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Abstract—A dual-network Cyber-physical Networking (CPN)
testbed developed at the University of Nebraska-Lincoln is de-
scribed. The CPN testbed consists of two geographically disparate
wireless sensor networks connected by a traditional TCP/IP net-
work and enables peer-to-peer communication between each sen-
sor in the network. The functionality of the testbed is enhanced
by a range of software tools that support remote programming
and network monitoring, and real-time visualization of sensor
data. The resulting architecture supports easy deployment and
evaluation of applications for both traditional and interconnected
wireless sensor networks. To demonstrate the features of this
testbed, a novel ping application was developed and deployed as
a proof-of-concept application for peer-to-peer communication in
geographically separated wireless sensor networks. Experimental
evaluations of the ping application yield insight into the commu-
nications overhead that can be expected in future applications of
peer-to-peer interconnected sensor networks.

I. INTRODUCTION

The performance evaluation of sensor network applications
is a well-known challenge in the area of wireless sensor net-
works (WSNs). The iterative nature of sensor reprogramming,
the lack of easy-to-use debugging tools, and the absence of
sophisticated application development tools are a few of the
factors that make the deployment and testing of wireless sensor
systems challenging. Due to the difficulty of reprogramming
the sensor nodes in a field-deployed sensor network, most
developed WSN solutions, including the majority of commu-
nication protocols, have been evaluated in software-based sim-
ulation environments. Although simulations may be sufficient
for functional verification of algorithms and protocols, it is
often insufficient for evaluating realistic models of resource
usage and inter-node communication processes [1].

Wireless sensor network testbeds represent an alternative
to the evaluation of WSN solutions by incorporating both
hardware and software components in the evaluation process.
A typical testbed includes a network of real sensor nodes
that are controlled and accessed through a software layer.
The use of real sensor nodes preserves the impacts of radio
communication and mote limitations whereas the software
layer improves the usability of the testing environment and
allows the automation of tasks such as data collection and
monitoring of nodes. Yet, most of these studies are isolated
from the existing infrastructure, namely the Internet.

Recently, the availability of 6LoWPAN [2] implementations
for WSNs has created significant interest in connecting WSNs

to the Internet and eventually, interconnecting separate WSNs
through the Internet. The use of IP-based messaging in the
communications link between the interconnected WSNs makes
it impractical to use simulation tools for evaluating their
performance. Thus, interconnected wireless sensor network
testbeds are needed to evaluate the performance of this in-
tegration.

In this work, the design and implementation of the Cyber-
physical Networking (CPN) Testbed at the University of
Nebraska-Lincoln (UNL) is described. The CPN testbed is
designed to link each individual mote in two geographi-
cally separated WSNs over a TCP/IP tunnel. The testbed is
equipped with a range of software and hardware tools which
support remote programming, out-of-band monitoring, power
management, and real-time visualization and interaction. The
distributed physical infrastructure of the testbed, i.e. geograph-
ical separation of the two testing sites, together with the
software tools, allow for the development and evaluation of
applications for both traditional and interconnected wireless
sensor networks.

The remainder of the paper is organized as follows: In
Section II, the related work on WSN testbeds and their
interconnection are discussed. A taxonomy of WSN testbeds
is presented in Section III. In Section IV, the hardware
architecture and supporting software of the CPN testbed are
described. The utility of the testbed is demonstrated with an
experiment using a ping protocol in Section V and concluding
remarks are provided in Section VI.

II. RELATED WORK

In contrast to simulation tools, which have been previously
classified in [3], [4], [5], a universal taxonomy of testbeds has
not been established, largely due to the diversity of features
these testbeds offer. Testbeds are typically assigned to one or
more of the following classes: general-purpose or application-
specific, indoor or outdoor, and mobile or stationary. Ad-
ditional subclasses can be derived based on the individual
features of the testbed, such as integration with IP networks or
support for heterogeneous nodes. In the following, we describe
several examples of testbeds that have preceded and influenced
our testbed design.

MoteLab [6], a comprehensive testbed developed at Harvard
University, is currently equipped with 190 permanently pow-

978-1-4244-9268-8/11/$26.00 ©2011 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2011 proceedings.

2011 IEEE Global Telecommunications Conference (GLOBECOM 2011) 
doi: 10.1109/GLOCOM.2011.6134233  



ered TMote Sky motes interfaced with a central testbed server
via a local Ethernet network. An essential element of MoteLab
is a web interface that simplifies access to the testbed’s infras-
tructure and guarantees fair resource sharing among users. The
set of operations available through the web interface include
mote programming, job creation and scheduling, viewing of
output and debug information generated by completed jobs
and a number of administrative actions. Moreover, MoteLab
features a power-profiling subsystem capable of logging en-
ergy usage measurements of selected nodes for retrieval upon
completion of the experiment.

Kansei [7], a high-fildelity sensing testbed designed and
built at the Ohio State University, manages three arrays of
sensor nodes. The largest stationary array contains 210 nodes
arranged in a regular 2-dimensional grid. One interesting
characteristic of the Kansei testbed is that each node in the
stationary array incorporates an Extreme Scale Mote and a
standalone Linux-based Stargate computing device that pro-
vides necessary communication ports. The Stargate units not
only serve as local data collection and processing centers, but
they also constitute a set of endpoints in an Ethernet backbone
used to deliver control messages between nodes and a clus-
ter of computers responsible for job scheduling, monitoring,
and visualization tasks. The architecture of Kansei’s software
platform allows two ways of accessing testbed management
functions: a web interface as a standard method of interaction
with users and a group of web services that allow access from
applications.

The TWIST testbed is a multi-level organization of devices
that utilizes mixed communication interfaces [8]. The top level
of the hardware organization consists of control stations and
the primary server running a database engine and core network
services. These components use an Ethernet back-channel to
communicate with Linux-controlled devices referred to as
super nodes. Each super node is connected to a USB hub
that handles a collection of motes. The state of the TWIST
testbed is controlled through a set of scripts residing in the
filesystems of the super nodes. These scripts are invoked
remotely from the control stations and are executed in a
multi-threaded manner that speeds up actions such as mote
reprogramming. The architecture of TWIST was subsequently
adopted by the Washington University in St. Louis (WUSTL)
WSN testbed [9].

There are a few examples of distributed testbeds that
integrate geographically disparate sensor networks intercon-
nected by conventional networks. The X-Sensor [10] testbed
consists of eight disparate sites consolidated into one web-
accessible testing environment. The web interface of the
X-Sensor testbed provides a location-transparent method of
accessing experimental sensor networks. Another example is
the WISEBED project [11] that connects testbeds developed at
several European universities. The research group associated
with the project focuses on providing guidelines and applica-
tion programming interfaces for creating networks of intercon-
nected heterogeneous testbeds. While the two aforementioned
testbeds make it possible to conduct large-scale interconnected

sensor network experiments, they do not allow direct peer-to-
peer communication between geographically separated indi-
vidual sensors. The UNL Cyber-physical Networking testbed
was built specifically to enable the study of applications that
require inter-WSN communications.

III. A TAXONOMY FOR WSN TESTBEDS

An analysis of existing WSN testbeds reveals a hierarchy
of common features that provide different experimental capa-
bilities. In an effort to provide a taxonomy of WSN testbeds,
in the following, these features are discussed in a systematic
manner.

1) Scalability and reconfigurability: The main preferred
feature of a WSN testbed is its ability to be easily
expanded and adapted to meet requirements caused
by the growth in the research domain. Increasing the
number of nodes in a scalable and reconfigurable testbed
should require a very limited hardware adjustments with
minimal impact on the software components.

2) Heterogeneity: The plethora of different platforms
emerged in WSN research demands WSN testbeds to
support heterogeneity, which allows the formation of
autonomous non-uniform networks with the restriction
that the motes within each network be homogeneous
(testbed-level heterogeneity). Network-level heterogene-
ity and its application-level variant discard this re-
striction, allowing mixed mote types within the same
network. Issues regarding the design and implementation
of a heterogeneous testbed are discussed in [12]. An
additional level of heterogeneity can be achieved by
adding programmable robots to support limited mobility
as in [13]. The presence of mobile nodes increases the
complexity of the inter-node communication schemes
and often requires node localization services.

3) Robustness and controllability: Mote programing and
management are made possible by exchanging control
commands between a management station and motes.
A robust and controllable WSN testbed is capable of
establishing a bi-directional communication link for
the transfer of control messages between nodes and a
management station at any time instance.

4) Debugging, data logging and monitoring: Debugging is
the process of tracking the execution of sensor programs
at selected nodes in order to identify erroneous frag-
ments of code or to preview the values of key variables.
Debugging mechanisms are necessary for the implemen-
tation of data logging tools capable of capturing, time
stamping, and storing sequences of readings obtained
by sensor nodes. Data logging is often accompanied by
a monitoring routine - a periodic diagnostic operation
verifying the availability of nodes or measuring levels of
quality of critical services. Reporting energy consump-
tion is an example of a monitoring task that requires the
testbed to be instrumented with additional specialized
equipment [6].
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5) Ease of access. A common practice in WSN testbeds
is the implementation of a web interface that provides
the user with a set of graphical interfaces for accessing
the functionality of the testbed. An advantage of web
interfaces is that they centralize access to the testbed’s
resources in terms of both programming and monitoring
motes.

Among these features, support for mobility is considered
optional, and was not implemented in the CPN testbed. On
the other hand, scalability and reconfigurability together with
controllability and robustness were chosen to be the core de-
sign principles of the testbed. As will be described in Section
IV, the feature set of the CPN testbed includes debugging and
data logging tools and a web interface, which provides ease
of access to the testing environment.

IV. IMPLEMENTATION OF THE CPN TESTBED

In this section, the hardware infrastructure and the key
software components of the CPN testbed are described. The
hardware infrastructure delivers the physical foundation neces-
sary to create, power and manage the WSN, and was designed
to be extensible. The software components provide tools for
the implementation and debugging of sensor applications, as
well as the collection and visualization of sensor data.

A. Hardware Infrastructure

The hardware infrastructure of the CPN testbed is de-
picted in Figure 1. In this architecture, a mote connector is
a fundamental building block, which is defined as a USB
port connected to, and managed by, a server similar to
[8]. The testbed consists of 92 numbered and labeled mote
connectors distributed between two different buildings on the
UNL campus; the Schorr Center has 45 connectors and Scott
Engineering Center has 47 connectors. Both locations are
controlled by designated servers running a distribution of the
Linux operating system. Currently, the testbed supports the
TelosB and IRIS platforms and the family of MICA motes.

The servers communicate with mote connectors through a
number of intermediate devices. Handling a multitude of mote
connectors requires the use of USB hubs. However, since there
exists a strict limitation on passive USB cable length, the
connections between connectors and hubs are realized with
UTP skeletal wiring together with appropriate UTP-to-USB
converters at both ends of each UTP segment. Ethernet wires
eliminate the need for active USB cables or additional hubs as
signal repeaters as long as the topology remains geographically
consistent. Moreover, a single UTP line can handle up to 4
mote connectors and reduces the complexity of the cabling
and connections.

A key element of the CPN testbed is the device path,
which is illustrated on Figure 2. USB devices are organized in
hierarchies, using specific USB ports of the controlling PC as
root nodes and mote connectors as terminal nodes or leaves. It
is important that each terminal node of the USB hierarchy tree
is identified by a sequence of port numbers leading from a top-
level USB hub to the node. Accordingly, each hub corresponds

Figure 1. The hardware infrastructure of the CPN testbed.

to a port number in the device path, which uniquely identifies a
node in the testbed. To allow automated analysis and improve
readability, segments of a device path are separated by a dot.

Figure 2. The concept of a device path in the CPN testbed.

B. Software Components

Based on the hardware infrastructure, several software com-
ponents are developed to enable detection of physical types
of motes, enable programming of groups of motes and to
automate data collection. These components are described
next.

1) Core Databases: The core software element at both
locations is an instance of a relational database that holds
information about the current state of the local testbed. The
database stores a set of existing mote connectors and their
attributes, i.e. associated device paths and spatial coordinates,
as well as a list of devices attached to individual connectors.
Lists of supported hardware platforms and lists of available
motes, together with definitions of target hardware platforms
for the compilation of sensor applications, are also part of the
database. As described later, the database is also used to store
the output collected from sensor applications.
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2) Persistent Device Naming and Mote Type Detection Sub-
system: Whenever a mote is attached to one of the available
connectors, the udev device management tool recognizes this
event and obtains the serial number of the connected mote
together with the device path identifying the connector, and
invokes a complementary script. The script then performs a
database lookup to determine the type of the attached mote,
and creates a record indicating that a connection has been
made. Additionally, the script generates a persistent name
for the device file corresponding to the connected mote, and
this name is stored in the database. Analogous operations are
performed upon removal of motes.

3) Application Deployment Subsystem: The build and
deployment processes of nesC applications are controlled
through the GNU Make tool. The default TinyOS Make system
requires the programmer to execute at least one command
in order to compile and upload an application to a single
mote, which is impractical when the deployment needs to
be performed on a large group of motes. The design of this
system, however, makes it extensible and customizable, and
enables end-users to define their own hardware platforms or
supplemental rules for the Make tool.

We extended TinyOS’s deployment tools to allow the
easy and intuitive programming of groups of motes. Our
development environment implements an additional command,
make group, that handles the compilation and uploading
of sensor applications as well as the assignment of node
identifiers to user-specified sets of motes. These three fun-
damental operations (compilation, uploading, and identifier
assignment) are performed regardless of the physical types
of the target motes and their filesystem representations. The
tool uses information stored in the database to translate the
initial call to a set of generic TinyOS make commands and
is capable of executing these commands in a multi-threaded
fashion.

4) Debugging and Data Collection Subsystem: The debug-
ging and data collection subsystem utilizes terminal printing
functionality provided by the TinyOS printf library. Motes
output debugging messages and sensor readings by simply
printing to their serial ports. The user controls a set of
debugger processes which can be attached to the serial ports
of selected motes at any time instance in order to capture the
output data. The data collected by the debugger processes is
stored in the database to allow further processing.

5) Testbed Management Interface and Data Visualization
Tools: Following the practice of wireless sensor network
testbeds described in Section II, interaction between users
and the subsystems of the testing framework occur through
a web interface as shown in Figure 3. In addition to remote
programming and data collection, the web interface offers a
range of management tools that enable the user to monitor
the status of connected devices and control the behavior of
the deployment subsystem. Additionally, the web interface is
integrated with a visualization API to enable the user to create
application-specific interactive visualizations of the collected
data.

Figure 3. Interactive testbed preview with visualization of sensor data.

V. PERFORMANCE EVALUATION

As a proof-of-concept of peer-to-peer communication be-
tween geographically disparate sensor motes, a ping appli-
cation was developed to assess the mean delay associated
with communication between the two geographically disparate
wireless sensor networks. The mean delay is a key perfor-
mance metric for applications that require real-time event
detection. An example of such an application is tracking over
a very large geographic area where the network is divided into
independently managed, interconnected sensor networks.

Nodes in each location were programmed to periodically
test the reachability of randomly chosen nodes in the other
location and to measure the latency in their responses. The
source initiates the test by sending a specialized ping packet
to the local base station node that forwards the request to the
testbed server managing the source network. Then, the request
is transferred over TCP/IP to the corresponding remote testbed
server and delivered to the destination through the appropriate
base station. The destination responds in a similar fashion. The
experimental setup consisted of 20 motes (10 in each location
plus a single base station mote) each of which served as both
a source and a destination for ping packets. Each of the motes
was programmed to generate one ping packet every 3000 ms.

To reflect the operation of a typical application for intercon-
nected wireless sensor networks, the nodes in both networks
were also instructed to perform intra-network messaging since
local communication in such applications might still be carried
out for local synchronization, protocol overhead, or data
exchange. The intensity of intra-network communication is
controlled by setting a desired mean inter-packet interval µ for
all nodes in the network. Specifically, the time interval between
two subsequent local communication events at a particular
node is uniformly distributed over the interval (0, 2µ) ms.
The resulting round-trip times of the ping packets and the
amount of time spent on intra-network messaging, i.e., the
time overhead associated with radio communication between
motes and the local base stations, are shown in Figure 4. Each
data point is an average of approximately 3000 observations.
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Figure 4. Round-trip times of inter-network ping packets and the delay
for intra-network communication. Vertical lines show variability of round-trip
times measured as the standard deviation from the mean round-trip time.

This experiment yielded an inter-network communication
latency of approximately 90ms. Additionally, it can be ob-
served that an increase in local inter-packet interval leads to an
increase in latency for local communication. The overall inter-
network communication time, however, is mainly determined
by the latency associated with IP communication and is inde-
pendent of the local network traffic. This experiment, which
could not be performed via simulation due to the hybrid nature
of the inter-network communications, provides insight into
the communications overhead that can be expected in future
applications of interconnected wireless sensor networks. The
ping application and the capturing of communication latencies
are possible due to the interconnected characteristic, the mote
type detection capability, the ability to program groups of
motes and the data collection functions of the CPN testbed.
The implementation and the evaluation of the ping application
serve as a proof-of-concept of peer-to-peer communication
between geographically disparate sensor motes and illustrate
the functionality of the CPN testbed.

VI. CONCLUSION

A distributed dual-network testbed for wireless sensor appli-
cations was described. The hierarchical organization of devices
combining USB and Ethernet communication interfaces in
the hardware infrastructure of the testbed, provides scalability
and allows controlling servers to maintain robust, permanent
connections with available motes. The corresponding software
components installed on each of the servers automatically
detect connected motes and are capable of determining their
physical types. The testbed environment includes mote pro-
gramming tools that allow one-click deployment of sensor
applications to groups of motes. In addition, the testbed
features a debugging and output collection subsystem that
enables easy retrieval of sensor data. These functionalities,
along with data visualization tools, are available through a

web interface that simplifies and centralizes the interaction
between the users and the testing environment.

The distributed architecture of the CPN testbed allowed for
the development and evaluation of a ping application, through
which the end-to-end delay associated with intra- and inter-
network traffic was analyzed. Although delay analyses have
been performed in traditional wireless sensor networks [14],
the delay analysis in interconnected WSNs is much more
challenging due to the presence of TCP/IP communications.
Here, the problem of delay in interconnected WSNs was
approached experimentally. Future work includes an analytical
framework for this problem. The testbed can be used for the
purposes of implementation, deployment and evaluation of
applications and communication protocols for interconnected
wireless sensor networks. Ultimately, such applications and
protocols will contribute to the creation of the next generation
Internet.
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