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Regression modeling and mapping of coniferous

forest basal area and tree density from
discrete-return lidar and multispectral
satellite data

Andrew T. Hudak, Nicholas L. Crookston, Jeffrey S. Evans, Michael J. Falkowski,
Alistair M.S. Smith, Paul E. Gessler, and Penelope Morgan

Abstract. We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite
imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest
landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables
derived from discrete-return lidar data (2 m post spacing), advanced land imager (ALI) multispectral (30 m) and
panchromatic (10 m) data, or geographic X, ¥, and Z location. In general, the lidar-derived variables had greater utility than
the ALI variables for predicting the response variables, especially basal area. The variables most useful for predicting basal
area were lidar height variables, followed by lidar intensity; those most useful for predicting tree density were lidar canopy
cover variables, again followed by lidar intensity. The best integrated models selected via a best-subsets procedure explained
~90% of variance in both response variables. Natural-logarithm-transformed response variables were modeled. Predictions
were then transformed from the natural logarithm scale back to the natural scale, corrected for transformation bias, and
mapped across the two study areas. This study demonstrates that fundamental forest structure attributes can be modeled to
acceptable accuracy and mapped with currently available remote sensing technologies.

Résumé. Nous avons comparé I’ utilité du lidar a retour discret et de I’imagerie satellitaire multispectrale et leur intégration
pour la modélisation et la cartographie de la surface terriere et la densité des arbres pour deux paysages diversifiés de foréts
de coniferes dans le centre-nord de I’Idaho. Nous avons appliqué les sous-ensembles des modeles de régression linéaire
multiple d’une série de 26 variables prédictives dérivées de données lidar a retour discret (post-espacement de 2 m), de
données multispectrales (30 m) et panchromatiques (10 m) du capteur ALI (« advanced land imager ») ou de localisation
géographique en X, Y et Z. En général, les variables dérivées du lidar étaient d’une plus grande utilité que les variables ALI
pour la prévision des variables dépendantes, particulierement la surface terriere. Les variables les plus utiles pour la
prévision de la surface terricre des arbres étaient les variables lidar de la hauteur des arbres suivies par I’intensité lidar ; les
plus utiles pour la prévision de la densité des arbres étaient les variables lidar du couvert, la aussi suivies par ’intensité
lidar. Les meilleurs modeles intégrés sélectionnés via une procédure du meilleur sous-ensemble a permis d’expliquer ~90%
de la variance pour les deux vaiables dépendantes. Les variables dépendantes transformées par logarithme naturel ont été
modélisées. Les prévisions ont alors été transformées de I’échelle In, puis a I’échelle naturelle, corrigées pour le biais lié a
la transformation et cartographiées sur 1’ensemble des deux régions d’¢étude. Cette étude démontre que les attributs
fondamentaux de la structure forestiere peuvent étre modélisés avec une précision acceptable et cartographiés au moyen de
technologies de télédétection disponibles a I’heure actuelle.

[Traduit par la Rédaction]

Introduction

Measures of stand structure are needed to manage forested
landscapes for multiple purposes, including timber production,
wildlife habitat, and fire hazard. Remote sensing of forest
structure has proven challenging for forest operational
managers and planners, many of whom still rely on aerial
photograph surveys to meet user accuracy trequirements.
Although moderate-resolution satellite imagery (e.g., Landsat)
is reasonably sensitive to variation between managed forest
stands, it is insensitive to canopy height variation within stands
compared to aerial photography. Laser altimetry and light
detection and ranging (lidar) systems, on the other hand,
actively measure height to the reflective surface. Most

commercially available discrete-return lidar systems can
accurately measure top-of-canopy height and ground height, as
well as canopy layers in between. Recognizing that passive
imaging and active lidar systems sense fundamentally different
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aspects of forest structure, and that probably no single remote
sensor can provide all of the information useful and relevant to
forest managers, the integration of image and lidar data for the
purpose of predicting, mapping, managing, and monitoring
forest structure attributes is a logical and worthwhile pursuit
(Lefsky et al., 1999; Hudak et al., 2002).

Landsat imagery has become the standard relied upon by
many forest ecologists and managers who use remotely sensed
data (Cohen and Goward, 2004). Landsat data coverage began
with the launch of Landsat-1 in 1972. Landsat-5 operated far
beyond its expected lifespan, from 1984 until 26 November
2005, when the appearance of a solar array drive anomaly
briefly halted imaging (http://landsat.usgs.gov/technical_details/
investigations/15_solar_drive.php). Landsat-7 was launched
and has operated since 1999, although with reduced utility
since a scan line corrector anomaly began on 31 May 2003
(http://landsat. usgs.gov/programnews.html). Considering the
declining availability of new Landsat imagery, there is
justifiable concern for maintaining Landsat data continuity,
particularly until the launch of the Landsat data continuity
mission (LDCM) operational land imager (OLI), which will
provide Landsat-like imagery but is expected no sooner than
late 2009 (http://ldcm. usgs.gov/).

The advanced land imager (ALI) satellite sensor was
designed in part to provide data continuity with the Landsat-5
thematic mapper (TM) and Landsat-7 enhanced thematic
mapper plus (ETM+) sensors (http://eol.usgs.gov/ali.php).
Although the ALI swath width (37 km) is more restricted than
that of Landsat (185 km), and ALI acquisitions must be
scheduled in advance, the ALI sensor is pointable. The ALI
measures solar irradiance in nine multispectral bands between
0.433 and 2.350 um in the electromagnetic spectrum, matching
the six multispectral bands of Landsat TM or ETM+, plus an
additional three bands. The spatial resolution of the
panchromatic (PAN) band is 10 m, an improvement over the
15 m resolution of the ETM+ panchromatic band. Furthermore,
ALI data are 16-bit rather than 8-bit, offering greater dynamic
range. In a comparative study, Bryant et al. (2003) found no
disadvantages of the ALI sensor relative to the TM or ETM+
sensors and recommended the ALI sensor for a potential
Landsat-8 payload.

Efforts to model and map height and related attributes from
satellite imagery alone have generally been too inaccurate for
forest operational managers. Canopy height is particularly
valued by foresters because it relates strongly to other structure
attributes of interest, such as basal area and biomass. Numerous
studies have demonstrated the utility of lidar for characterizing
various attributes of forest canopy structure from discrete-
return lidar data (Nelson, 1984; Nilsson, 1996; Means et al.,
2000). Enthusiasm for lidar-based forest inventory is driving
expansion of the commercial lidar industry (Flood, 2001). As
the costs of managing forested landscapes increase in a
competitive environment, commercial timber and paper
companies are increasingly turning to lidar for potentially more
accurate and efficient inventory and assessment of their forest
resources.

© 2006 CASI

Our objective was to compare the relative utility of discrete-
return lidar data and ALI satellite imagery, and their integration,
for modeling and mapping basal area and tree density across two
spatially disjunct coniferous forest landscapes situated along a
single biomass and productivity gradient in northern Idaho.
Many researchers have recognized the potential of remote
sensing data integration, making “data integration” a broad term
that needs to be more narrowly defined. Lefsky et al. (2001)
compared the utility of several remote sensing data types for
accurately characterizing high-biomass forest structure in
western Oregon and found that lidar outperformed digital aerial
photography, hyperspectral aerial imagery, and multispectral
satellite imagery. Rather than evaluate many remote sensing
products, we used single acquisitions of discrete-return lidar data
and multispectral satellite imagery, much like a commercial
forester with limited time and resources might do. Popescu and
Wynne (2004) fused lidar and multispectral image data to
improve estimates of individual tree height in eastern forests.
Rather than examine individual tree attributes, we focused on
stand attributes of interest to planners and managers of large
forested landscapes. Lastly, rather than “fuse” remotely sensed
data layers, or test a variety of data integration methods, we
focused on the simple and widely applicable method of multiple
linear regression. Hence the data integration conducted in this
analysis is purely statistical but provides an accessible means of
selecting remotely sensed predictor variables and evaluating
alternative models. This study is intended to demonstrate to
forest planners and operational managers that it is within their
means to model and map fundamental stand structure variables
of interest to acceptable accuracy with current lidar and imaging
technologies.

Methods
Study area

The Moscow Mountain and St. Joe Woodlands study areas
together make up more than 88 000 ha in north-central Idaho
(Figure 1). Moscow Mountain is nearly wholly surrounded by
agricultural land, and the St. Joe Woodlands lies within the
regional block of mixed conifer forest type. Both areas are
topographically diverse, with the higher elevations and steeper
slopes occurring in the St. Joe Woodlands. Wind-blown
volcanic ash from the Cascade Mountains acts as an important
soil component in both areas. Conifer species range along a
moisture gradient from Pinus ponderosa and Pseudotsuga
menziesii at the drier end (more commonly found on southern
aspects in the Moscow Mountain area) to Thuja plicata and
Tsuga heterophylla at the wetter end (more commonly found on
northern aspects, especially in the St. Joe Woodlands). Other
important species include Abies grandis, Abies lasiocarpa,
Larix occidentalis, Picea engelmannii, Pinus albicaulis, Pinus
contorta, and Pinus monticola. These forests are actively
managed. Most have been logged at least once; very little land
has never been logged. Two industry partners in this study,
Bennett Lumber Products, Inc. and Potlatch, Inc., are the
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principal landowners of Moscow Mountain and the St. Joe
Woodlands, respectively. The University of Idaho Experimental
Forest and St. Joe Ranger District of the Idaho Panhandle
National Forest occupy sizable portions of Moscow Mountain
and the St. Joe Woodlands, respectively. There are more
private landowners and structures on Moscow Mountain, given
its proximity to Moscow and other farming and logging
communities.

Field sampling

Field sites were selected in each study area using a two-stage
stratified design, with the first stage based on three elevation
and three solar insolation classes generated from a 30 m US
Geological Survey digital elevation model (DEM) and crossed
to produce nine strata. Solar insolation, which incorporates into
a single variable the important biophysical drivers of slope and
aspect, was generated using Solar Analyst (Helios
Environmental Modeling Institute (HEMI), LLC, 2000). The
second stage assigned nine leaf area index (LAI) classes into
each of the nine strata, where LAI was indicated by a mid-
infrared corrected normalized difference vegetation index
(NDVIc) (Nemani et al.,, 1993; Pocewicz et al., 2004)
calculated from an 18 August 2002 Landsat ETM+
multispectral image. The three -classifications were then
combined systematically, and pixels within the resulting strata

were selected randomly, resulting in 81 target plots irregularly
distributed across each study area. These target plots were
loaded as waypoints into a Trimble ProXR global positioning
system (GPS) to navigate to in the field.

Once found in the field, plot centers were geolocated using
the GPS by logging a minimum of 150 points; these were later
differentially corrected upon returning from the field and then
averaged to get a final three-dimensional (3D) point position
accurate to within +0.8 m horizontally and 1.1 m vertically,
according to the commercial GPS software (Trimble Pathfinder
Office). If the plot happened to span a road, the plot center was
moved just far enough to place the entire plot within the stand
structural condition being characterized. If a plot was otherwise
unsafe to sample (e.g., too steep), it was discarded and an
alternative pixel from the same stratum was selected as a target
plot. The sizes of the fixed-radius plots were 0.04 ha (0.1 acre)
at Moscow Mountain and 0.08 ha (0.2 acre) at the St. Joe
Woodlands. Within each plot, all trees with > 12.7 cm (5 in.)
diameter at breast height (dbh) were measured (ignoring trees
with dbh < 12.7 cm). Eleven plots at Moscow Mountain lacked
trees 212.7 cm dbh but were included in this analysis. In
addition, two supplementary plots were sampled to
characterize old-growth structure (one plot in each study area).
Old-growth structure is rare and hence was not selected through
the stratification process. However, we considered sampling the

St. Joe Woodlands
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Figure 1. Location map of the Moscow Mountain and St. Joe Woodlands lidar acquisition areas for this study,
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upper end of the vegetation biomass gradient important and
interesting to both managers and researchers. Although the two
old-growth stands were necessarily subjectively selected, the
plot centers within each stand were randomly located. The final
plot tallies were 84 for Moscow Mountain and 81 for the St. Joe
Woodlands.

Image processing

ALLI satellite images were acquired on 1 October 2004 for
Moscow Mountain (46.8617°N, 116.9642°W) from an
overhead path (look angle = 3.3692°) and on 3 October 2004
for the St. Joe Woodlands (47.2713°N, 116.3233°W) from an
east path (look angle = —12.1905°). The Level IR products
were purchased, which were radiometrically but not
geometrically  corrected  (http://eol.usgs.gov/userGuide/ali_
process.html). Both the single-band panchromatic and nine-band
multispectral images were delivered as four separate image
strips, which were mosaicked in Environment for Visualizing
Images (ENVI) following detailed online instructions
(http://eol.usgs.gov/faq.php?id=31). The seamless mosaicked
images were then coregistered in ERDAS Imagine to an
orthorectified Landsat ETM+ panchromatic image base
(26 August 1999; path 42, row 27) using image tie-points
generated with an automated, area-based correlation algorithm
coded in Interactive Data Language (IDL) (Kennedy and
Cohen, 2003). For Moscow Mountain, the cumulative root
mean square error (RMSE) was 1.9 m (panchromatic, N = 202
points) and 8.5 m (multispectral, N = 78 points); for the St. Joe
Woodlands, the cumulative RMSE was 5.0 m (panchromatic,
N = 82 points) and 3.6 m (multispectral, N = 106 points).

The georectified images were converted into Arclnfo
GRIDs. The mean value of pixels intersecting the plot footprint
was calculated from each band using the ZONALSTATS
function, and in the case of the 10 m panchromatic band, the
standard deviation was also calculated as an index of canopy
texture (Hudak and Wessman, 1998).

Lidar processing

Lidar data were acquired in July, August, or September 2003
(depending on the flight line) for Moscow Mountain
(32 708 ha) and the St. Joe Woodlands (55 684 ha) (Figure 1).
The lidar system (ALS40) of the vendor (Horizons, Inc., Rapid
City, S.Dak.) operated at a wavelength of 1064 nm, which is in
the near-infrared region of the electromagnetic spectrum where
vegetation and ground are highly reflective, affording a high
signal-to-noise ratio in the reflected returns. Raw X, Y, and Z
positions were delivered as ASCII files corresponding to each
flight line. To identify ground returns, a curvature thresholding
approach (Haugerud and Harding, 2001) termed “virtual
deforestation” (VDF) was used. VDF iteratively identifies and
removes nonground (principally vegetation) returns until only
ground returns remain. This VDF technique was coded in
ArcInfo macro-language (AML) and improved upon by
incorporating a progressive interpolation scale and a curvature
weighting coefficient into the model, which we have named the

© 2006 CASI

progressive curvature filter (http://forest.moscowfsl.wsu.edu/
gems/lidar). Subsequent interpolation of these ground returns
using bicubic splines produced a desirable bare earth DEM at a
resolution matching the post spacing of the lidar survey (2 m).

Raw intensity values were interpolated into a 2 m grid using
the POINTINTERP function in GRID with an inverse-distance
weighted smoothing function. To indicate nonground returns,
the DEM was subtracted from the raw lidar returns, using a
minimum height threshold of 17 cm (the estimated vertical
uncertainty of the lidar returns specified by the lidar vendor in
the contract). The resulting nonground returns were then
binned at a horizontal resolution of 6 m with the POINTSTATS
function to generate raster grids of maximum canopy height.
Canopy cover was calculated as the percentage of nonground
returns out of the total returns within each 6 m cell. In these
study areas, the nonground returns reflect almost exclusively
overstory or understory vegetation, although there are a few
buildings, radio towers, power lines, etc.

The ZONALSTATS function was used to calculate mean,
standard deviation, minimum, and maximum statistics of grid
cells intersecting the plot footprint, from the intensity, height,
and canopy cover layers. In anticipation of mapping some of
these  variables, the FOCALMEAN, FOCALSTD,
FOCALMIN, and FOCALMAX filter functions were also
passed over the intensity, height, and cover layers to produce
output grids of these statistics. The DEM was used as the image
layer for mapping elevation. From the DEM, 10 m Universal
Transverse Mercator (UTM) easting and northing grids were
generated in GRID using a simple DOCELL function (also in
anticipation of using the easting and northing grids later as
inputs for mapping the response variables across the
southwest—northeast productivity gradient spanning the two
study areas).

Regression modeling

Both the basal area (BA) and tree density (TD) response
variables were positively skewed, causing poor model fits at the
tails of a distribution because ordinary least squares (OLS)
regression assumes a normal distribution in the response
variable. Therefore, square root (sqrt) and natural logarithm
(In) transforms were applied to the response variables in a
preliminary analysis, both of which produced normal model
residuals. Only the natural logarithm transformation was
pursued for the reanalysis presented in this paper, as Hudak et
al. (2005) produced better model statistics (higher R?> and
adjusted R? and lower SE) predicting In(BA + 1) and In(TD + 1)
than predicting sqrt(BA) and sqrt(TD). (Adding 1 to each
variable before natural logarithm transforming was necessary
due to BA and TD values = 0 at the 11 Moscow Mountain plots
lacking trees =212.7 cm dbh; the effect of this was cancelled by
subtracting 1 from the final, back-transformed predictions.)

The 26 predictor variables available for predicting In(BA + 1)
and In(TD + 1) were X, Y, and Z geographic locations obtained
with the GPS at plot centers (3), ALI image pixel statistics (11),
and statistics derived from lidar-derived intensity (4), height
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Table 1. Predictor variables used for multiple linear regression modeling of natural-logarithm-

transformed basal area and tree density.

Predictor variable Description
Geographic
Easting UTM (Zone 11) easting at plot center
Northing UTM (Zone 11) northing at plot center
Elevation Elevation (m) above mean sea level at plot center
Advanced land imager (ALI)
B1,can Mean of 30 m ALI band 1 pixels intersecting plot
B2, can Mean of 30 m ALI band 2 pixels intersecting plot
B3,can Mean of 30 m ALI band 3 pixels intersecting plot
B4, can Mean of 30 m ALI band 4 pixels intersecting plot
B5,can Mean of 30 m ALI band 5 pixels intersecting plot
B6,can Mean of 30 m ALI band 6 pixels intersecting plot
B7 ean Mean of 30 m ALI band 7 pixels intersecting plot
B8, ean Mean of 30 m ALI band 8 pixels intersecting plot
B9 ean Mean of 30 m ALI band 9 pixels intersecting plot
PAN can Mean of 10 m PAN band pixels intersecting plot
PANq4 Standard deviation of 10 m PAN band pixels intersecting plot
Lidar
Intensity
INT,can Mean of 2 m intensity pixels intersecting plot
INT, 4 Standard deviation of 2 m intensity pixels intersecting plot
INT, s Minimum of 2 m intensity pixels intersecting plot
INT,, .« Maximum of 2 m intensity pixels intersecting plot
Height
HT,can Mean of 6 m height pixels intersecting plot
HT 4 Standard deviation of 6 m height pixels intersecting plot
HT,.in Minimum of 6 m height pixels intersecting plot
HT, .« Maximum of 6 m height pixels intersecting plot

Canopy cover

CCrean Mean of 6 m canopy cover pixels intersecting plot

CCyq Standard deviation of 6 m canopy cover pixels intersecting plot
CCpin Minimum of 6 m canopy cover pixels intersecting plot

CChax Maximum of 6 m canopy cover pixels intersecting plot

(4), and canopy cover (4) images (Table 1). Two regression
modeling approaches (stepwise, followed by best subsets) were
employed to objectively choose the best linear models for
predicting BA and TD from this suite of predictors. Stepwise
model selection adds (forward mode) or drops (backward
mode) predictor variables, one at a time, until minimizing the
AIC statistic indicative of relative model fit (Akaike, 1973;
1974). We used the “Im” linear model function in R
(R Development Core Team, 2004) to build the full model, then
subset it using the stepAIC function (available in the MASS
library of R), operating in both forward and backward modes.
Stepwise model selection effectively traces only one path
through the predictor variables, whereas best-subsets
regression exhaustively searches all pathways to choose the
best variable subset for a given number of predictors. Thus a
subset of n predictors selected via the best-subsets approach
usually produces better model statistics than the same number
of predictors selected via the stepwise approach.

Once we had the stepwise model results, we proceeded with
the best-subsets method. For this method we used the
regsubsets function (available in the “leaps” package of R),

130

which selects the best regression subsets through exhaustive
search. The method requires the user to set a maximum number
of variables in a subset model (the argument “nvmax”). We set
this parameter to match the number of variables found in the
stepwise selection. The model statistic used to determine best
subsets was Mallows (1973) Cp statistic, which compares the
error sum of squares for a reduced model to the mean square
error of the full model:

Cp = SSE/MSEfuu - N+ 2p (1)

where SSE is the error sum of squares of the reduced model
with p parameters (including the intercept), MSEy, is the mean
square error of the full model (complete set of p), and N is the
number of samples. A desirable model is indicated if Cp is
approximately equal to p; the combination of predictors that
minimizes Mallows Cp over all possible subsets is considered
the best subset.

To define a reasonable minimum number of predictors for a
model subset, an ANOVA test was performed to compare each
best subset (for a given variable count) to the overall best subset
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Table 2. Multiple linear regression models for predicting natural-logarithm-transformed basal area and tree density from geographic, ALI,

or lidar variable groups.

Method Selected variables R? Adjusted R? Residual SE AIC
Basal area
Geographic Easting, northing, elevation 0.0946 0.0777 31.3400 1140.80
ALI Bl cans B2imeans PAN  cans PAN 4 0.5599 0.5489 0.8540 -47.15
Lidar
All lidar INT, cans Htmeans Htoias Htmins CCreans CCotd 0.8941 0.8901 0.4216 -278.17
Intensity INT jeans INTq, INT, ;1 0.7779 0.7738 0.6048 -161.98
Height HT,eans HT jmax 0.7958 0.7960 0.5744 -180.01
Canopy cover CCreans CCqas CChin 0.7058 0.7003 0.6962 -115.57
Tree density
Geographic Easting, northing, elevation 0.0871 0.0700 368.1000 1953.69
ALI Bl cans B2means B7means B8means BImeans PANmeans PANg4 0.6568 0.6415 1.0390 20.32
Lidar
All lidar INT eans INTggs INT hins CCrcans CComax 0.8698 0.8657 0.6358 —-143.56
Intensity INT jeans INTq, INT, ;0 0.7779 0.7737 0.8252 -59.45
Height HT peans HT max 0.4962 0.4900 1.2390 73.67
Canopy cover CCrcans CCqas CChiin» CCrnax 0.8354 0.8313 0.7126 -106.87

Note: Variable groups were best subsets selected based on Mallows (1973) Cp statistic.

(having the lowest AIC overall). When a significant difference
was found, model subsets having fewer predictor variables
were not considered. In summary, this strategy for defining
maximum and minimum predictor variable counts resulted in a
suite of candidate regression models having comparable AIC
statistics.

For small to medium sample sizes (N/p < 40, as was the case
in our study), there is a non-negligible tendency for the AIC to
be biased towards overfit models (Hurvich and Tsai, 1989).
Therefore we also calculated a corrected AIC statistic, AICc
(Sugiura, 1978), which more severely penalizes the model for
the parameter count:

AICc = AIC + 2p(p + DIN —p — 1) )

where, as before, p is the number of parameters, and N is the
number of samples. Our default choice as the “best” model to
choose for mapping was the model that minimized the AICc
statistic, although other candidate models that differ from the
best model in AIC statistics by <2 are also supported (Burnham
and Anderson, 1998).

Results

Higher R? and adjusted R? statistics, and lower residual error
and AIC indicated better predictive models. The lidar-derived
variables were better predictors of BA and TD than the ALI
variables, which were in turn much better predictors than the
geographic variables (Table 2). The ALI variables explained
more variance in TD than in BA. Lidar height variables were
the best predictors of BA, followed by the intensity variables;
lidar-derived cover variables were the best predictors of TD,
again followed by the intensity variables. Two of three variable
groups derived from lidar (intensity and canopy cover) were
better predictors of BA and TD than the ALI variables, but the
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ALI variables better predicted TD than the lidar height
variables (Table 2).

As would be expected, the full models including all predictor
variables produced the highest R? statistics (Table 3) but were
grossly overfit. The number of variables selected from the full
models via stepwise regression to predict BA and TD was 14
and 15, respectively. Alternative models having the same
number or fewer variables were selected via best-subsets
regression. Table 3 lists the candidate BA and TD models. Each
list is bounded on the top by the corresponding full model and
on the bottom by the model having the fewest parameters, but a
significantly worse fit than the best model (lowest AICc). The
best BA model consisted of 12 predictor variables, and the best
TD model consisted of 10 predictor variables. Tables 4 and §
provide more complete statistics for these selected models,
along with the variable coefficients used to generate maps.

A cross-validation procedure (leave-one-out) was used to
produce 165 independent predictions of natural-logarithm-
transformed BA and TD to compare with the natural-logarithm-
transformed observations (Figures 2a, 2b). The standard
deviation of the cross-validation residuals (BA, 0.3929; TD,
0.6375) was only slightly greater than that of the model
residuals (BA, 0.3583; TD, 0.5910). These independent
predictions were subsequently back-transformed and correlated
against observations on the natural scale (Figures 2c, 2d).
Pearson’s correlations of predictions versus observations of BA
declined from 0.907 to 0.895 for full-model predictions and
cross-validation predictions, respectively. Pearson’s
correlations of predictions versus observations of TD declined
from 0.774 to 0.737 for full-model predictions and cross-
validation predictions, respectively. These small differences in
full-model versus cross-validation model statistics are evidence
for robust models.

Although not visually apparent (Figures 2c, 2d), applying
the inverse natural logarithm transformation to convert the
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Table 4. Parameters, coefficients, and statistics for the model used to map basal area (natural logarithm

transformed).

Parameter Estimate SE t value Pr(>l) Significance
Intercept —4.05x10! 2.04x10! -1.981 4.9407x1072 #
Easting -1.23x107 3.80x10°° -3.244 1.4480x107 ok
Northing 9.67x107° 4.32x107° 2.237 2.6750x1072 #
Elevation 1.04x1073 1.81x10™* 5.713 5.6700x10°% ok
PAN, can -9.18x10™ 3.68x107* —-2.495 1.3675x1072 #
INT ez —2.39x1072 4.99x1073 —4.794 3.8600x107° ok
HT,ean 3.56x1072 1.02x1072 3.492 6.2800x107 ek
HT 4 7.22x1072 1.75x1072 4.126 6.0500x107 ok
HT,.;, 2.22x1072 9.46x1073 2.342 2.0454x1072 *
CCrean 1.74x1072 5.21x1073 3.342 1.0470x1073 ok
CCyy 4.90x1072 1.56x1072 3.144 2.0060x1073 ok
CChin 8.45x1073 4.98x1073 1.695 9.2107x1072 .
CCoax ~1.46x1072 6.06x1073 -2.407 1.7288x102 *

Note: Regression sum of squares = 244.138 at 12 degrees of freedom (df); error sum of squares = 21.049 at 152 df; mean
square error = 0.1385; residual standard error = 0.3721; multiple R? = 0.9206; adjusted R? = 0.9144; F statistic = 146.9 on 12 and
152 df (p < 2.20x107'%). Significance levels are as follows: ***, p < 0.001; **, p < 0.01; *, p < 0.05; ., p < 0.1.

Table 5. Parameters, coefficients, and statistics for the model used to map tree density (natural logarithm

transformed).

Parameter Estimate SE t value Pr(>l) Significance
Intercept ~7.15x10! 3.15x10! —2.266 2.4850x1072 *
Easting —1.42x107 6.00x107° -2.360 1.9550x102 *
Northing 1.63x107 6.63x107° 2.462 1.4940x1072 &
Elevation 5.62x107* 2.83x107* 1.987 4.8700x1072 *
BS5,ean 1.24x1073 4.31x107* 2.874 4.6200x1073 %
B7 mean —-3.57x1073 1.45x1073 —2.461 1.5000x1072

B9 nean 2.51x1072 9.63x1073 2.607 1.0030x1072

PAN, .o -1.88x1073 6.72x107* —2.797 5.8200x1073 ok
INT ean -3.54x1072 4.88x107 -7.261 1.7800x107!"! ok
INT 4.12x1072 1.37x1072 3.003 3.1200x1073 ok
cC 3.49x1072 3.88x107 8.992 8.3600x107'° ok

max

Note: Regression sum of squares = 436.288 at 10 degrees of freedom (df); error sum of squares = 57.279 at 154 df; mean
square error = 0.3719; residual standard error = 0.6099; multiple R?> = 0.8839; adjusted R?> = 0.8764; F statistic = 117.3 on 10 and
154 df (p < 2.20x107'%). Significance levels are as follows: **%, p < 0.001; **, p < 0.01; *, p < 0.05.

natural-logarithm-normal predictions back to the natural scale
introduces a negative bias that increases in proportion to the
effect of the transformation (Moeur, 1981), i.e., the larger
values are disproportionately affected. This bias can be
approximated by adding one half of the residual variance to the
prediction on the natural logarithm scale. On the natural scale,
this amounts to multiplying the prediction by exp(0.5 x MSE),
where MSE is the mean square error of the residuals
(Baskerville, 1972). Thus the MSEs from the BA (0.1385) and
TD (0.3719) models (Tables 4, 5) were substituted into this
equation to calculate correction factors of 1.0717 (BA) and
1.2044 (TD); when multiplied with the back-transformed
predictions, these correction factors slightly overestimated the
mean BA by 2.1 m%*ha and underestimated the mean TD by
19.2 trees/ha (Table 6). In general, the distribution of
predictions better matched the distribution of observations after
bias correction than before bias correction (Table 6).

The chosen BA and TD models (Tables 4, 5) were applied to
the image layers selected as predictor variables by the models.

© 2006 CASI

The output layers were then back-transformed to the natural
scale, the value 1 was subtracted from each layer (to cancel
the effect of adding 1 to BA and TD in the original
transformations), and the calculated correction factors of
1.0717 (BA) and 1.2044 (TD) were applied. The BA and TD
layers for the St. Joe Woodlands appear greener than those for
Moscow Mountain, since much of the periphery of the latter is
agricultural and because of the regional biomass and
productivity gradient that spans both study areas (Figure 3).

Discussion

Applying the natural logarithm transform to the BA and TD
response variables used in this analysis greatly improved the
performance of the predictive models (Hudak et al., 2005).
Generalized linear models (GLM), which require no
transformation of a skewed response variable, could also be
applied appropriately as an alternative. Using GLM would
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Figure 2. Scatterplots of cross-validation predictions versus observations (N = 165) for
natural-logarithm-transformed basal area (a) and tree density (b) and natural-scale basal area
(c) and tree density (d). The two highest values in (c) are the two old-growth plots. The lines
indicate 1:1 relationships. A, Moscow Mountain plots; +, St. Joe Woodlands plots.

Table 6. Summary statistics of observed and predicted basal area (m%*ha) and tree density (trees/ha) before and after bias correction for

the inverse natural logarithm transformation.

First Third

Min. quartile Median Mean quartile Max.
Basal area
Observations 0 12.04 30.24 36.39 55.81 255.40
Predictions after back-transformation -0.1358 11.87 28.70 35.92 52.97 241.70
Predictions corrected for transformation bias -0.1455 12.72 30.75 38.49 56.77 259.00
Tree density
Observations 0 197.7 3954 492.0 679.5 1594.0
Predictions after back-transformation -0.1091 193.3 419.5 463.3 700.8 1388.0
Predictions corrected for transformation bias -0.1114 197.3 428.1 472.8 715.1 1417.0

circumvent the need to transform and subsequently correct for a
transformation bias, but in our case we believe that we have
adequately adjusted for this bias (Table 6). By generating
predictions on a natural scale directly, GLM would facilitate
model cross-validation, evaluation, and real-world interpretation
(Figure 2). Since we are casting this analysis as a demonstration
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study, we felt it was more important to use the much more
widely familiar OLS regression.

It is apparent that raw lidar datasets contain much useful
information besides height measurements. The intensity values,
in particular, proved surprisingly useful in this analysis, with
mean intensity being the most consistent highly significant
predictor among the candidate models (Table 3). This was
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(a) Basal Area (m?/ ha)
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Figure 3. Predicted basal area (a) and tree density (b) maps for Moscow Mountain and the St.
Joe Woodlands. Note that the western edges of the maps are cropped (compare to Figure 1)
because these areas lie outside of the ALI image swaths. The parallel rows of white dots near
the southeastern corners of the tree density maps are due to a dead detector (http://eol.
usgs.gov/userGuide/ali_process.html) in the band 7 image input into the tree density model.
Other white areas in the maps are a consequence of lidar data dropouts.

informative, as intensity data typically have not been used in
vegetation modeling and mapping. Their utility needs to be
better evaluated and exploited. Our simple measure of canopy
cover explained more variation in BA and TD than the ALI
image data (Tables 2, 3). Calculating the percentage of
nonground returns within a cell is only possible, however, if
using the filtered point data, which are not typically provided
by lidar vendors. We recommend obtaining the raw lidar data
from the vendor and then filtering these data with the PCF

© 2006 CASI

model to differentiate ground from nonground returns (http://
forest.moscowfsl.wsu.edu/gems/lidar).

The lidar-derived predictor variables proved more useful
than the ALI variables (Table 2). The addition of ALI variables
to the models did not improve them much over models based on
lidar variables alone. The lidar-derived intensity and canopy
cover variables are evidently more sensitive to canopy
structural variation at the plot scale of sampling. That the 10 m
ALI panchromatic band was the ALI predictor variable most

135



Vol. 32, No. 2, April/avril 2006

consistently selected among the candidate models supports this
argument (Table 3). The 0.09 ha area of a 30 m pixel is slightly
larger than the area of our field plots, meaning several 10 m
image pixels will factor into means calculated within plots, and
a plot could intersect as few as one 30 m pixel. This suggests
that relationships between plot and image data would worsen
with coarser resolution image data.

The two response variables chosen for this analysis were
purely structural. The lidar canopy height variables were more
influential in predicting BA than TD, and the lidar canopy
cover variables were more influential in predicting TD than
BA. This was expected, given that larger trees are also taller,
where height measures will be more sensitive, whereas TD
varies more in the horizontal dimension, where cover measures
will be more sensitive. The ALI image, which here proved not
so helpful for mapping canopy structure, could be more useful
for mapping canopy composition or perhaps habitat type,
which varies more in the spectral domain than canopy structure.
Inclusion of other multispectral images (e.g., Landsat) from
various times during the growing season, by capturing
phenological variability, might prove profitable for mapping
composition. Moreover, aspect is an important determinant of
forest structure and composition in this mountainous region,
making a topographic-derived variable such as solar insolation
potentially useful.

Minimizing the number of parameters was an important
consideration, but not our only consideration, in choosing the
best models for mapping. For predicting each response
variable, we also sought a model with predictor variables
similar to those of the other candidate models. For instance, we
were less comfortable with the nine-variable TD model than the
selected 10-variable model because the former was the only
one among 10 candidate models to drop all of the ALI
multispectral bands. Similarly, the eight- and seven-variable
models dropped the easting and northing variables, which we
preferred to include given our prior knowledge that a
southwest—northeast productivity gradient exists across the
study areas, which affects canopy structure. The same can be
said for elevation and was our justification for including X, Y,
and Z geographic location predictors in the first place.
Consistency and objectivity were other considerations. Since
the 10-variable TD model that we preferred had the lowest SE
and AICc values among the other candidate TD models, we
applied the same criteria to choose the 12-variable BA model
over the 11-variable model, even though an ANOVA test found
a less than significant difference between them (p = 0.0921).
Differences in AIC statistics of less than two generally indicate
insignificant differences between candidate models (Burnham
and Anderson, 1998). We argue that in such cases other
statistics (e.g., SE), or user confidence that the particular
predictor variables selected are ecologically meaningful and
interpretable, should be considered to choose the best model.

We wanted to model and map BA and TD across both study
areas simultaneously because together they span a larger
measure of the regional environmental gradient than either
study area can alone. We felt justified in doing so because the
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landscape sampling design, tree measurements, lidar surveys,
and ALI acquisitions were all accomplished in the same
manner, and at very nearly the same time. The largest
discrepancy was that most of the Moscow Mountain field plots
were characterized in the summer of 2003, whereas the
majority of St. Joe Woodlands field plots were characterized in
the summer of 2004; however, a 1 year difference in growth
increment is a negligible source of error relative to the field and
lidar measurement errors. Sampling an adequate number of
forest plots simply takes time but is essential for building
robust empirical relationships with remotely sensed data. That
we were successful over forests of such diverse structure and
composition and in complex terrain suggests great potential for
integrating multiple types of remote sensing data with field
data to more efficiently map forest structure and composition
attributes with sufficient accuracy.

The Idaho Panhandle National Forest consists of many
public land parcels interspersed with many private lands. This
common reality of multiple jurisdictions makes cooperation
between land owners the most sensible strategy for regional-
scale lidar acquisitions, as has been exemplified by the Puget
Sound Lidar Consortium (http://duff.geology.washington.edu/
data/raster/lidar/). Until such broader scale cooperative
ventures become more commonplace, forest managers with the
resources to survey their spatially disconnected lands need not
be deterred from acquiring disjunct lidar datasets (as costs are
likely to dictate). This study, albeit at a smaller scale,
corroborates the work of Lefsky et al. (2002), who found that a
single regression equation based on lidar predictor variables
sufficed to model aboveground biomass across three North
American biomes. Further research is warranted to determine if
lidar data can robustly predict forest structure attributes of
interest across multiple scales, e.g., from individual tree-level
crown volume to stand-level forest biomass inventory to global-
level carbon assessment.

Conclusion

Linear multiple regression models using image and lidar-
derived predictor variables explained ~90% of variance in basal
area and tree density, two fundamental forest structure
attributes that have been challenging to model and map from
multispectral satellite imagery alone. Lidar data far surpass
moderate-resolution image data in their ability to capture forest
structure variability. Satellite image data are less sensitive to
attributes relating to canopy height (e.g., basal area) than
attributes relating to canopy cover (e.g., tree density). Lidar
intensity values, and a simple measure of vegetation cover
calculated from the ratio of nonground to total returns, may be
as informative as the height measurements themselves for
modeling basal area, tree density, and other stand-level
structure attributes of interest. This analysis adds to the
growing body of work indicating the potential of lidar to
improve forest inventory and analysis. It further illustrates the
value of integration of multiple types of remote sensing data
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with field data to efficiently, objectively, and accurately
characterize forests to support forest science and management.
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