University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers

Computer Science and Engineering, Department of

2011

A Reformulation Strategy for Multi-Dimensional CSPs: The Case Study of the SET Game

Amanda Swearngin University of Nebraska-Lincoln, aswearng@cse.unl.edu

Berthe Y. Choueiry University of Nebraska - Lincoln, choueiry@cse.unl.edu

Robert J. Woodward University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Eugene C. Freuder University College Cork, e.freuder@cs.ucc.ie

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork Part of the <u>Computer Sciences Commons</u>

Swearngin, Amanda; Choueiry, Berthe Y.; Woodward, Robert J.; and Freuder, Eugene C., "A Reformulation Strategy for Multi-Dimensional CSPs: The Case Study of the SET Game" (2011). *CSE Conference and Workshop Papers*. 179. http://digitalcommons.unl.edu/cseconfwork/179

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

A Reformulation Strategy for Multi-Dimensional CSPs: The Case Study of the SET Game

Presented by: Robert J. Woodward,

Amanda Swearngin¹ Berthe Y. Choueiry² Eugene C. Freuder³

¹ESQuaReD Laboratory, University of Nebraska-Lincoln ²Constraint Systems Laboratory, University of Nebraska-Lincoln ³Cork Constraint Computation Centre, University College Cork

Acknowledgements

- National Science Foundation under grants CCF-0747009, CNS-0855139, and RI-1117956
- Science Foundation Ireland under grant 05/IN/1886

Constraint Systems Laboratory

1/23/2012

Outline

- General reformulation strategy for CSPs
 - Multidimensional CSPs (MD-CSPs)
 - Problem reformulation by value interchangeability
 - A general reformulation strategy for MD-CSPs
- Game of Set: A new toy problem
 - Game, CSP model
 - Problem reformulation
 - Algorithms & Results
- Conclusions

Multi-Dimensional CSPs

- All variables have the same domain
- Domain is multi-dimensional
 - A set of dimensions
 - Each domain value is described by a combination of dimensions values
- In MD-CSPs, a constraint can be
 - One-dimensional: defined over a single dimension
 - Multi-dimensional, otherwise
- Typical applications
 - Scheduling, resource allocation, configuration, etc.

[Yoshikawa+ 1992]

Reformulation by value interchangeability

- Value interchangeability [Freuder 91]
 - Domain abstraction: equivalent values
 - 'Perfect' equivalence rare, small domain partitions
 - Ignoring some constraints yields larger domain partitions, smaller
 CSPs, smaller search space [Haselboeck 93, Choueiry+ 94]
- Abstraction in MD-CSPs [Freuder+ 95,97]
 - Abstract domains based on a dimension, P_r
 - Solve reformulated CSP
 - Use solution of P_r to guide solving original CSP, P_o
- How to "use solution of P_r to solve P_o "? Hard to automate

Constraint Systems Laboratory

e f

d

a b

Reformulation Strategy for MD-CSPs

Process

For each one-dimensional constraint
 Abstract domains using interchangeability
 Enforce one-dimensional constraint
 Solve remaining CSPs with some solver

- Questions
 - Which 1-dim constraint to use first?
 - How to process reformulated problems?
- Case study of the Set game

Outline

- General reformulation strategy for CSPs
 - Multidimensional CSPs (MD-CSPs)
 - Problem reformulation by value interchangeability
 - A general reformulation strategy for MD-CSPs

Game of Set: A new toy problem

- Game, CSP model
- Problem reformulation
- Algorithms & Results
- Conclusions

Constraint Systems Laboratory

1/23/2012

Game of Set

- Deck of 81(=3⁴) cards, each card with a unique combination of 4 attributes values
 - *1. Number* \in {1,2,3}
 - 2. Color \in {green, purple, red}
 - 3. Filling \in {empty, stripes, full}
 - 4. Shape \in {diamond, squiggle, oval}
- Solution set: 3 cards

 \forall attribute, the 3 cards have either the same value or all different values

[Falco 74]

- 12 cards are dealt, on table [3,21]
- Recreational game, favorite of children & CS/math students
- New toy problem for AI: a typical multi-dimensional CSP

Set as an MD-CSP

- Model
 - Three variables
 - Same domain (12 cards)
 - One 'physical' constraints $N^{\pm} \oplus N^{\pm}$
 - Four 1-dimensional constraints

Same domain for all 3 variables

Domain Table

Constraint Systems Laboratory

1/23/2012

Lincoln

Reformulation by Value Interchangeability

1/23/2012

Reformulation Strategy for Set

Which dimension to choose first?

→ For Set, heuristics based on data in 'Domain Table:'

Fewest subproblems first (infamously, Fail First Principle)

Selecting Domain Dimension

- Goal: Reduce branching factor
 - In example below, no card in domain has a shaded filling, thus, _ subproblems for *Filling*=s and F^{\neq} do not exist

- Our reformulation algorithm for Set
 - Uses 'Domain Table' & 'Summary of Domain Table'
 - Has 4 tests & 5 heuristics

Algorithms: Finding all Solutions

- 1. Brute-force search (BF)
 - 3-nested for-loops generate all combinations, then test for solutions
 - Contradicts 40+ years of CP research & experience 🛞
 - Does not scale $(12^3 \sim d^n)$
- 2. Backtrack search (Basic Solver)
 - Symmetry breaking (lexicographic ordering)
 - Both forward-checking (equality) & back-checking (All-diff constraints)
- 3. Reformulation-based algorithm
 - Uses 2 data structures: 'Domain Table' & 'Summary of Domain Table'
 - Includes 5 selection heuristics
 - Open subproblems maintained in an agenda: room for heuristics (1Sol)
- Empirical tests: randomly selected 'hands' of 3 to 81 cards, results averaged over of 1,000 runs

Results

- #CC,#NV: Reformulation dramatically reduces # of combinations tested
- **CPU time** reflects the cost of setting up the data structures for the CSP & search

Algorithm	#Cards	#Sol	#CC	#NV	Time [msec]
Brute Force	12	2.77	1956.8	220	0
BT Search			1726.6	80.77	62.46
Reformulation			85.1	12.65	5.85
Brute Force	81	1080	758808	85320	0
BT Search			553365	4401	101.04
Reformulation			31158	2565	39.44

1/23/2012

Online Game gameofset.unl.edu

- Game running online
- Interface explaining the reformulation still in development
- Advertzmt: minesweeper.unl.edu & sudoku.unl.edu (CP-based)

Conclusions

- Contributions
 - A systematic approach to reformulation and 'conditional' symmetries
 - Applicability to real-world problems highly promising
 - A new toy problem for AI research & education ©
- **Technical** issues
 - Generalize heuristics for dimension selection and problem decomposition
 - Explore other types of interchangeability/symmetries
 - Extend definition of MD-CSP to allow unequal/all-diff domains
- Modeling lesson
 - CSP variables and values are often 'objects' with attributes
 - So far, we have integrated those attributes in the constraint definitions
 - Let's rethink CSP modeling: Maybe multi-dimensional CSPs are more common than we thought they are..

