
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of

10-30-2000

Amino Acid Osmolytes in Regulatory Volume
Decrease and Isovolumetric Regulation in Brain
Cells: Contribution and Mechanisms
Herminia Pasantes-Morales
Instituto de Fisiología Celular, hpasante@ifcun1.ifisiol.unam.mx

Rodrigo Franco
National University of Mexico, rfrancocruz2@unl.edu

M. Eugenia Torres-Marquez
National University of Mexico

Karla Hernandez-Fonseca
National University of Mexico

Arturo Ortega
CINVESTAV, IPN

Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers

Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental
Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons,
Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and
Pathobiology Commons

This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Pasantes-Morales, Herminia; Franco, Rodrigo; Torres-Marquez, M. Eugenia; Hernandez-Fonseca, Karla; and Ortega, Arturo, "Amino
Acid Osmolytes in Regulatory Volume Decrease and Isovolumetric Regulation in Brain Cells: Contribution and Mechanisms" (2000).
Papers in Veterinary and Biomedical Science. 182.
http://digitalcommons.unl.edu/vetscipapers/182

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/vetscipapers?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/vetbiomedsci?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/vetscipapers?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/664?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/763?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/764?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/764?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/vetscipapers/182?utm_source=digitalcommons.unl.edu%2Fvetscipapers%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages


361

Review

Cell Physiol Biochem 2000;10:361-370 Accepted: October 30, 2000����������	
��
�
�


������
�	������


Copyright © 2000 S. Karger AG, Basel

Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

© 2000 S. Karger AG, Basel
1015-8987/00/0106-0361$17.50/0

Accessible online at:
www.karger.com/journals/net

Amino Acid Osmolytes in Regulatory Volume De-
crease and Isovolumetric Regulation in Brain
Cells: Contribution and Mechanisms

Herminia Pasantes-Morales, Rodrigo Franco, M. Eugenia Torres-
Marquez*, Karla Hernández-Fonseca and Arturo Ortega**

Institute of Cell Physiology and * Faculty of Medicine, National University of Mexico, ** CINVESTAV, IPN,
Mexico City, Mexico.

Dr. Herminia Pasantes-Morales
Instituto de Fisiología Celular, UNAM, Apartado Postal 70-253,
04510 Mexico D.F. (Mexico)
Tel +525 / 622 5608, Fax +525 / 622 5607
E-Mail hpasante@ifcun1.ifisiol.unam.mx

Key Words
Hyponatremia • Taurine • Osmolytes • Brain edema •
Swelling

Abstract
Brain adaptation to hyposmolarity is accomplished by
loss of both electrolytes and organic osmolytes, in-
cluding amino acids, polyalcohols and methylamines.
In brain in vivo, the organic osmolytes account for
about 35% of the total solute loss. This review focus
on the role of amino acids in cell volume regulation,
in conditions of sudden hyposmosis, when cells re-
spond by active regulatory volume decrease (RVD)
or after gradual exposure to hyposmotic solutions, a
condition where cell volume remains unchanged,
named isovolumetric regulation (IVR). The amino acid
efflux pathway during RVD is passive and is similar in
many respects to the volume-activated anion path-
way. The molecular identity of this pathway is still
unknown, but the anion exchanger and the
phospholemman are good candidates in certain cells.
The activation trigger of the osmosensitive amino acid
pathway is unclear, but intracellular ionic strength
seems to be critically involved. Tyrosine protein ki-
nases markedly influence amino acid efflux during

RVD and may play an important role in the transduc-
tion signaling cascades for osmosensitive amino acid
fluxes. During IVR, amino acids, particularly taurine
are promptly released with an efflux threshold mark-
edly lower than that of K+, emphasizing their contri-
bution (possibly as well as of other organic osmolytes)
vs inorganic ions, in the osmolarity range correspond-
ing to physiopathological conditions. Amino acid efflux
also occurs in response to isosmotic swelling as that
associated with ischemia or trauma. Characterization
of the pathway involved in this type of swelling is ham-
pered by the fact that most osmolyte amino acids are
also neuroactive amino acids and may be released in
response to stimuli concurrent with swelling, such as
depolarization or intracellular Ca++ elevation.

Introduction

Cell volume perturbation is a challenge for
homeostasis in all animal organs, but has particularly
dramatic consequences in brain. The limits to expansion
imposed by the rigid skull give narrow margins for the
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buffering of intracranial volume changes, leading to
compression of small vessels generating episodes of
anoxia and ischemia. As pressure increases, herniation
leads to respiratory and cardiac arrest. Besides these
extreme effects, brain cell swelling may also lead to
hyperexcitability [1]. Early studies in chronic
hyponatremia, showed that brain does not behave as a
perfect osmometer, and the initial swelling is followed
by progressive water loss until almost complete
normalization, despite the persistence of hyponatremia.
The observed electrolyte decrease was not sufficient to
compensate for the loss of water and evidence was then
obtained pointing to a significant contribution of organic
osmolytes, including the most abundant amino acids, as
well as of N-acetylaspartate, myo-inositol, creatine,
phosphocreatine, phosphoetanolamine and glycero-
phosphoryl choline [2, 3] (Fig. 1). In rodents, taurine is
the most important organic osmolyte, because it is highly
concentrated and shows the largest reduction during
hyponatremia. In other species with lower brain taurine
content, compounds such as N-acetylaspartate, may have
an important role [4]. The estimation of organic osmolyte
change in all these studies does not discriminate neither
the regional variation within the brain nor possible

Fig. 1. Contribution of different types
of osmolytes to volume adjustment in
brain in vivo during chronic
hyponatremia. Recalculated from:
Lien et al, 1991; Verbalis and Gullans,
1991, 1993; Lien, 1995; Sterns et al,
1993. Glycero-phosphoryl choline
(GPC), Phosphoetanolamine (PEA),
N-acetylaspartate (NAA), Creatine
(Cr), Phosphocreatine (PCr), Myo-
inositol (Myo-I) and Amino acids
(AA).

differences in the cell type. In vitro studies in tissue slices
as well as in cells in culture exposed to hyposmotic media
represent a convenient model to address these questions.

Amino acids and regulatory volume de-
crease (RVD) during hyposmosis

Activation and inactivation of corrective fluxes
In cultured astrocytes and neurons, hyposmosis leads

to rapid swelling followed by typical RVD. The efflux
pattern of amino acids closely parallels the time course
of the change in cell volume [5] in contrast to Cl- and K+

fluxes which are faster (Cl-) or slower (K+) than the
change in cell volume. Osmosensitive efflux of amino
acids has also been reported in hippocampal and cortical
slices [6, 7] and in vivo during continuous superfusion
of cerebral cortex [8] or by microdialysis [9]. In all these
preparations, taurine is the most sensitive to the osmotic
perturbation, with the lowest release threshold and the
largest amount released. Interestingly, in the neuroblas-
toma cell line CHP-100, glutamate is not responsive to
hyposmosis [10].

Cell Physiol Biochem 2000;10:361-370
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The amino acid efflux pathway

A leak pathway rather than an energy-dependent
cotransporter, was first suggested as the mechanism for
osmosensitive taurine release in Ehrlich ascites cells [11]
and this was confirmed in brain cells, in which taurine
translocation is passive, directed only by the concentra-
tion gradient. [12]. Unexpectedly, taurine efflux was
found sensitive to Cl- channel blockers [5], and this led
to propose an anion channel-like molecule as the trans-
port pathway for Cl- and organic osmolytes [13]. The Cl-

channel involved in RVD is a volume-sensitive outwardly
rectifying Cl- channel (VSCC) of broad spectrum, per-
meable to most monovalent anions, and to some extent
to large anions and to organic anions [14-17]. The prop-
erties of VSSC have been recently reviewed in detail
[14, 15]. In brain cells, this channel has been character-
ized in the C6 glioma cell line [13], in cerebellar granule
neurons [17] and in the N2A neuroblastoma [18]. Evi-
dence in support of this VSCC as the common pathway
for organic osmolytes is rather indirect, based essentially
on the similar pharmacological profile of swelling-acti-
vated Cl- currents and the swelling-induced osmolyte
release [5, 13]. Currents carried through VSCC by
glutamate, taurine and aspartate in the anion form, have
been observed in MDCK, glioma and IMCD cells [19,
20]. Although these experiments do not prove the trans-
port of neutral amino acids, they at least demonstrate
that the size of the pore is sufficiently large for the pas-
sage of amino acids. Against this common pathway are
findings of cell lines exhibiting Cl- channel but not tau-
rine fluxes and vice versa [16]. Also, different actions of
blockers (arachidonic acid and DIDS) suggest different
pathways [21, 22]. Swelling-induced taurine release with-
out chloride channel activity in oocytes expressing an-
ion channels and transporters also strongly favors the
idea of separate pathways for taurine and Cl- [23]. If this
is the case, it should be a remarkable similarity between
the molecular species permeating the two types of
osmolytes, or a close interconnection between the fluxes
of Cl- and organic osmolytes.

Osmosensitive taurine fluxes appear to be carried
by the anion exchanger in fish but not in mice erythro-
cytes [24, 25]. The protein domains responsible for the
differences between mouse and trout anion exchangers
have been identified, thus opening the possibility to se-
lect the anion exchanger forms in different cell types by
the presence of these protein domains [26]. The
phospholemman another canditate for taurine transport
is a member of a superfamily of proteins with single trans-

membrane domains exhibiting markedly high permeabil-
ity to taurine, a feature possibly due to the presence of
binding sites for cations and anions within the pore.
Phospholemman is present in cultured astrocytes and
neurons. Overexpression in HEK cells increases RVD,
osmosensitive Cl- currents and taurine fluxes [27, 28].

Activation and transduction signalling cas-
cades

The trigger to activate the osmosensitive Cl-/amino
acid pathways and the identification of transduction sig-
nalling cascades are still unresolved. Available informa-
tion refers mainly to the volume-activated Cl- currents,
with scarce confirmation about similarities or dissimi-
larities with the amino acid efflux pathways. Hyposmotic
swelling leads to changes in the concentration of second
messengers, such as Ca2+, cAMP, IP3 and arachidonic
acid [29]. It is still undefined whether these signalling
systems are part of the mechanisms directly activating
the osmolyte corrective fluxes or occur in connection
with the set of other cell responses generated by
hyposmosis. Cell swelling and RVD are complex phe-
nomena involving cell reactions to stress, reorganization
of the cytoskeleton, and adhesion or retraction mecha-
nisms, among others. All of them activate their own sig-
nals, which may or may not be implicated in the activa-
tion of corrective osmolyte fluxes.

Calcium and calmodulin
Hyposmotic swelling is associated with an increase

in [Ca2+]i levels, which occurs also in brain cells. How-
ever, with few exceptions, Cl- currents and osmosensitive
taurine fluxes are essentially Ca2+-independent [30], al-
though a minimal amount of cell Ca2+ (>50 nM), referred
as permissive Ca2+, appears necessary for the activation
of Cl-/taurine osmosensitive fluxes [31]. It might thus be
that the swelling-induced [Ca2+]i increase is an epiphe-
nomenon, unrelated to the corrective fluxes of osmolytes.
Taurine fluxes are blocked by pimozide and trifluopera-
zine [6] but their effects appear unrelated to calmodulin
systems since the inhibition persists in cells where tau-
rine efflux is Ca2+-independent or even in those where
swelling does not elicit any Ca2+ increase.

Protein kinases (PK)
PKC, PKA and cAMP. The osmosensitive amino

acid fluxes appear largely PKC independent, as shown
by the failure of PKC blockers or to maneuvers directed

Cell Physiol Biochem 2000;10:361-370
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to activate or down regulate the enzyme [32]. Taurine
fluxes are PKC-independent in rat supraoptic nucleus
and in cultured cerebellar granule neurons [33, 34].
Swelling- and stress-induced changes in cAMP levels
have been reported in some but not in all cell types [15].
cAMP potentiates osmosensitive taurine efflux in C6
cells and in brain cortex [32, 35], but not in cerebellar
granule neurons nor in supraoptic nucleus slices [33, 34].
Information about modulation of VSCC by protein ki-
nases is reviewed in detail in [14, 15].

Protein tyrosine kinases
A role for protein tyrosine kinases (PTK) in the

volume-related signalling is suggested by the numerous
PTK which phosphorylate by swelling: p125FAK,, p38,
JNK, p56lck, p72syk and ERK1/ERK2 [36-40]. Further
support comes from the potent inhibitory effect of PTK
blockers on Cl- and taurine fluxes and the corresponding
potentiation by the tyrosine phosphatase blocker o-vana-
date [34, 36]. The specific kinases involved in amino
acid release and the precise step of reaction have not
been identified. Swelling activation of PTK does not nec-
essarily imply a link with osmolyte fluxes, as occurs for
ERK1/ERK2, for which prevention of the hyposmosis-
induced phosphorylation has no effect on taurine fluxes
or Cl- currents [34, 36]. The same lack of correlation is
found for the stress-activated protein kinase p38 [41].
This dissociation suggests the involvement of some PTK
in phenomena coincident with swelling, but not neces-
sarily in the activation of osmosensitive fluxes. How-
ever, such correlation may be cell specific, as shown for
ERKs phosphorylation and the osmosensitive Cl- cur-
rent in cortical astrocytes [37]. Swelling-induced acti-
vation of p56lck in lymphocytes is required for VSCC
functioning as p56lck deficiency by genetic knockout,
leads to defective VSCC and RVD, a condition reversed
by retransfection of the protein [39]. Swelling-induced
tyrosine phosphorylation of band 3 (anion exchanger) in
skate erythrocytes is also linked to p72syk and p56lyn [42].
This is the first report showing direct tyrosine phospho-
rylation of the osmolyte translocation pathway.

Tyrosine kinases and cytoskeleton
Cell swelling and RVD require a substantial reor-

ganization of the cytoskeleton, to cope with the changes
in cell volume and cell adhesion, but it is unclear whether
these changes are directly involved in activation of
osmolyte fluxes. A connection may be established
through p21Rho, which is closely involved in the reor-

ganization of the actin cytoskeleton and also modulates
osmosensitive Cl- currents [43, 44]. Downstream Rho,
two possibilities have been explored, one of them sug-
gesting a link with p125FAK and PI3 kinase, and another
one proposing Rho kinase as the downstream target [43,
44]. Manipulation of these pathways has clear effects on
VSCC, but less is known about their influence in amino
acid fluxes. A cytoskeleton connection with taurine is
suggested by decreased hyposmotic taurine efflux in as-
trocytes from vimentin/GFAP-deficient mice as com-
pared to cells from the wild type mice [45].

PI3 kinase
Hyposmosis activates PI3K in some cells, and block-

ade by wortmannin, LY294002 or antibodies to the 110-
catalytic subunit impairs cell volume recovery, VSCC
activation, and the osmosensitive I125 and taurine fluxes
[34, 43, 46]. In cerebellar granule neurons, wortmannin
but not LY294002, decreases the osmosensitive taurine
efflux [34]. This difference may be due to permeability
restrictions to LY294002 or to different sensitivity of
PI3K isoforms. However, results based only on effects
of wortmannin should be taken with caution, further con-
sidering that wortmannin may also affect phospholipase
A and the myosin light chain, two proteins which also
appear involved in osmolyte fluxes [47].

Phosholipases (PL)
Implication of PLAs in osmolyte fluxes came from

the early work by Hoffman, Lambert and coworkers [48]
in Ehrlich ascites cells, showing an effect of leukotrienes
LTC4 and LTD4 accelerating RVD and enhancing tau-
rine efflux under isotonic conditions. This may not be a
general mechanism of osmolyte activation since LTD4
does not affect the osmosensitive Cl- currents in many
other cell types [14,15]. However, PLA2 may still modu-
late the taurine/Cl efflux pathways as shown by a study
in neuroblastoma CP100 cells, where swelling increases
arachidonic acid release, which, if prevented by
AACOCF3, inhibits taurine and Cl- fluxes [49]. At vari-
ance with these results in isolated cells, in rat brain cor-
tex in vivo, amino acid fluxes are essentially unaffected
by the PLA2 blockers pBPB, DEDA and AACOCF3
[32].

The connection between all these enzymes remains
to be established. PI3K is a key intermediate in signal-
ing cascades, interacting notably with the Rho GTP-bind-
ing proteins, which as discussed above, appear to criti-

Cell Physiol Biochem 2000;10:361-370
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cally influence VSCC. An association between PI3K,
Rho GTPases and phospholipases has been shown in a
variety of pathways, some of them regulating the dy-
namics of the cortical and cytoplasmic actin cytoskel-
eton. A possibility that cannot be ruled out is that PLA2
is acting at the very early steps of the signalling cas-
cades acting as a volume sensor, since there is some evi-
dence in support of PLA2 as a mechanosensor [50].

The influence of ionic strength
The importance of intracellular ionic strength as a

regulatory signal for activation of taurine fluxes in trout
erythrocytes was first proposed by Motais et al. [51].
Consistent with this proposal are findings in C6 glioma
and in CHO cells showing that, as intracellular ionic
strength increases, larger volume changes are progres-
sively required to activate taurine efflux [52]. In cortical
astrocytes, taurine efflux is notably higher when swell-
ing decreases ionic strength as in hyposmotic- or urea-
induced swelling, as compared with K-generated swell-
ing occurring without a decrease in ionic strength [53].
In CPAE cells, a Cl- current identical to that elicited by
hyposmotic swelling is activated by reducing the ionic
strength at constant osmolarity. All these results suggest
an effect of intracellular ionic strength either shifting the
volume set point [52] or directly acting as activation sig-
nal [54]. A recent study in skate red blood cells confirms
the above results, but in addition, demonstrate the influ-
ence of ionic strength on the activity of some PTK di-
rectly involved in the activation of taurine fluxes [55].

Amino acids and isosmotic swelling

Brain cell edema in isosmotic conditions (also called
cytotoxic edema) conveys more risks than hyposmotic
swelling, since in cytotoxic swelling there is no clear
evidence of efficient cell volume correction. Ischemic
stroke, head trauma and hepatic encephalopathy, are
pathological conditions associated with brain edema,
leading to a critical clinical challenge. Swelling also oc-
curs in excitotoxicity and seizures [56]. The mechanisms
generating swelling may be somewhat different in each
pathology, but in all cases, the influx of anions, Cl- or/
and bicarbonate-, is a consistent causal factor.

As mentioned above, in brain cells adaptive mecha-
nisms during isosmotic swelling appear less efficient than

in hyposmotic swelling. This may have to do with a dif-
ficulty for ionic osmolytes to be released when ion accu-
mulation is the condition generating swelling. In this case,
the contribution of organic osmolytes may not be suffi-
cient to regulate cell volume, although it is certainly
important to attenuate the magnitude of swelling. Amino
acid efflux during cytotoxic swelling has been observed
in experimental models of ischemia, from in vitro chemi-
cal models or in vivo, by vein occlusion. Cell exposure
to high K+ concentrations, as occurs in most situations
leading to cytotoxic swelling, is often used to generate
cytotoxic edema. Activation of the various excitatory
receptor subtypes by glutamate, kainate and other ago-
nists, are also experimental models simulating cytotoxic
swelling. In all these cases, fluxes of taurine, glutamate,
GABA and glycine, consistently increase. However, it
should be mentioned that these amino acids are all neu-
roactive compounds, and some of them are important
synaptic transmitters. Therefore, when evaluating the
effect of cytotoxic edema on amino acid release, it is
necessary to discriminate between a pure response to
swelling and that related to other signals, as depolariza-
tion or Ca2+ entry, concurrent with ischemia, epileptic
activity or excitotoxicity. Conversely, increase of extra-
cellular K+ or glutamate concentration known to occur
in ischemia or epileptic episodes, and currently attrib-
uted to neuronal hyperexcitability, may rather be a re-
sponse to swelling. This point has been addressed re-
cently in studies about the mechanism of glutamate efflux
in ischemia. Two possibilities have been considered. One
explains the increase in extracellular glutamate concen-
tration as a result of swelling-activated corrective efflux
[56, 57]. The other one implicates a reverse operation of
the energy-dependent glutamate transporters, due to in-
tracellular Na+ accumulation resulting from the energy
failure, and thus, unrelated to swelling. Both possibili-
ties have experimental support, but the option involving
an impaired transport mechanism is more favored at
present [58]. An effect of swelling on glutamate trans-
porters has been described, which may link the two op-
tions [56]. The same situation applies for other amino
acids such as aspartate, GABA, taurine and glutamine,
which are also released in ischemic conditions, and are
also transported by energy-dependent carriers [59-61].
Depolarization concurrent with ischemia may also trig-
ger amino acid release. Differences may exist, though,
in the relative sensitivity of amino acids to swelling or
depolarization, which may be useful to estimate their role

Cell Physiol Biochem 2000;10:361-370
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as osmolytes in cytotoxic edema. In any event, the re-
lease of inhibitory amino acids such as taurine, GABA
or glycine, which in contrast to glutamate, do not gener-
ate per se a secondary volume increase, nor excito-
toxicity, may contribute to attenuate swelling and addi-
tionally, to counteract the hyperexcitability generated by
K+ and glutamate.

Studies in ischemic models of vein occlusion, have
shown a blockade of amino acid fluxes by anion channel
inhibitors, as in hyposmotic swelling, suggesting simi-
lar translocation pathways in the two conditions [61,62].
However, it is worthy to emphasize that these agents af-
fect most Cl- channel types and may affect Cl- influx
which is an essential causal element of swelling. There-
fore, a reduced efflux of amino acids may be due, not to
an effect on the efflux pathway, but a consequence of
less swelling by Cl- influx reduction. Cytotoxic swelling
associated with hyperamonemia or with head trauma also
involves an increased efflux of amino acids, including
excitotoxic amino acids. The mechanism of this release
is still unclear, but at least for glutamate and taurine, it
seems not directly related to a swelling-induced efflux
[63]. Lactacidosis is a prominent sequel in ischemic and
traumatic brain tissue resulting in glial cell swelling. The
swelling mechanism involves activation of coupled Na+/
H+ and Cl-/HCO

3
- antiporters, resulting in intracellular

accumulation of NaCl and water. There is no evidence
for compensatory mechanisms to regulate swelling un-
der these conditions. Also there is as yet only scarce in-
formation about activation of osmolyte fluxes associated
with this model of swelling. A microdialysis study on
NH

4
+ -induced acidosis reports an increase in extracel-

lular N-acetyl-aspartate, an amino acid present in large
amounts in neurons, which may have an important role
as osmolyte [4].

There is scarce information about possible signal-
ling cascades for activation of mechanisms of cell vol-
ume control in isosmotic swelling. The work by Phillis,
O’Regan and their collaborators [60] in a model of is-
chemic rat brain cortex, have shown the influence of PKC
based on the stimulatory effect of phorbol esters and the
inhibition by chelerythrine on glutamate and aspartate
fluxes increased during ischemia. PKA seems not in-
volved in this process. It also documents the importance
of phospholipases, PLC and particularly of PLA2, in this
mechanism of ischemia-induced amino acid efflux [60].
They also suggest an influence of PTK, since the tyrosine

kinase inhibitor genistein, attenuates neurotransmitter
release from the ischemic rat cerebral cortex [64]. Re-
cently these authors have made a comparison between
the features of amino acid release during ischemia and
during hyposmotic swelling in the rat brain. They found
important differences, particularly regarding the role of
PLA2, which being critical for activation of amino acid
release in ischemia, seems to play a minor role in the
hyposmotic-stimulated release of amino acids in the same
preparation [32]. Also, while PKC modulates ischemia-
induced amino acid release, it has no major influence on
the hyposmolarity-associated release [32]. These com-
parative studies are crucial to identify the signalling ele-
ments associated with isosmotic swelling within the com-
plex set of responses evoked by ischemia.

Identification of the transduction cascades in isos-
motic swelling may be further complicated by the fact
that essentially all conditions generating this type of
swelling represent severe stressful situations, resulting
in activation of numerous signalling elements associated
with stress [65]. Some of them such as MAPK and PI3K,
are also activated during hyposmotic swelling. The as-
sociated events of depolarization and excitotoxicity spe-
cific to brain tissue, also activate numerous signalling
cascades [66]. All this makes it very difficult to discrimi-
nate among the spectrum of responses, those solely at-
tributable to swelling. An experimental maneuver to cir-
cumvent this problem, which could be approached in
preparations in vitro, is to elicit the ischemic or any other
situation of cytotoxic swelling, but reducing the exter-
nal concentration of Cl-, which would largely attenuate
swelling without decreasing the depolarization or other
stimuli. Then, a parallel analysis of the signalling cas-
cades activated in both conditions, may help to identify
those associated with swelling, and from them, those
related to the corrective fluxes of osmolytes.

It has been consistently observed that cytotoxic
edema in vivo is more prominent in astrocytes than in
neurons, being so far unclear whether this difference is
due to a selective localization of the swelling-generating
mechanisms in astrocytes, or to the presence in neurons
of more efficient mechanisms of cell volume control. In
this respect, a most interesting observation is the trans-
fer of taurine and glutamate from neurons to astrocytes
during experimental ischemia [67]. By this mechanism,
neurons are spared and protected from the deleterious
effects of swelling.

Cell Physiol Biochem 2000;10:361-370
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Isovolumetric regulation: role of amino
acids

Although the experimental model of sudden and
marked decreases in osmolarity has rendered valuable
information to elucidate the basic mechanisms of cell
volume control, such changes probably never occur in
brain under physiological conditions. Even during patho-
logical situations such as chronic hyponatremia, water
intoxication or the inappropriate handling of antidiuretic
hormone, the osmolarity changes in the interstitial space
in brain occur most likely in a gradual manner as the
osmotic challenge from plasma progressively surpasses
the brain homeostatic resistance. A paradigm closer to
the situation in vivo, was that assayed first by Lohr and
Grantham [68] in renal proximal tubules, in which cells
were exposed to small and gradual decreases in osmo-
larity. Under these conditions, cell volume remains stable
over a broad range of osmolarities, even when the osmo-
larity drops up to 50%. This constancy in cell volume
was named ”isovolumetric regulation” (IVR). This term
has implicit the idea of an active mechanism of cell ad-
justment, based on the shrinkage in cells returned to an
isosmotic medium, which due to the loss of intracellular
osmolytes is now hyperosmotic with respect to the intra-
cellular medium [68]. After this early report, IVR has
been observed in the renal cell line A6, in the glioma
cells C6 [69, 70], in cerebellar granule neurons (unpub-
lished), in cardiomyocytes [71] and in a more integrated
preparation, the hippocampal slice [72]. In contrast, par-
tial IVR is found in cardiomyocytes and no IVR is ob-
served in trout erythrocytes [71, 73] . The mechanisms
subserving IVR have not been explored in detail. In A6
cells, increased K+ efflux is observed at 30% reductions
in external osmolarity [68]. K+ efflux with a similar
threshold was found in cultured cerebellar granule neu-
rons (unpublished results) and in cardiomyocytes [71].
K+ efflux during IVR is decreased by Ba2+, but is insen-
sitive to 4AP, TEA and charybdotoxin (unpublished re-
sults). The Cl- pathway activated during IVR seems to
have marked differences with the VSCC, as IVR is im-
paired when Cl- is replaced by other anions which per-
meate through VSCC [69]. This may suggest the involve-
ment of electroneutral cotransporters, known to be more
selective for anions than VSCC. In hippocampal slices,
IVR occurred without any measurable release of K+ [72].
This is an unexpected finding which may be attributable
to the large K+ buffering capacity of astrocytes. We have

addressed the role of amino acids in IVR in hippocam-
pal slices and found increased fluxes of taurine, GABA
and glutamate (Fig. 2). The efflux of taurine shows the
lowest threshold, and the highest efflux rate with 4-10-
fold differences at essentially all osmolarities. This may
reflect a higher permeation through the efflux pathway
or/and more availability of the taurine pools to be re-
leased in response to the change in cell volume. This
may be related to features of taurine such as its meta-
bolic inercy and its mainly cytoplasmic location, while
GABA, glycine and glutamate, which have a prominent
role as synaptic transmitters or are part of numerous
metabolic cascades, may be sequestered in compartments
which restrict their availability for osmosensitive release.
Taurine efflux during IVR has been shown in cardiac
myocytes and in trout erythrocytes, with reductions of
10-17% in taurine cell content [71, 73].

About 30% in average, of the amino acid content in
cells or slices is released during IVR. This is clearly in-
sufficient to compensate for the change in external os-
molarity when K+ fluxes have not yet been activated.
Therefore, other factors should be considered to explain
the maintenance of cell volume under these conditions.
One or several of the following possibilities are plau-
sible: 1) swelling is overall restricted when the osmolar-
ity change is small and gradual, 2) other organic
osmolytes, such as creatine, myo-inositol, sorbitol, N-
acetyl aspartate, phosphocreatine and phosphoethanol
amine, are also contributing to counteract the external
osmolarity, and altogether compensate for the initial
phase of hyposmotic stress, 3) a Cl- efflux activates, ac-
companied by cations other than K+, 4) rapid metabolic
changes such as synthesis of macromolecules, i.e. gly-
cogen, may contribute to reduce the intracellular
osmolyte pool necessary to reach the osmotic equilib-
rium [74]. In more integrated preparations, such as the
hippocampal slice, it may happen that swelling occurs
in some but not in all cells, and therefore, the decrease
in amino acids and other osmolytes is required to com-
pensate the change in cell volume only in a minor popu-
lation of cells. Also, a redistribution of osmolyte amino
acids between different types of cells i.e. neurons and
astrocytes may occur, as observed in mice cerebellum
where taurine is translocated from Purkinje cells to as-
trocytes in response to hyponatremia [75]. In this situa-
tion, even though amino acids contribute importantly to
regulate cell volume in specific types of cells, this may
not result in a large net efflux. Finally, it should be no-
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ticed that in pathological situations, such as chronic hy-
ponatremia, when the external osmolarity decrease is
small but persists during several hours, or even days, the
decrease in amino acids and other osmolytes during this
period is substantial, being almost 90% in the case of
taurine [2]. This has been reproduced in vitro by Olson
[76] in cultured astrocytes, which showed no change in
cell volume after 24 h of hyposmolarity, coincident with
an almost total depletion of the taurine pool, and no sig-
nificant changes in the concentration of glutamate and
K+. This points to the role played by taurine as an
osmolyte of choice for cell volume control in physio-
pathological conditions.

The similarities or differences, which may exist
between the amino acid osmolyte pathway activated dur-
ing IVR and RVD, have not been explored in detail. There
is also no information about transduction signalling cas-

cades leading to activation of this mechanism of cell
volume control. In this respect, it is worthy to mention
that IVR may be a better system than RVD for the study
of signalling cascades primarily associated with
osmotransduction. In the absence of the dramatic changes
in cell volume occurring during RVD, changes associ-
ated with cytoskeleton reorganization, adhesion and even
stress, would be reduced and consequently, the remain-
ing set of signals expressed during IVR may be more
easily adscribed to specific aspects of cell volume regu-
lation.
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Fig. 2. Amino acid release
from hippocampal slices ex-
posed to gradual and
progessive reductions in ex-
ternal osmolarity. Slices
preloaded with [3H]-taurine
(�), D-[3H]aspartate (�), or
[3H]GABA (�), were super-
fused 10 min with isosmotic
medium. At the time pointed
by the arrow the external os-
molarity was continuosly de-
creased at a rate of –2.5
mOsm/min until the medium
osmolarity reached 150
mOsm (50% hyposmotic).
Data are expresed as efflux
rate constant (min-1) and are
means ± SE (n = 8-10).
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