Reformulating $R(*,m)C$ with Tree Decomposition

Shant Karakashian
University of Nebraska - Lincoln, shantk@cse.unl.edu

Robert J. Woodward
University of Nebraska - Lincoln, rwoodwar@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska - Lincoln, choueiry@cse.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork

Part of the [Computer Sciences Commons](http://digitalcommons.unl.edu/cseconfwork)
Reformulating $R(\ast,m)C$ with Tree Decomposition

Shant Karakashian, Robert J. Woodward, Berthe Y. Choueiry

Constraint Systems Laboratory
University of Nebraska-Lincoln

Acknowledgements
• Experiments conducted at UNL’s Holland Computing Center
• NSF Grant No. RI-111795
Outline

• Introduction
• $R(\ast,m)C$ Property & Algorithm
• Exploit Tree Decomposition to
 – Avoid useless update & reduce propagation effort
 ↪ Update queue: $\text{PROCESSQ} \xrightarrow{\text{MQ}} \text{PROCESSMQ}$
 ↪ The two algorithms yield the same filtering
 – Synthesize & add new constraints to improve propagation
 ↪ Property enforced: $R(\ast,m)C \xrightarrow{\text{T}} T-R(\ast,m,z)C$
 ↪ The same algorithm yields stronger filtering

• Experimental Results
• Conclusion
Constraint Satisfaction Problem

- CSP
 - Variables (\mathcal{V}), domains
 - Constraints: relations (\mathcal{R}), scope
- Representation
 - Hypergraph
 - Primal graph
 - Dual graph
- Solved with
 - Search
 - Enforcing consistency
- Warning
 - Consistency property vs. algorithms
Tree Decomposition

- **Tree**: Vertices/clusters, edges
- Each cluster is labeled with
 - A set of variables \(\subseteq V \)
 - A set of relations \(\subseteq R \)
- **Two conditions**
 1. For each relation \(R \), \(\exists \) cluster \(c_i \)
 - \(R \) appears \(c_i \)
 - Scope(\(R \)) is also in \(c_i \)
 2. Every variable
 - Induces a connected subtree
- **Separators**
 - Variables & relations common to 2 adjacent clusters
 - channel communications between clusters
A CSP is $R(*,m)C$ iff
- Every *tuple* in a relation can be extended to the variables in the scope of any $(m-1)$ other relations in an assignment satisfying all m relations simultaneously.
ProcessQ: Algorithm for R(*,m)C

• Φ: combination of \(m \) connected relations in the dual graph

\[
Φ = \{ \omega_1=R_1,R_2,...,R_m, \omega_2, \omega_3,..., \omega_k \}
\]

• Q propagation queue

\[
Q=\{\langle R_1,\omega_1 \rangle,\langle R_1,\omega_2 \rangle,\langle R_1,\omega_3 \rangle,...,\langle R_n,\omega_{k-1} \rangle,\langle R_n,\omega_k \rangle\}
\]

• For each \(\langle R_i,\omega_j \rangle \) in Q, ProcessQ
 – Deletes from \(R_i \) tuples that cannot extended to relations in \(\omega_j \)
 – As some tuples of relations \(R_x \in \omega_j \) may lose support, it requeues \(\{\langle R_x,\omega_y \rangle\} \) for every threatened relation
For each τ in R

- Assign τ as a value for R
- Solve P_ω with forward checking
- Extract $\langle R, \omega \rangle$ from Q
- Define CSP P_ω
- For each τ in R
 - Assign τ as a value for R
 - Solve P_ω with forward checking
 - If no solution found: delete τ
 - Add $\langle R', \omega' \rangle$ to Q: $R_i \neq R'$, $R_i \in \omega'$ and $R' \in \omega'$

Process Q: Animation

- If no solution found: delete τ
- Add $\langle R', \omega' \rangle$ to Q: $R_i \neq R'$, $R_i \in \omega'$ and $R' \in \omega'$
ProcessMQ: Intelligent update scheduling

- Cluster c_i has a local queue $Q(c_i)=\{\langle R_i, \omega \rangle\}$ for relations R_i in cluster but not in parent
- Using the tree decomposition
 - As an ordering heuristic for checking consistency of $\langle R_i, \omega \rangle$
 - Repeat “leaves up to root, down to leaves,” until quiescence
 - Update relations in only local queue
 - Example: R_3 is updated only when root is reached
- Advantage fewer updates, same filtering
 - In previous example, R_3 is updated once although it appears in 3 clusters
$T-R(\ast,m,z)C$

Hypergraph

Primal graph

Dual graph

Tree decomposition

Adding R_5

[Rollon+ 10]
Let A, B, C, D and E be Boolean variables

<table>
<thead>
<tr>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Assignment A=0 & E=1 is valid
Does not violate R(*,2)C

Assignment A=0 & E = 1 is **inconsistent**
Experimental Results

- Experiments for finding all solutions with BTD maintaining \(\text{wR}(*,\text{best}(2,3,4))\text{C}\) and \(\text{T-wR}(*,\text{best}(2,3,4), \text{best}(5,7,9))\)
- Results shown demonstrate the benefits of \(\text{ProcessMQ} \& \text{T-wR}(*,m,z)\text{C}\)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#ins</th>
<th>#vars</th>
<th>(\text{tw})</th>
<th>(\text{ProcessQ wR}(*,\text{best})\text{C})</th>
<th>(\text{ProcessMQ wR}(*,\text{best})\text{C})</th>
<th>(\text{ProcessQ T-wR}(*,b,b)\text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>aim-200</td>
<td>24</td>
<td>200</td>
<td>104.92 #C</td>
<td>17</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{avg}}) 246.35</td>
<td>252.48</td>
<td>238.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{max}}) 3,352.54</td>
<td>3,452.98</td>
<td>1,540.94</td>
<td></td>
</tr>
<tr>
<td>ogdVg</td>
<td>59</td>
<td>134</td>
<td>85 #C</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{avg}}) 283.27</td>
<td>242.06</td>
<td>266.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{max}}) 1,834.11</td>
<td>1,508.27</td>
<td>1,720.97</td>
<td></td>
</tr>
<tr>
<td>rand-3-20-20</td>
<td>50</td>
<td>20</td>
<td>13 #C</td>
<td>13</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{avg}}) 2,191.56</td>
<td>1,949.87</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(t_{\text{max}}) 3,481.04</td>
<td>3,145.77</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Contributions
 – Reformulated R(*,\(m\))C algorithm
 – New relational consistency property T-R(*,\(m,z\))C
 – Experimental analysis

• Future work
 – Study impact of choice of parameters \(z, m\)
 – Develop strategies for dynamically choosing \(z, m\) as a function of the size of clusters & separators