University of Nebraska - Lincoln Digital Commons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers

Computer Science and Engineering, Department of

2011

Reformulating R(*,m)C with Tree Decomposition

Shant Karakashian University of Nebraska - Lincoln, shantk@cse.unl.edu

Robert J. Woodward University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Berthe Y. Choueiry University of Nebraska - Lincoln, choueiry@cse.unl.edu

 $Follow\ this\ and\ additional\ works\ at:\ http://digital commons.unl.edu/cseconfwork$

Part of the Computer Sciences Commons

Karakashian, Shant; Woodward, Robert J.; and Choueiry, Berthe Y., "Reformulating R(*,m)C with Tree Decomposition" (2011). CSE Conference and Workshop Papers. 187.

http://digitalcommons.unl.edu/cseconfwork/187

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Reformulating R(*,m)C with Tree Decomposition

Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry

Constraint Systems Laboratory University of Nebraska-Lincoln

Acknowledgements

- Experiments conducted at UNL's Holland Computing Center
- NSF Grant No. RI-111795

Outline

- Introduction
- R(*,m)C Property & Algorithm
- Exploit Tree Decomposition to
 - Avoid useless update & reduce propagation effort
 - → Update queue: PROCESSQ → PROCESSMQ
 - Synthesize & add new constraints to improve propagation
 - \hookrightarrow Property enforced: R(*,m)C \rightsquigarrow T-R(*,m,z)C
- Experimental Results
- Conclusion

Constraint Satisfaction Problem

- CSP
 - Variables (\mathcal{V}), domains
 - Constraints: relations (\mathcal{R}), scope
- Representation
 - Hypergraph
 - Primal graph
 - Dual graph
- Solved with
 - Search
 - Enforcing consistency
- Warning
 - Consistency property vs. algorithms

Tree Decomposition

- Tree: Vertices/clusters, edges
- Each cluster is labeled with
 - A set of variables⊆ 𝒯
 - A set of relations $\subseteq \mathbb{Z}$
- Two conditions
 - 1. For each relation R, \exists cluster c_i
 - R appears c_i
 - Scope(R) is also in c_i
 - 2. Every variable
 - Induces a connected subtree
- Separators
 - Variables & relations common to 2 adjacent clusters
 - channel communications between clusters

R(*,m)C Property

[Karakashian+ 10]

- A CSP is R(*,m)C iff
 - Every tuple in a relation can be extended to the variables in the scope of any (m-1) other relations in an assignment satisfying all m relations simultaneously

ProcessQ: Algorithm for R(*,m)C

 Φ: combination of m connected relations in the dual graph

$$\Phi = \{ \omega_1 = \{R_1, R_2, ..., R_m\}, \omega_2, \omega_3, ..., \omega_k \}$$

Q propagation queue

$$Q = \{\langle R_1, \omega_1 \rangle, \langle R_1, \omega_2 \rangle, \langle R_1, \omega_3 \rangle, \dots, \langle R_n, \omega_{k-1} \rangle, \langle R_n, \omega_k \rangle\}$$

- For each $\langle R_i, \omega_i \rangle$ in Q, ProcessQ
 - Deletes from R_i tuples that cannot extended to relations in ω_i
 - As some tuples of relations $R_x \in \omega_j$ may lose support, it requeues $\{\langle R_x, \omega_y \rangle\}$ for every threatened relation

ProcessQ: Animation

ProcessMQ: Intelligent update scheduling

• Cluster c_i has a local queue $Q(c_i) = \{\langle R_i, \omega \rangle\}$ for relations R_i in cluster but not in parent

Using the tree decomposition

- As an ordering heuristic for checking consistency of $\langle R_i, \omega \rangle$
- Repeat "leaves up to root, down to leaves," until quiescence
- Update relations in only local queue
- Example: R₃ is updated only when root is reached
- Advantage fewer updates, same filtering
 - In previous example, R₃ is updated once although it appears in 3 clusters

T-R(*,m,z)C

[Rollon+10]

R₁AD ED R₂

R₂ABC BCE R₃

Primal graph

Dual graph

Tree decomposition

Adding R₅

T-R(*,m,z)C Strictly Stronger than R(*,m)C

Let A, B, C, D and E be Boolean variables

R_1	R_2	R_3	R_4		
A D	АВС	BCE	E D		
00	000	000	0 0		
11	111	111	11		

Assignment A=0 & E=1 is valid Does not violate R(*,2)C

Assignment A=0 & E = 1 is **inconsistent**

Experimental Results

- Experiments for finding all solutions with BTD maintaining wR(*,best(2,3,4))C and T-wR(*,best(2,3,4), best(5,7,9))
- Results shown demonstrate the benefits of ProcessMQ & T-wR(*,m,z)C

Benchmark	#ins	#vars	tw		ProcessQ wR(*,best)C	ProcessMQ wR(*,best)C		ProcessQ T-wR(*,b,b)C	
aim-200	24	200	104.92	#C	17		17		<u>22</u>
				t _{avg}	246.35		252.48		<u>238.99</u>
				t_{max}	3,352.54	,	3,452.98		<u>1,540.94</u>
ogdVg	59	134	85	#C	15		15		15
				t _{avg}	283.27		<u>242.06</u>		266.74
				t_{max}	1,834.11	· ·	<u>1,508.27</u>		1,720.97
rand-3-20-20	50	20	13	#C	13		<u>14</u>		_
				t_{avg}	2,191.56		<u>1,949.87</u>		_
1/23/2012				t _{max}	3,481.04		<u>3,145.77</u>		¹¹ -

Conclusions

Contributions

- Reformulated R(*,m)C algorithm
- New relational consistency property T-R(*,m,z)C
- Experimental analysis
- Future work
 - Study impact of choice of parameters z, m
 - Develop strategies for dynamically choosing z, m
 as a function of the size of clusters & separators