2010

A Partial Taxonomy of Substitutability & Interchangeability

Shant Karakashian
University of Nebraska-Lincoln, shantk@cse.unl.edu

Robert J. Woodward
University of Nebraska-Lincoln, rwoodwar@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska-Lincoln, choueiry@cse.unl.edu

Steven D. Prestwich
University College Cork, s.prestwich@4c.ucc.ie

Eugene C. Freuder
University College Cork, e.freuder@cs.ucc.ie

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

Part of the Computer Sciences Commons

https://digitalcommons.unl.edu/cseconfwork/177

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A Partial Taxonomy of Substitutability & Interchangeability

Shant Karakashian
Robert J. Woodward
Berthe Y. Choueiry

Steven D. Prestwich
Eugene C. Freuder

Acknowledgments: This work was supported in part by Science Foundation Ireland under Grant 00/PI.1/C075
Outline

• Introduction
 – Basic form & extensions
 – Features & use
 – Further developments
• Taxonomy using a partial order
 – One example
• Relation to
 – General forms of symmetry
 – Symmetry breaking during search
• Future research & conclusions
Interchangeability & Symmetry

• Eliminating Interchangeable Values in Constraint Satisfaction Problems [Freuder, AAAI 91]

• “The detection of symmetries is a research avenue pioneered by Freuder [AAAI 1991] and subsequently investigated by many others.” [Van Hentenryck, SARA 2006]

• Interchangeability is a form of ‘solution symmetry’
 – Symmetry is not specified, but is detected

• We survey work on interchangeability & substitutability
 – Identifying & proving relationships among different forms of interchangeability/substitutability
 – We welcome your input
Basics

• Local vs Global
 – Neighborhood Interchangeability (NI)
 – K-Interchangeability (KI)
 – Full Interchangeability (FI)

• Weakening
 – Substitutability (ref. dominance)
 – Partial interchangeability
 – Subproblem interchangeability

• Generalization
 – Dynamic interchangeability (ref. SBDS & SBDD)
 – Meta interchangeability
 – Functional/isomorphic interchangeability: mapping values between different variables (ref. symmetry)

[Freuder 91]
NI and FI

• **FI**: Global, semantic level, likely intractable
• **NI**: Local, syntactic level, efficiently determined
• **NI \implies FI**

![Diagram](image-url)
Interchangeability Researchers

Audemard
Benhamou
Bistarelli
Benson
Bellicha
Bowen
Borodov
Brown
Budish
Further Developments

• Exploration
 – Interchangeability types
 – Their detection cost
 – Their benefits for problem solving

• Context
 – Finding all solutions
 – Problem decomposition

• CSP Extensions
 – Distributed CSPs
 – Quantified CSPs
 – Soft CSPs
Features & Use

• May be viewed as an extension of the fundamental CP concept of inconsistency filtering & propagation
 – Can remove values without removing all solutions
 – Trade amount of filtering against difficulty of recovering removed solutions

• Automatic symmetry detection

• Bundling interchangeable values for the same variable
 – Yields a compact representation of a CSP
 – Yields ‘robust/flexible’ solutions
 – Nogood bundling dramatically reduces search cost

• Shown to be beneficial in
 – Backtrack search & local search, interaction w/ users
 – Random CSPs, benchmarks, resource allocation problems
Outline

• Introduction
 – Basic form & extensions
 – Features & use
 – Further developments

• Taxonomy using a partial order
 – One example

• Relation to
 – General forms of symmetry
 – Symmetry breaking during search

• Future research & conclusions
Taxonomy

• Surveyed & analyzed interchangeability concepts
• Identified those that are satisfiability preserving
• Classified them in terms of implication
 \[X \implies Y \quad \text{iff} \quad \forall a, b \quad X(a,b) \implies Y(a,b) \]
• Identified 22 interchangeability concepts
 – 231 relations between concepts
 – 94 relations are covered in paper
• In extended paper, we will justify the remaining 137 incomparability results
The Interchangeability Landscape

SymCon 2010, Sep 6, 2010
Substitutability

- Global semantic
- Local syntactic
Outline

• Introduction
 – Basic form & extensions
 – Features & use
 – Further developments

• Taxonomy using a partial order
 – One example

• **Relation to**
 – General forms of symmetry
 – Symmetry breaking during search

• **Future research & conclusions**
Diagram of Symmetry Concepts

- **Value Symmetry for Satisfiability** [Benhamou 94]
- **Functional Interchangeability** [Freuder 91]
- **Symmetry** [McDonald+ 02]
- **Isomorphic Interchangeability** [Freuder 91]
- **Constraint Symmetry** [Cohen+ 05]
- **Syntactic Symmetry** [Benhamou 94]
- **Neighborhood Interchangeability** [Freuder 91]
- **Solution Symmetry** [Cohen+ 05]
- **Value Symmetry for All Solutions** [Benhamou 94]
- **Isomorphism Symmetry** [McDonald+ 02]
- **Full Interchangeability** [Freuder 91]
- **(a,b)-Supermodel** [Ginsberg+ 98]
- **(1,0)-Supermodel** [Ginsberg+ 98]
Relation to SBDS & SBDD

• Dynamic interchangeability
 – New opportunities for interchangeability appear during search
 – Forms proposed: DynNI, FDynI, DynSub & ForwNI

• SBDS & SBDD are related to dynamic interchangeability
 – Break symmetries during search
 – Can implement dynamic interchangeability

<table>
<thead>
<tr>
<th></th>
<th>Dynamic Interchangeability</th>
<th>SBDS/SBDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovers symmetry</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Overhead</td>
<td>Polynomial</td>
<td>Exponential</td>
</tr>
<tr>
<td>Space complexity</td>
<td>Polynomial</td>
<td>Exponential/Polynomial</td>
</tr>
<tr>
<td>Broken symmetries</td>
<td>Expressed by the concept</td>
<td>All specified symmetries</td>
</tr>
<tr>
<td>Advantages</td>
<td>Time & space complexity</td>
<td>Breaks more symmetries</td>
</tr>
</tbody>
</table>
High-Level Observations

<table>
<thead>
<tr>
<th></th>
<th>Interchangeability</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research focus</td>
<td>Efficient detection techniques</td>
<td>Efficient breaking techniques</td>
</tr>
<tr>
<td>Detected by...</td>
<td>Examining supports & nogoods</td>
<td>• Given by user</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using graph automorphism tools, e.g. Nauty</td>
</tr>
<tr>
<td>Defined over</td>
<td>• Individual variable-value pairs, tuples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Partial assignments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Solutions</td>
<td></td>
</tr>
<tr>
<td>Variations</td>
<td>Substitutability ≈ Dominance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meta interchangeability ≈ Indistinguishable variables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial interchangeability ≈ Super-solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic variations ≈ Symmetry breaking during search</td>
<td></td>
</tr>
<tr>
<td>State of affairs</td>
<td>Many concepts proposed yet to be exploited</td>
<td>Has received intensive attention in recent years</td>
</tr>
</tbody>
</table>

SymCon 2010, Sep 6, 2010
Future Research

• Analysis of symmetry definition was started by [Cohen+ 2005], and is still an ongoing effort
• In interchangeability, many concepts are yet to be investigated
 – Detection algorithms
 – Exploitation in problem solving
• New opportunities: building hybrids of
 – Concepts
 – Algorithms
 ... where the whole is more powerful than the sum of its parts
Thank you