4/24
wR(*,3)C 580.2 35.91 14 7 8/24
wR(*,4)C 443.8 | 240.13 i 2 9/24




Conclusions & Future Work

* We studied the relational consistency property R(*,m)C
— Proposed a weaker variant wR(*,m)C
— Presented a parameterized algorithm for enforcing it

— Designed a new data structure (index tree) for efficiently
checking the consistency of tuples between two relations

— Evaluated it against GAC & maxRPWC

e Future work:

— Handle relations defined as conflicts or in intension by
domain filtering

— Automatically identify the appropriate consistency level
— Use R(*,m)C in a solver to identify tractable classes of CSPs
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Thank You for Your Attention

Questions?
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