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ABSTRACT 
 
Multispectral satellite imagery are appealing for their relatively low cost, and have demonstrated utility at the 
landscape level, but are typically limited at the stand level by coarse resolution and insensitivity to variation in 
vertical canopy structure.  In contrast, lidar data are less affected by these difficulties, and provide high structural 
detail, but are less available due to their comparatively high cost.  Two forest structure attributes measured at the 
plot level, basal area and trees per hectare, were predicted using stepwise multiple regression on 40 predictor 
variables derived from discrete-return lidar data (2 m post spacing), Advanced Land Imager (ALI) multispectral (30 
m resolution) and panchromatic (10 m resolution) images, and geographic X,Y,Z location.  Square root and natural 
logarithm transforms were applied to normalize the positively skewed response variables.  Stepwise variable 
selection used the AIC statistic to guard against overfitting.  Models predicting the transformed variables explained 
80-93% of variance, based on 20-22 predictor variables.  Lidar-derived variables had the most explanatory power; 
especially height and intensity variables for predicting plot basal area, and cover and intensity variables for 
predicting tree density.  The ALI variables were less useful for predicting these attributes of forest structure, but 
could prove more helpful for predicting attributes of forest composition. 
 
Keywords:  data integration, forest management, northern Idaho, stepwise regression 
 
1  INTRODUCTION 
 
Image data are sensitive to structural variation between forest stands in the horizontal plane but are relatively 
insensitive to canopy height variation in the vertical plane.  On the other hand, light detection and ranging (lidar) 
data are actual measurements of canopy height relative to an estimated ground height, providing detailed vertical 
structure information.  Recognizing that image and lidar data provide fundamentally different views of forest 
structure, and that no single remote sensor can provide all of the information useful and relevant to forest managers, 
the integration of image and lidar data for the purpose of predicting, mapping, managing and monitoring forest 
structure attributes is a logical and worthwhile goal [1]. 
 

Landsat has become the standard satellite imagery relied upon by many forest ecologists and managers [2].  
Sensor age and degradation make the future availability and quality of Landsat 5 Thematic Mapper (TM) data 
increasingly suspect, while Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has operated with reduced utility 
since a scan line corrector anomoly began on 31 May 2003 (http://landsat.usgs.gov/programnews.html).  
Considering the potential imminent failure of both Landsat 5 and 7, the only Landsat sensors still operating, there is 
justifiable concern for maintaining Landsat data coverage.  The Advanced Land Imager (ALI) satellite sensor was 
designed in part to provide future data continuity with the Landsat record (http://eo1.usgs.gov/ali.php).  Although 
the ALI swath width (37 km) is more restricted than that of Landsat (185 km), and ALI acquisitions must be 
scheduled in advance, the ALI sensor is pointable.  The ALI measures solar irradiance in 9 multispectral bands 
between 0.433 and and 2.35 µm, providing 3 more multispectral bands than Landsat TM or ETM+.  The spatial 
resolution of the panchromatic (PAN) band is 10 m, compared to the 15 m resolution of the ETM+ panchromatic 
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band.  Furthermore, ALI data are 16-bit rather than 8-bit, offering greater dynamic range.  A comparative study [3] 
found no disadvantages of the ALI sensor relative to the TM or ETM+ sensors, and recommended the ALI sensor 
for a potential Landsat 8 payload. 
 

Numerous studies have demonstrated the utility of lidar for characterizing various attributes of forest canopy 
structure from discrete-return lidar data [4],[5],[6].  Enthusiasm for lidar-based forest inventory is driving expansion 
of the commercial lidar industry [7].  As the costs of managing forested landscapes increase in a competitive 
environment, commercial timber and paper companies are increasingly turning to lidar for potentially more accurate 
and efficient inventory and assessment of their forest resources. 
 

Many have recognized the potential advantages of remote sensing data integration [1],[7],[8].  One study 
compared the utility of several remotely sensed datasets for forest inventory, monitoring and mapping in high-
biomass forests of western Oregon [8].  Another fused lidar and multispectral image data to improve estimates of 
individual tree height [9].  Rather than evaluate many remote sensing products, this analysis used single acquisitions 
of ALI satellite imagery and commercial discrete-return lidar data, much like a future commercial forester with 
limited time and resources might.  Also, rather than identify individual trees, this analysis focused on two stand-
level attributes: plot basal area and tree density.  Finally, rather than “fuse” remotely sensed data layers, or test a 
variety of data integration methods, this analysis focused on probably the simplest and most widely applied data 
“integration” method: stepwise multiple regression.  In that sense, the “data integration” conducted via stepwise 
multiple regression is purely statistical, but provides the most accessible and objective means of comparing and 
selecting remotely sensed data layers for predicting attributes of interest to operational forest managers. 
 
2  METHODS 
 
2.1  Study Area 
 
The Moscow Mountain and St. Joe Woodlands study areas together comprise >88,000 ha in north-central Idaho. 
Both areas are topographically diverse, with the higher elevations and steeper slopes occurring in the St. Joe 
Woodlands.  Windblown volcanic ash from the Cascade Mountains acts as an important soil component in both 
areas.  Conifer species range along a moisture gradient from Pinus ponderosa and Pseudotsuga menziesii at the drier 
end, more commonly found on southern aspects in the Moscow Mountain area, to Thuja plicata and Tsuga 
heterophylla at the wetter end, more commonly found on northern aspects especially in the St. Joe Woodlands.  
Other important species include Abies grandis, Abies lasiocarpa, Larix occidentalis, Picea engelmannii, Pinus 
contorta, and Pinus monticola.  These forests are actively managed, with most having been logged at least once, and 
very little never logged.  Industry partners Potlatch, Inc. and Bennett Lumber Products, Inc. are the principal land 
owners of Moscow Mountain and the St. Joe Woodlands, respectively. 
 
2.2 Field Sampling 
 
Field sites were selected in each study area using a two-stage stratified design, with the first stage based on 3 
elevation and 3 solor insolation classes generated from a 30 m USGS DEM, then crossed to produce 9 strata.  Solar 
insolation, which incorporates into a single variable the important biophysical drivers of slope and aspect, was 
calculated using Solar Analyst [10].  The second stage assiged 9 leaf area index (LAI) classes into each of the 9 
strata, where LAI was indicated by a mid-infrared corrected Normalized Difference Vegetation Index (NDVIc) 
[11],[12] calculated from August 2002 Landsat ETM+ multispectral imagery.  Landsat pixels spanning the LAI 
gradient within each strata were then systematically selected, which resulted in 81 target plots distributed across 
each study area in a spatially random pattern.  These target plots were loaded as waypoints into a Global Positioning 
System (GPS).  Once navigated to in the field, plot centers were geolocated using the GPS by logging a minimum of 
150 points; these were later differentially corrected upon returning from the field and then averaged to get a final 3-
D point position.  The sizes of the fixed-radius plots were 0.04 ha (1/10 acre) at Moscow Mountain and 0.08 ha (1/5 
acre) at the St. Joe Woodlands.  Within each plot, the diameter at breast height (dbh) of all trees >12.7 cm (5 in.) 
was measured.  Eleven of the plots on Moscow Mountain did not have trees >12.7 cm dbh but were included in this 
analysis.  In addition, two supplementary plots were sampled to characterize old-growth stands (one in each study 
area), which because of their rarity were not selected through the stratification process, but were considered 
important for sampling the upper end of the vegetation biomass gradient, and nonetheless interesting to characterize 



 

from a research or management perspective.  Although the two old-growth stands were necessarily subjectively 
selected, the plot centers within each stand were randomly located. 
 
2.3  Image Processing 
 
ALI data were acquired 1 October 2004 for Moscow Mountain from an overhead pass, and 3 October 2004 for the 
St. Joe Woodlands from an east path looking west.  The Level 1R product was purchased, which was radiometrically 
but not geometrically corrected (http://eo1.usgs.gov/userGuide/ali_process.html).  Both the single-band 
panchromatic and nine-band multispectral images were delivered as four separate image strips, which were 
mosaicked in ENVI following online instructions (http://eo1.usgs.gov/faq.php?id=31).  The seamless mosaicked 
images were then coregistered in Imagine to an orthorectified Landsat ETM+ panchromatic image base (26 Aug 
1999, Path 42 / Row 27), using image tie-points (ITPs) automatically generated using an automated, area-based 
correlation algorithm coded in IDL [13].  For Moscow Mountain, cumulative root mean square (RMS) errors were 
1.9 m (N = 202 ITPs) for the panchromatic band and 8.5 m (N = 78 ITPs) for the multispectral band; for the St. Joe 
Woodlands, cumulative RMS errors were 5.0 m (N = 82 ITPs) for the panchromatic band and 3.6 m (N = 106 ITPs) 
for the multispectral band.  The georectified images were then converted to ArcInfo GRIDs.  Textural images were 
generated from the panchromatic images using the FOCALSTD function with a 3x3 filter window.  Simple Ratio 
(SR = band 5 / band 4), Green Red Vegetation Index (GRVI = (band 3 – band 4) / (band 3 + band 4)), and 
Normalized Difference Vegetation Index (NDVI = (band 5 – band 4) / (band 5 + band 4)) were generated from the 
multispectral images.  The pixel value at the center point of each plot was extracted from the ten raw ALI bands and 
four derived indices. 
 
2.4  Lidar Processing 
 
Lidar data were acquired in July, August or September 2003 for Moscow Mountain (32,708 ha) and the St. Joe 
Woodlands (55,684 ha).  Raw X,Y,Z positions were delivered as ASCII files corresponding to each flight line.  To 
identify ground returns, a curvature thresholding approach termed “virtual deforestation” (VDF), which iteratively 
identifies and removes vegetation returns until only ground returns remain, was used [14].  This VDF technique was 
coded in ArcInfo Macro Language (AML) and improved upon by incorporating variable window sizes into the 
procedure (Evans and Hudak in prep).  Subsequent interpolation of these ground returns using bicubic splines 
produced an accurate bare earth digital elevation model (DEM) at a resolution matching the post spacing of the lidar 
survey (2 m).  The DEM was then simply subtracted from the raw height returns to calculate canopy height for all 
lidar points sampled.  At a cell size of 6 m, ArcInfo GRIDs of canopy height, cover, and intensity were generated 
across both landscapes.  Canopy cover was calculated as the proportion of canopy returns to total (ground + canopy) 
returns within each 6 m cell.  These grids were used to calculate minimum, maximum, mean, standard deviation and 
sum statistics for canopy height, cover, and intensity within each plot footprint, using the ZONALSTATS function 
in GRID.  In addition within each plot footprint, the minimum, maximum, mean, 25th, 50th (median), 75th 
percentiles, and interquantile range of canopy height were calculated from the point canopy height data >6 cm 
(essentially excluding from the calculation the ground returns within the vertical estimation error of ground height in 
the DEM).  Percent canopy cover was also calculated from the point data within each plot footprint, again as the 
ratio of canopy to total returns. 
 
2.5  Statistical Analysis 
 
The 40 predictor variables (x’s) used in this analysis consisted of 12 lidar-derived canopy height variables, 6 lidar-
derived cover variables, 5 lidar intensity variables, 14 ALI-derived variables, and geographic X,Y,Z location of the 
plot centers.  The two response variables (y’s) of interest were plot basal area (Plot_BA; m2/ha) and tree density 
(Plot_TPH; trees/ha).  Stepwise regression was performed using the “step” function of the “stats” package in R.  
Variable selection was based on the Akaike Information Criterion (AIC) statistic [15] to guard against overfitting. 
 
3  RESULTS 
 
Because both response variables were positively skewed, square root (SQRT) and natural logarithm (LN) transforms 
were applied.  The SQRT transform did a better job of normalizing the distributions than LN, which overcorrected 
and caused some negative skew (Figure 1). 



 

 
Figure 1.  Histograms of untransformed, square root (SQRT) transformed, and natural logarithm (LN) transformed plot basal 
area (Plot_BA; m2/ha) and tree density (Plot_TPH; trees/ha) observed on all plots (N = 165).  The two rightmost columns in the 
top row of Plot_BA histograms are the two supplementary old-growth plots. 
 

Model fits were better for plot basal area than for tree density.  The SQRT and LN transformed response 
variables produced much better model fits (higher R2 and Adjusted R2; lower SE and AIC) than the untransformed 
response variables, with the LN transform producing the best fits, for both plot basal area and tree density.  Because 
the SQRT and LN transforms so markedly improved the models, only these were broken down into specific 
predictor variable groupings (Table 1).  Models based on just the geographic variables proved the worst predictors; 
models based on just the lidar variables were the best predictors; models based on just the ALI predictors were 
intermediate predictors.  ALI variables were better predictors of tree density than plot basal area.  Lidar height 
variables were the best predictors of plot basal area, followed by the intensity variables, while lidar-derived cover 
variables were the best predictors of tree density, again followed by the intensity variables.  Models using lidar and 
ALI predictor variables were not much improved over models using just lidar variables. 
 

The SQRT and LN transforms reduced heteroskedasticity in the response variables, as indicated by the more 
random distribution of residuals (Figure 2).  In the case of tree density, the LN tranformation overly skewed the 
predictions towards the higher values, producing a gap between the forested (N = 154) and nonforested (N = 11) 
plots.  Predicted values from the SQRT and LN transformed full models were backtranformed, and then the 
observed values regressed on the predicted values, to quantify the bias introduced by the transformations, as 
indicated by the slope (b) of the simple linear model with the intercept forced to zero.  Compared to the 
untransformed full model, which is perfectly unbiased (b = 1), the SQRT transform introduced less bias (b = 1.029) 
than the LN transform (b = 0.956) for predicting plot basal area.  For tree density, the SQRT transform introduced 
slightly more bias (b = 1.048) than the LN transform (b = 1.021). 

 
Summary statistics from the full models revealed an underprediction problem at the extremes of the distribution 

when no transformation was applied (Table 2).  The LN tranform full model did the best job of predicting the higher 
plot basal area and tree density values, the 25th, 50th, and 75th quantile statistics for tree density, and the median and 
mean for plot basal area.  The SQRT transform full model did the best job of predicting the 25th and 75th quantiles 
for plot basal area. 
 



 

Table 1.  Stepwise regression results for predicting A) plot basal area (Plot_BA; m2/ha), and B) tree density (Plot_TPH; trees/ha) 
based on all field plots (N = 165) and up to 40 predictor variables including: geographic X,Y,Z location; Advanced Land Imager 
raw (10) and derived (4) bands; and lidar canopy height, cover and intensity.  All models were statistically significant (p < 0.05).  
Standard error (SE) and AIC statistics should only be directly compared between the solid lines. 
 

Variable Groupings A
va

ila
bl

e

Se
le

ct
ed

SE R2 Adj. R2 AIC
A)  Plot Basal Area (Plot_BA; m2/ha)

Predict Plot_BA (x's = all) 40 17 15.84 0.7890 0.7646 928.48
Predict SQRT(Plot_BA) (x's = all) 40 20 0.93 0.9051 0.8920 -5.61

XYZ location 3 3 2.63 0.1436 0.1276 323.44
ALI + Lidar 37 18 0.97 0.8936 0.8805 9.34

ALI spectral 14 9 2.09 0.4815 0.4514 252.63
Lidar Ht + CC + Int 23 11 1.08 0.8622 0.8523 37.95

Height (Ht) 12 4 1.25 0.8075 0.8027 79.16
Canopy Cover (CC) 6 3 1.73 0.6308 0.6239 184.60
Intensity (Int) 5 3 1.53 0.7106 0.7052 144.41

Predict LN(Plot_BA+1) (x's = all) 40 22 0.33 0.9422 0.9333 -346.15
XYZ location 3 3 1.17 0.1670 0.1515 56.14
ALI + Lidar 37 20 0.35 0.9390 0.9247 -327.88

ALI spectral 14 8 0.88 0.5445 0.5211 -33.45
Lidar Ht + CC + Int 23 12 0.38 0.9169 0.9104 -306.21

Height (Ht) 12 4 0.56 0.8109 0.8061 -186.47
Canopy Cover (CC) 6 3 0.63 0.7559 0.7514 -146.41
Intensity (Int) 5 3 0.55 0.8150 0.8116 -192.13  

B)  Tree Density (Plot_TPH; trees/ha)
Predict Plot_TPH (x's = all) 40 23 210.90 0.7374 0.6946 1788.07
Predict SQRT(Plot_TPH) (x's = all) 40 22 4.35 0.8238 0.7965 506.08

XYZ location 3 3 9.03 0.1382 0.1221 729.99
ALI + Lidar 37 13 4.50 0.7992 0.7819 509.65

ALI spectral 14 5 7.07 0.4786 0.4622 651.07
Lidar Ht + CC + Int 23 12 4.62 0.7870 0.7702 517.37

Height (Ht) 12 4 6.57 0.5464 0.5351 626.08
Canopy Cover (CC) 6 4 5.43 0.6901 0.6824 563.20
Intensity (Int) 5 3 5.25 0.7083 0.7028 551.26

Predict LN(Plot_TPH+1) (x's = all) 40 21 0.58 0.9025 0.8881 -159.24
XYZ location 3 3 1.59 0.1787 0.1634 156.32
ALI + Lidar 37 22 0.59 0.9015 0.8862 -155.58

ALI spectral 14 8 1.11 0.6122 0.5923 42.51
Lidar Ht + CC + Int 23 11 0.61 0.8848 0.8766 -151.85

Height (Ht) 12 5 1.24 0.5062 0.4906 76.38
Canopy Cover (CC) 6 4 0.70 0.8425 0.8385 -114.14
Intensity (Int) 5 3 0.77 0.8051 0.8015 -81.07  

 
 
Table 2.  Summary statistics of observed and predicted A) plot basal area (Plot_BA; m2/ha), and B) tree density (Plot_TPH; 
trees/ha), based on all plots (N = 165). 
 

A) Min. 1st Qu. Median Mean 3rd Qu. Max.
Observed Plot_BA 0.0 12.0 30.2 36.4 55.8 255.4
Predicted Plot_BA

No Transformation -15.6 13.8 35.4 36.4 55.2 149.6
SQRT Transform 0.0 12.1 31.4 35.6 54.2 158.4
LN Transform -0.1 10.8 29.8 35.8 53.3 230.2

B) Min. 1st Qu. Median Mean 3rd Qu. Max.
Observed Plot_TPH 0.0 197.7 395.4 492.0 679.5 1594.0
Predicted Plot_TPH

No Transformation -151.1 265.1 494.8 492.0 739.6 1213.0
SQRT Transform 0.0 218.7 465.9 475.8 703.9 1241.0
LN Transform -0.1 208.5 438.2 467.8 686.8 1791.0  



 

 

 
Figure 2.  Scatterplots of fitted values vs. residuals from stepwise regression models for predicting untransformed, square root 
(SQRT) transformed, or natural log (LN) transformed plot basal area (Plot_BA; m2/ha) and tree density (Plot_TPH; trees/ha). 
 
4  DISCUSSION 
 
Applying SQRT or LN transforms to the response variables improved the performance of the models.  Biases 
introduced by these transforms to the response variables were <5%, or quite minor.  Generalized linear models, 
which require no transformations of the response variables, could also be applied appropriately as an alternative. 
 

Lidar-derived predictor variables explained the most variance in the models, especially for plot basal area.  The 
addition of ALI variables to the models did not improve them much over models based on lidar data alone, possibly 
due to the inclusion of the intensity values, which were more powerful predictors than expected.  Intensity data 
typically have not been used in vegetation modeling and mapping; their apparent utility needs to be better evaluated 
and exploited.  Value might be added to the ALI imagery by including measures of plot-level pixel variability, as 
was done with the lidar variables.  Other predictor variables could be generated from the lidar canopy returns, such 
as canopy gap fraction.  Solar insolation is an important topographic variable that should be added to the analysis. 
 

Both plot basal area and tree density are purely structural attributes.  The lidar canopy height variables were 
more influential in predicting plot basal area than tree density, while the lidar canopy cover variables were more 
influential in predicting tree density than plot basal area.  This was expected given that stands with larger trees are 
also taller, while denser stands vary more in the horizontal domain, where cover measures are more sensitive.  The 
ALI imagery, which proved not very helpful in this statistical data integration exercise, should prove more useful for 
mapping tree species composition or habitat type, because multispectral imagery is more sensitive to this source of 
variability than the lidar operating at a single wavelength.  Moreover, including multispectral image time series in 
this data integration approach might prove profitable, by capturing phenological variability. 
 
5  CONCLUSION 
 
Simple and straightforward stepwise multiple regression models explained ~90% of variance in two stand-level 
structure attributes of particular interest to forest managers, using only remotely sensed and geographic predictor 



 

variables.  Lidar-derived measures of canopy height, cover, and intensity alone appear capable of explaining this 
proportion of variance in forest structure attributes.  Adding predictor variables derived from multispectral ALI 
imagery did not provide much additional explanatory power in this analysis of two purely structural attributes, but 
may be helpful for predicting attributes of forest composition.  The logical next step in this application is to refine 
the statistical data integration models as discussed above and then use the resulting model coefficients to map 
attributes of forest structure and composition for the benefit of our industry partners and other area forest managers. 
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