
Refactoring Pipe-like Mashups for End-User Programmers

Kathryn T. Stolee, Sebastian Elbaum
Department of Computer Science and Engineering

University of Nebraska – Lincoln
Lincoln, NE, U.S.A.

{kstolee, elbaum}@cse.unl.edu

ABSTRACT

Mashups are becoming increasingly popular as end users are able
to easily access, manipulate, and compose data from many web
sources. We have observed, however, that mashups tend to suffer
from deficiencies that propagate as mashups are reused. To address
these deficiencies, we would like to bring some of the benefits of
software engineering techniques to the end users creating these pro-
grams. In this work, we focus on identifying code smells indicative
of the deficiencies we observed in web mashups programmed in the
popular Yahoo! Pipes environment. Through an empirical study,
we explore the impact of those smells on end-user programmers
and observe that users generally prefer mashups without smells.
We then introduce refactorings targeting those smells, reducing the
complexity of the mashup programs, increasing their abstraction,
updating broken data sources and dated components, and standard-
izing their structures to fit the community development patterns.
Our assessment of a large sample of mashups shows that smells are
present in 81% of them and that the proposed refactorings can re-
duce the number of smelly mashups to 16%, illustrating the poten-
tial of refactoring to support the thousands of end users program-
ming mashups.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, reengineering

General Terms

Languages, Human Factors, Experimentation

Keywords

End user software engineering, web mashups, refactoring

1. INTRODUCTION

A mashup is a program that manipulates and composes existing
data sources or functionality to create a new piece of data or service
that can be plugged into a web page or integrated into an RSS feed
aggregator. One common type of mashup, for example, consists
of obtaining data from some feeds (e.g., house sales, vote records,
bike trails), joining those data sets, filtering them according to a
criteria, and plotting them on a map published at a site [26].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$5.00.

Mashups have become extremely popular as software develop-
ment environments incorporate visual programming languages and
built-in functionality to quickly access and manipulate data. For ex-
ample, in Yahoo! Pipes [20], one of the most popular mashup devel-
opment environments, over 90,000 end users have created mashups
like the one in Figure 1 since 2007 [11]. To program these mashups,
users drag and drop predefined modules (e.g., a fetch module to
retrieve data from a web source, a filter module to select a sub-
set of the retrieved data), configure the modules by setting their
fields (e.g., web sites from which to fetch the data, expressions to
specify a filter criterion), and connect the modules to define the
mashup data and control flow. Similar high-level, visual, composi-
tional programming languages and representations, that we group
under the umbrella of pipe-like mashups, can be seen across sev-
eral mashup environments (e.g., Apatar [1], DERI Pipes [5], IBM
Mashup Center [10]).

In spite of the increasing power and popularity of mashups, we
have observed that they tend to suffer from common deficiencies,
such as being unnecessarily complex, using inappropriate or dated
modules or sources of information, assembling non-standard pat-
terns, and duplicating values and functionality. For example, of
the 8,051 pipe-like mashups we examined, approximately 23% had
redundant modules, 32% had the same string hard-coded in multi-
ple places, and 14% used sources of data that were not working as
specified anymore. In total, 81% of the pipes had at least one type
of deficiency. A detailed examination of those pipes and a study
to assess the impact of those deficiencies on end-user programmers
revealed that deficient pipes are more susceptible to failure, less
likely to be adopted, and harder to understand by end users.

Even more concerning, however, is how these deficiencies prop-
agate across a community where reuse is extremely common. For
example, to date, over 87,000 pipes have been committed to Ya-
hoo!’s public repository, and from the sample of pipes we studied,
66% had been cloned for reuse an average of 17 times even though
more than three-fourths of them contain at least one deficiency.

The deficiencies that end-user programmers of mashups encounter
have similarities with those found by professional programmers
and are often referred to as code smells – indications that something
may be wrong with a section of code. Software engineers have at
their disposal techniques and tools to address such smells by per-
forming semantic preserving transformations on their programs to
remove smells, a process called refactoring [7, 9, 19].

Through this work we investigate how to bring the benefits of
software engineering to end users programming mashups. We do
this by focusing on automated smell identification and refactoring.
While refactoring has received considerable attention in the context
of professional programmers (e.g., [17]), this is the first refactoring
effort targeting end users. Further, although adapting software en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

81

Figure 1: Original Pipe with Smells

gineering methodologies to help end users program more depend-
ably in non-traditional language paradigms is not new in the soft-
ware engineering research literature (e.g., [4, 15, 22]), this is the
first effort targeting the rapidly growing pipe-like mashup domain.

This prior work notwithstanding, the mashup domain introduces
new smells and is amenable to novel refactorings. In particular,
through this work we explore smells and refactoring that: 1) lever-
age the pipe-like mashup language semantics to simplify a pipe
structure, 2) target mashups’ intrinsic reliance on external and un-
controlled services and data sources that may change without no-
tice, and 3) utilize the public repositories of mashups to standardize
and promote understanding across the community. The contribu-
tions of this work are:

• Identification of the most prevalent smells in 8,051 mashups and
the assessment of the impact of those smells on 14 end-user pro-
grammers’ mashup preference and understanding.

• Design of domain-specific transformations to refactor smelly pipe-
like mashups, and tailoring and assessment of those transforma-
tions to the Yahoo! Pipes environment.

2. MOTIVATION

In this section we present an example to illustrate what is a pipe-
like mashup, the Yahoo! Pipes mashup language, the potential smells
in such mashups, and how refactorings can remove those smells.

Figures 1 and 2 show partial screenshots of a browser displaying
the Pipes Editor, the development environment housing the visual
and compositional language Yahoo! Pipes. Through this environ-
ment users can program mashups by dragging and dropping exist-
ing components, configuring them, and connecting them. When the
user executes the mashup, it is sent to Yahoo!’s servers, which inter-

Figure 2: Completely Refactored Pipe

pret the mashup to fetch and manipulate the specified data sources
and return the output back to the programmer.

Figure 1 also illustrates the prototyped interface for our smell de-
tection and refactoring toolset (grayed area). We added letter labels
to serve as references to the modules to assist with the explanation.
The mashup in Figure 1 was retrieved from Yahoo!’s public repos-
itory. It aggregates articles about online marketing from German
websites and blogs, (e.g., the url specified in module F), and was
selected for illustration due to the variety of smells it exhibits in
a relatively small number of modules. The prototype indicates the
smells present in the pipe, shows examples of how the smells can
be refactored, and offers to perform the refactorings for the user.

The structures of these pipe-like mashups are best understood
from top (inputs) to bottom (output). Starting from the data sources
that serve as inputs, a pipe-like mashup combines and manipulates
those inputs to create exactly one output. Each box in a pipe rep-
resents a module, whose behavior is defined by the Yahoo! Pipes
environment, and is connected to other modules via wires. Each
module has a name (e.g., truncate, union), and most modules con-
tain fields that can hold hard-coded values or receive values via
wire. In Figure 1, five modules retrieve data from web sources: A,
B, D, E, and F , each containing one field (the web data source).
These generator modules provide the inputs for the rest of the pipe
modules to process. Generator modules D and F are wired directly
into truncate modules G and I , respectively. Truncate modules re-
tain the first n items to pass to the next module, where n is set by
the field value. The outcome of generator modules A and B are
aggregated through a path-altering union module, C, before feed-
ing to truncate module H . The outgoing data from modules G, H ,
and I are aggregated with a union module, J , that feeds to a sort
module, K, and finally to the pipe’s output module, L.

Although this is a functional pipe, it has several smells that can
be removed by refactoring, while preserving the underlying seman-
tics. First, module E is disconnected from the rest of the pipe (no
wires in or out of it) and can be trivially removed. The data pro-
duced by two generator modules, A and B, are immediately ag-
gregated prior to any manipulation. Since generator modules can
accommodate multiple fields, this redundancy can be removed by
merging them into one module. In two of the truncate modules, H
and I , the string “3” specifies the number of data items to retain; if

82

the user ascertains that this value represents the same concept, then
it can be abstracted into a separate module to facilitate and ensure
consistency of future changes. Given that 36% of the pipes in our
study were modified after being shared and 66% had been cloned
at least once, making future changes easier is likely a concern for
end-user programmers. Finally, two of the paths leading to mod-
ule J , D to G and F to I , include a fetch module followed by a
truncate module. These isomorphic paths can be abstracted into a
separate pipe that can be included as a subpipe module, increasing
the modularity and maintainability of the pipe.

The deficiencies and redundancies identified in Figure 1 were
addressed in the fully-refactored pipe in Figure 2. Generator mod-
ules A and B were merged to yield module A + B, disconnected
module E was removed, a new module, M , was added to abstract
the value “3" from modules H and I , which now receive their field
values via wire from M , and the isomorphic paths from D to G

and from F to I were each replaced with a subpipe module that en-
capsulates that behavior, forming modules D+G and F +I . (Sub-
pipes are identified by the [open] link next to the modules’ name.)
Merging generator modules A and B made the union module C

ineffectual since it only one incoming wire so it was removed after
the aforementioned transformations were performed. Through the
refactoring process, two of the original modules were removed, two
modules were merged into one, two hard-coded fields are now ab-
stracted in one place to ease future changes, and two new subpipes
hide unnecessary details in the pipe making it easier to understand.

Sections 4 – 7 proceed to define these and other smells and the
complete family of refactorings in detail, and provide an assess-
ment of the smells’ frequency and impact on the end-user program-
mer, as well as the refactorings’ effectiveness.

3. RELATED WORK

Mashup development environments target a wide range of users
and provide various levels of development support [26]. Envi-
ronments oriented toward more proficient developers often require
knowledge of scripting languages (e.g., Plagger requires perl pro-
gramming [21]), but a recent trend has been toward environments
and languages that allow programmers to work at higher levels of
abstraction. These environments often wrap common mashup tasks
(e.g., fetching data, aggregating, filtering) into preconfigured mod-
ules, trading flexibility and control for lower adoption barriers. The
environments’ languages provide visual mashup representations,
with the pipe structure/flow representation being the most com-
mon among mashup development environments (e.g., Apatar [1],
DERI Pipes [5], IBM Mashup Center [10], and Yahoo! Pipes [20]).
Another interesting trend is the emergence of communities around
these environments to provide end-user programmer support, either
as a forum, wiki, or as a repository of mashups to be shared with
other programmers [1, 5, 10, 20]. We also note that while the level
of end user support for mashup creation is increasing, the level of
support for facilitating maintenance, understanding, and robustness
of mashups is just starting to be noticed [8].

Although no refactoring support exists yet for mashups tools, the
body of work on refactoring is extensive [17]. The concept of refac-
toring was first introduced as a systematic way to restructure code
to facilitate software evolution and maintenance [9, 19]. Since
then, the scope and type of refactorings has grown considerably.
For example, refactoring has been used to improve code design [7]
and to make code more reusable and maintainable by introduc-
ing type parameters [14] and specific design patterns [13]. Tools
have also been created to update references to deprecated library
classes [2] and parallelize sequential code by introducing calls to
libraries that support writing concurrent programs [6]. At a slightly

higher level of abstraction, refactoring of program structures has
also been used to facilitate feature decomposition and feature-based
changes during program evolution [16].

Within the context of model-driven software development, refac-
toring has been applied at the design level, mostly through UML
transformations to, for example, support program evolution [24] or
facilitate the transformation of different types of UML diagrams [25].
Although not exclusively [18], it is among such model refactorings
that we often see the use of graph transformations as a mechanism
to explicitly define the preconditions, postconditions and transfor-
mation steps [3]. We have adopted a similar graph-based approach
to make explicit the smells and the refactoring preconditions, post-
conditions, and transformations we introduce.

The evaluations of refactoring techniques have focused on lan-
guages utilized by professional software developers. In these stud-
ies, a typical course of evaluation is to implement the refactorings
in a tool and evaluate it on a set of programs, measuring time to
complete a refactoring [2, 6, 14], changes in program size [2, 13],
or accuracy compared to the manually-performed refactorings [6,
14]. We follow a similar approach, taking advantage of a public
repository of mashup programs to perform a study on a large pop-
ulation of mashups to determine the prevalence of the smells and
the effectiveness of the refactorings in addressing those smells. In
addition, we also perform a study to examine the impact of smells
on end-user programmers’ mashup preference and understanding.

4. DEFINITIONS

In this section we provide definitions that will be used throughout
the rest of the paper. Figure 3 presents shorthand predicates used to
simplify the presentation. Since a mashup represents a directional
flow of data, we can represent a pipe-like mashup as a directed
acyclic graph where the modules are nodes and the wires are the
edges that transmit data between the modules in a pipe.

DEFINITION 1. A module is a tuple (F , name, type), contain-
ing a list of fields F indexed from 1 to |F| where F [1] is the first
item in the list, a name assigned by the Pipes programming envi-
ronment (e.g., fetch or truncate), and a type, to be defined later.

DEFINITION 2. A wire is a tuple (src, dest, f ld), containing
a module pointer to src, the source module of the wire, a module
pointer to dest corresponding to the wire destination module, and
a field pointer fld for the destination field, if one exists.

DEFINITION 3. A field is a tuple (wireable, value) containing
a function wireable : F → {true | false} indicating whether or
not that field can be set by an incoming wire, and a value that
contains the string-representation of the field’s content.

DEFINITION 4. A pipe is a graph, PG = (M,W,F , owner),
containing a set of modules M, a set of wires W , a set of fields
F , and a function owner : F → M assigning every field to
exactly one module. The wires are constrained such that ∀w ∈
W, w.src �= w.dest (no cyclic wires). Every pipe must contain
exactly one module named output.

DEFINITION 5. A pipe path is a sequence of n connected mod-
ules mi ∈ M | ∀mi, 0 ≤ i < n−1, ∃w ∈ W | out_wire(mi, w)
∧in_wire(mi+1, w). For notational convenience, the path length
is defined by p.length, the first module in the path can be accessed
by p(first), and the last module in the path by p(last).

As an example, Figure 1 shows a pipe with |M| = 12, modules
A,C ∈ M connected by wire w ∈ W , where w = (A,C,∅).

83

op(m) m.type = op
op_indep(m) m.type = op.orderIndep

setter_str(m) m.type = setter.string
path_alt(m) m.type = pathAlt

gen(m) m.type = gen
output(m) m.name = output
union(m) m.name = union
split(m) m.name = split

in_wire(m,w) w.dest = m ∧ w.fld = ∅
fld_wire(m,w) w.dest = m ∧ w.fld �= ∅
out_wire(m,w) w.src = m

all_fld_wires(m) ∀w ∈ W | w.dest =
m, fld_wire(m,w)

joined_by(mi,mj , w) out_wire(mi, w)∧in_wire(mj , w)
joined_fld(m, f,w) out_wire(m,w) ∧

fld_wire(owner(f), w) ∧
w.fld = f

subsequent_mods(mi,mj) ∃ path p | mi,mj ∈ p∧mi ≺ mj
betwn_mods(mk,mi,mj) ∃ path p | mk,mi,mj ∈ p∧mi ≺

mk ≺ mj
conn_to_union(mi,mj) ∃mu ∈ M | union(mu)

∧ ∃wi, wj ∈ W |
joined_by(mi,mu, wi) ∧
joined_by(mj ,mu, wj)

same_num_flds(mi,mj) |mi.F| = |mj .F|
same_fld_values(mi,mj) same_number_flds(mi,mj) ∧

for k = 1 . . . |mi.F|,mi.F [k] =
mj .F [k]

same_value(fi, fj , bool) fi.wireable = fj .wireable =
bool∧ fi.value = fj .value �= “”

Figure 3: Shorthand for Common Predicates Used in the Defi-

nitions, Smells, and Refactorings

Modules A and C form a path, p. where p.length = 2, p(first) =
A, and p(last) = C. Module K has two non-wireable fields,
(e.g., K.F [1] = (false,“item.pubDate”)), whereas module G has
one wireable field, G.F [1] = (true, “2”).

We classify modules by their type, where the type is defined
based on the module’s impact on the data that flows through the
mashup. A module’s m.type can be one of the following: 1) gen-
erator (gen), if it retrieves data from external sources (e.g., an RSS
feed, another pipe) and provides a list of items for other modules
in the pipe to process; 2) setter if it only produces a value that will
be wired directly into the fields of other modules; 3) path-altering
(pathAlt) if it either joins multiple paths, as in a union, or diverts
one path into multiple paths, as in a split; and 4) operator (op) if it
manipulates a list of items.

We further subtype a setter module as a string-setter if m sets
a string, or as a user-setter if the user may be queried to set a pa-
rameter when the pipe is executed. An operator module o can be
subtyped across two orthogonal dimensions: o is said to be read-
only (op.ro) if it does not modify the content of items in the input
list, and read-write (op.rw) if it can modify the content of list items
(e.g., appending a string to each item’s title). Second, o is said to
be order-independent if the operation being performed is not de-
pendent on the order of the items passed into it (e.g., reordering,
renaming, or removing list items), or o is order-dependent if the
outcome depends on the order of the items passed into it (e.g., the
truncate module that only outputs the first n items in a list).

5. CODE SMELLS

In this section we define the smells that were most prevalent
across the sample of pipes we analyzed, and summarize the re-
sults of a first study that provides preliminary evidence about the
negative impact of the defined smells on the end users’ ability to
understand a pipe-like mashup.

5.1 Smell Definitions

To ascertain smells relevant to pipe-like mashups, we collected
candidate smells similar to those defined for professional program-
mers (as per the references in Section 3), defined smells based
on errors and unnecessary complexity reported in the users’ news-
groups, and identified others by observing the rich sample of pipes
we gathered for analysis. The pipes sample was obtained by scrap-
ing 10,362 pipes from Yahoo!’s public repository. We constrained
our search queries to pipes containing at least one of the 20 most
popular data sources (as reported in January 2010), independently
of the pipe structure. The sample average size is over 8 modules per
pipe, and we only retain pipes with at least four modules (the min-
imal number necessary to create a pipe with multiple paths to the
output using two generators, one union, and one output). This re-
sulted in the final sample of 8,051 pipes. Utilizing this sample, the
list of candidate smells was iteratively refined as we found smells
that were either not directly applicable to the domain or not com-
mon enough (< 5%) to warrant their consideration.

We now define the code smells that resulted from this process.
Each smell is defined in the context of a pipe represented as a graph
PG = (M,W,F , owner). The frequency of occurrence is stated
after each smell name (e.g., Smell 1 appears in 28% of the 8,051
pipes). Overall, we identified at least one smell in 81% of the pipes
and on average, each pipe contains approximately eight instances
of two different smells.

5.1.1 Laziness Smells
This category of smells was inspired in part by the “Lazy Class”

smell, which identifies classes, components, or methods that “do
not do enough” [7]. These smells identify pipes that contain mod-
ules or fields that do not contribute to the output of the pipe, making
it unnecessarily complex or potentially faulty.

SMELL 1. Noisy Module (28%): a module that has unneces-
sary fields, making a pipe harder to read and less efficient to exe-
cute. Module m ∈ M is considered noisy if:

CASE 1.1. Empty field:
(gen(m) ∨ setter_str(m)) ∧ ∃f ∈ m.F | f.value = “”

CASE 1.2. Duplicated field:
∃fi, fj ∈ m.F | same_value(fi, fj , true)

SMELL 2. Unnecessary Module (13%): a module whose exe-
cution does not affect the pipe’s output, adding unnecessary com-
plexity. Module m ∈ M is considered unnecessary if:

CASE 2.1. Cannot reach output:
∃n ∈ M | output(n) ∧ !subsequent_mods(m,n)

CASE 2.2. Ineffectual path altering: path_alt(m)∧
∃1wi ∈ W | in_wire(m,wi)∧ ∃1wj ∈ W | out_wire(m,wj)

CASE 2.3. Inoperative module:
!path_alt(m) ∧ !output(m) ∧ m.F = ∅
CASE 2.4. Unnecessary redirection:
setter_str(m) ∧ |m.F| = 1 ∧ all_fld_wires(m)

CASE 2.5. Swaying module:
(path_alt(m) ∨ op(m))∧ � ∃w ∈ W|in_wire(m,w)

For example, in the transformation from Figure 1 to Figure 2,
module E fits Case 2.1 and module C fits Case 2.2.

SMELL 3. Unnecessary Abstraction (12%): a setter module
that always performs the same operation on constant field values
(fields that are not wired), and that only feeds a value to one desti-
nation, may be unnecessarily abstract. Module m ∈ M is unnec-
essary if: setter_str(m) ∧ ∃1wi ∈ W | out_wire(m,wi) ∧ �wj ∈
W | fld_wire(m,wj)

84

5.1.2 Redundancy Smells
Duplicated code has been referred to as the worst smell in pro-

grams written by professionals [7]. The redundancy smells iden-
tify pipes that have duplicated strings, modules, or sequences of
modules. Redundancies in pipes bloat the modules and the pipe
structure, add unnecessary complexity, and make pipe understand-
ing and maintenance more difficult.

SMELL 4. Duplicate Strings (32%): a constant string that is
used in at least n wireable fields in at least two modules. Given
n = 2, fields are marked as duplicates if:

∃fi, fj ∈ F | owner(fi) �= owner(fj)∧same_value(fi, fj , true)
For example, in Figure 1 the truncate modules H and I have a

duplicate string “3.”

SMELL 5. Duplicate Modules (23%): operator modules ap-
pearing in certain patterns may be redundant and candidates for
consolidation. Modules mi,mj ∈ M are considered duplicates if
mi.name = mj .name and:

CASE 5.1. Consecutive redundant operators:
(op_indep(mi)∨path_alt(mi)) ∧∃wj ∈ W | joined_by(mi,mj , wj)

CASE 5.2. Identical subsequent operators: op_indep(mi)∧
same_fld_values(mi,mj)∧ subsequent_mods(mi,mj)∧
∀mk ∈ M | betwn_mods(mk,mi,mj)∧

(op_indep(mk) ∨ union(mk))

CASE 5.3. Joined generators:
gen(mi) ∧ conn_to_union(mi,mj)

CASE 5.4. Identical parallel operators: op_indep(mi)∧
same_fld_values(mi,mj)∧ conn_to_union(mi,mj)∧
∃mk,ml ∈ M, ∃wk, wl ∈ W |

joined_by(mk,mi, wk) ∧ joined_by(ml,mj , wl)∧
(gen(mk) ∨ union(mk)) ∧ (gen(ml) ∨ union(ml))

Case 5.2 is shown in Figure 4 and Case 5.4 is shown in Figure 5.

SMELL 6. Isomorphic Paths (7%): non-overlapping paths with
the same modules performing the same operations may be missing
a chance for abstraction. Two paths p and p

� are isomorphic if:
p.length = p�.length ∧ p ∩ p� = ∅∧
gen(p(first)) ∧ gen(p�(first))∧
∀mn ∈ p, ∀m�

n ∈ p�, 0 ≤ n < p.length,
mn.name = m�

n.name∧ same_number_fields(mn,m�
n)∧

∀mn ∈ p | op(mn)
for k = 1 . . . |mn.F|

if mn.F [k].wireable = false then
same_value(mn.F [k],m�

n.F [k], false)

An example is shown in Figure 1, where p consists of the path
from D to G and p

� consists of the path from F to I .

5.1.3 Environmental Smells
Inspired by the pervasive use of invalid and unsupported sources

and modules by programs in the Yahoo! Pipes repository, these
smells identify pipes that have not been updated in response to
changes to the external environment. A pipe containing a mod-
ule that is no longer maintained by the Pipes language or a field
that references an invalid external source exhibits an environmen-
tal smell that may cause a failure.

SMELL 7. Deprecated Module (18%): a module that is no
longer supported by the pipe environment. Given SupportedM, a
pipe presents this smell if: ∃m ∈ M | m.name /∈ SupportedM.

For example, four modules were deprecated in the Yahoo! Pipes
environment between 2007 and 2010.

SMELL 8. Invalid Sources (14%): an external data source
es ∈ ExternalSources is invalid if n consecutive attempts to
retrieve data from it report errors. Given n = 1, a pipe presents
this smell when ∃f ∈ F that refers to an invalid es.

5.1.4 Population-Based Smells
The previous smells focused on individual pipes. Population-

based smells, on the other hand, rely on the community knowledge
captured in the public repository to discover module patterns that
have been commonly employed in highly reused pipes. Pipes using
alternative module structures to implement such patterns are con-
sidered smelly since they may take more time to understand and
potentially discourage reuse of those pipes across the community.

SMELL 9. Non-conforming Module Orderings (19%): given
a community prescribed order for read-only, order-independent op-
erator modules appearing in a path of length n, a pipe with a path
including such modules but in a different order may unnecessar-
ily increase the difficulty for other end users to understand and
adopt the pipe. By performing a frequency analysis of the pipes
in a repository, we obtain a pool of commonly observed paths that
we call prescribed paths, PPres, and consider path p to be non-
conforming if:

∀m ∈ p | op_indep(m) ∧m.type = op.ro
∃p� ∈ PPres|p �= p� ∧ bag(p) = bag(p�)

Defining PPres requires the identification of the sample of the
population from which the prescribed paths are to be derived and
the bounding of the path length to be considered. We explore some
values for these parameters in our study.

SMELL 10. Global Isomorphic Paths (6%): building on the
isomorphic path smell (Smell 6), we extend the scope of the smell
to paths appearing in multiple pipes. Global isomorphic paths rep-
resent missed opportunities for a community to reuse the work of
its contributors, and make it harder to understand pipes due to the
lack of abstraction of commonly occurring paths. Given a pool of
prescribed global paths PGPaths, a pipe PG has this smell if:

∃p ∈ PG, ∃p� ∈ PGPaths | p� is isomorphic to p
As with the previous smell, generating PGPaths requires iden-

tification of the population sample from which the paths are derived
and a threshold of path frequency for it to be considered global.

5.2 End-User Programmers and Smelly Pipes

We designed two experiments to begin evaluating the impact
of code smells from the perspective of the end-user programmer.
The first experiment aimed to determine if the subjects prefer pipes
with or without smells (RQ1), and the second aimed to determine
if smelly pipes are harder to understand than clean pipes (RQ2).
The experiments were split into a series of ten tasks with a random
assignment of subjects to each task. In each task, we treated one
pipe with a smell, providing coverage for all the smells and a va-
riety of pipe structures. In the tasks for the first experiment, the
programmer was given two pipes side by side, one with smells and
the other one without, and asked to choose the preferred pipe and
explain the decision. In the tasks for the second experiment, the
programmer was presented with either the pipes with or without
smells and asked to determine the pipe’s output. (More details on
the study design, tasks, and implementation can be found at [23].)

In both experiments we gauge the programmers’ aptitude by ask-
ing questions about their education level and programming experi-
ence, and by requesting them to complete a pretest with eight ex-
ercises to assess their expertise with Yahoo! Pipes. The subjects
were given the option to complete a tutorial on Yahoo! Pipes, and
all were required to pass the pretest prior to participation, allowing
us to control for subject variability. In terms of posttest measures,
the first experiment evaluates user preference, the second measures
correctness in identifying a pipe’s output, and both measure the
time to complete the task. While 50 subjects took the qualification
pre-test and 34 (68%) received a passing score, a total of 22 sub-
jects completed at least one experimental task in the study, and 14

85

Table 1: Impacts of Smells on End-User Programmers

Experiment 1 75 observations
Which one of these two Smelly Pipe Clean Pipe Same

pipes would you prefer? 24% 63% 13%
Experiment 2 16 observations

What is the output Correct Answer

of this pipe? Smelly Pipe Clean Pipe

67% 80%

(65%) were classified as end users based on their limited educa-
tion in computer science (contrasted with degreed users who hold
degrees in computer science or a related field). These end users
provided a total of 91 data points across all tasks.

The results of the study are summarized in Table 1. Overall,
63% of the responses in the first experiment indicated that users
preferred non-smelly pipes, while 13% were neutral about their
preference. The preference for clean pipes increased to 71% for
tasks involving laziness and redundancy smells where there was
a general theme among all the user responses that smaller pipes
with “simpler” and “cleaner” structures and fewer parameters were
preferable. The preference for clean pipes jumped to 88% for the
population-based smell on operator orderings. There were two
tasks, however, for which subjects did not favor clean over smelly
pipes. First, 56% of the end users preferred a pipe with a deprecated
module rather than its clean alternative which required several ad-
ditional modules. The subjects’ comments seem to indicate a lack
of awareness about the risks of using deprecated but still function-
ing modules. Second, 56% of the end users do not seem to mind the
global-isomorphic path smells. When examining the comments we
see that the most inexperienced programmers like to see all the pipe
at once instead of abstracting functionality to another pipe that must
be retrieved separately. However, more experienced programmers
seemed to value abstraction but mentioned that for this particular
task the abstracted functionality size did not justify the extra work.

The second experiment revealed that smelly pipes may lead to
more misunderstandings about a pipe’s behavior. Given a clean
pipe, end-user programmers were able to correctly specify the pipe’s
output 80% of the time, while for smelly pipes this number dropped
to 67%. In addition, the time to complete the analysis of the smelly
pipe took on average 68% longer than for a clean pipe.

6. REFACTORINGS

To address the most prevalent code smells, we have devised a
set of semantic preserving pipe refactorings. Following Opdyke’s
definition for behavior preservation in terms of the set of outputs
resulting from the same set of inputs [19], we define two pipes as
being semantically equivalent if the set of unique items that reaches
each pipe’s final output module are the same, ignoring duplicate
items and items’ order.

Since a pipe is a graph, we build on the concepts of graph trans-
formation to specify these refactorings. A pipe refactoring is then
a transformation refactor : Pbefore → Pafter , where Pbefore

is the refactoring precondition represented by some smells defined
in Section 5, and Pafter is the refactoring postcondition. In our
specification, we have further decomposed each refactoring into a
set of more basic transformations utilizing the actions performed
by pipe programmers (set, add, remove, move, copy) on pipe com-
ponents (modules, wires, and fields) and using visual depictions to
complement the presentation of the most complex transformations.

6.1 Reduction

This category of refactorings focuses on removing unnecessary
fields and modules that result from duplicated or lazy components,
resulting in a pipe with fewer fields, wires, and modules.

REF 1. Clean Up Module: removes empty or duplicated fields
within a module. While the transformation is the same for both of
these cases, the motivations are different. Removing empty fields is
analogous to the “Remove Parameter” refactoring, which removes
parameters that are “no longer used by the method body.” For du-
plicate fields, if the “same code structure [exists] in more than once
place,” the code will be better without the duplication [7].

Pbefore Smell 1: Noisy Module ∧ (gen(m) ∨ setter_str(m))
Params Pipe, module m, empty or duplicated field f
Transf. remove f from m
Pafter f /∈ m.F

REF 2. Remove Non-Contributing Modules: removes two kinds
of unnecessary modules, those that are poorly placed in the pipe
(e.g., modules that do not reach the output) and those that are in-
effectual (e.g., operator modules that do not contain fields). This
refactoring is motivated by the “Lazy Class” code smell, which em-
phasizes that all code “costs money to maintain and understand,”
so code that “isn’t doing enough should be eliminated” [7].

CASE 2.1. Disconnected, Dangling, or Swaying: modules that
are isolated, do not reach the output, or are at the top of a path but
do not generate any items, are unnecessary and can be removed.

Pbefore Smell 2.1, 2.5: Cannot reach output, Swaying module
Params Pipe, ineffectual module m
Transf. ∀w ∈ W | in_wire(m,w) ∨ out_wire(m,w)∨

fld_wire(m,w)
remove w

remove m
Pafter m /∈ Pipe

CASE 2.2. Lazy Module that does not perform any operation
or performs unnecessary redirection can be removed.

Pbefore Smell 2.2, 2.3, 2.4: Ineffectual path altering, Inoperative
module, Unnecessary redirection

Params Pipe, ineffectual module m
Transf. ∃wj ∈ W | out_wire(m,wj)

∀w ∈ W | in_wire(m,w), set w.dest = wj .dest
∀w ∈ W | fld_wire(m,w), set w.fld = wj .f ld
remove m, wj

Pafter m,wj /∈ Pipe

REF 3. Push Down Module: removes setter modules that have
only one outgoing wire, as these can be replaced with string values
in the destination field without sacrificing abstraction. This refac-
toring is inspired in part by the “Inline Method” refactoring that
will “put the method’s body into the body of its callers and then
remove the method” [7].

Pbefore Smell 3: Unnecessary Abstraction
Params Pipe, unnecessary module m
Transf. String s = “”

for k = 1 . . . |m.F|, append m.F [k] to s
∀w ∈ W | out_wire(m,w)

set (w.fld).value = s and remove w
remove m

Pafter m /∈ Pipe,
∀w ∈ Pipe.W | out_wire(m,w),
(w.fld).value = s ∧ w /∈ Pipe

6.2 Consolidation

These refactorings aim to unify duplicated code to simplify pipe
structures and reduce their sizes, a desirable pipe characteristic ex-
pressed by end users (see Section 5.2). These refactorings merge
operator modules performing actions that could be completed with
just one module and collapse duplicate paths that perform identical
actions on separate lists of items that are later merged.

86

union(mi)

union(mj)

.

..

union(mi)

union(mj)

wj wk

wl wn
wj wk wl wn

op_indep(mi)

op_indep(mj)

mi. F = {a,b,c}

mj. F = {a,b,c}

.

..

op_indep(mi)

mi. F = {a,b,c}

op(m)

m.F = {}

op(m)

m.F = {}

wi

wj

wi

op_indep(mi)

mi. F = {a,b}

wj

op_indep(mj)

mj. F = {c}

wi

op_indep(mi)

mi. F = {a,b,c}

op_indep(mj)

mj.F = {c}

wi

wi
wi

wi

wfld

wfld

wi

wj
wj

wj

op_indep(mj)

mj. F = {a,b,c}

Figure 4: Merge Identical Subsequent Operator

REF 4. Merge Redundant Modules: merges operators with
the same name that perform the same or similar operations along
the same path, or path-altering modules that are connected, hence
decreasing the size and complexity of the pipe. This refactoring is
motivated in part by the “Inline Class” refactoring that moves all
the features of one class into another class, and then deletes it [7].
Here, mi is being inlined, and mj absorbs all its features. See
Figure 4 for an example where the operators are disconnected yet
perform the same operation along the same path.

Pbefore Smell 5.1, 5.2: Consecutive redundant operators, Identical
subsequent operators

Params Pipe, operators mi,mj
Transf. ∃wj ∈ W | out_wire(mi, wj)

If union(mi)
∀w ∈ W | in_wire(mi, w),

set w.dest = mj
If split(mi)

∀w ∈ W | out_wire(mi, w),
set w.src = mj

If op(mi)
∃wi ∈ W | in_wire(mi, wi)

set wi.dest = wj .dest
if (!same_fld_values(mi,mj))

for k = 1 . . . |mj .F|
append mi.F [k] to the beginning of mj .F

remove mi, wj
Pafter mi, wj /∈ Pipe

REF 5. Collapse Duplicate Paths: paths that are aggregated
using the same union module can often be consolidated into a sin-
gle path to simplify the pipe structure. This refactoring is motivated
in part by the “Form Template Method” refactoring, which takes
two methods that perform similar steps in the same order and elim-
inates the duplication [7]. However, in our case, instead of forming
a template method in a superclass, we form a template path and
collapse two similar paths into one. An instance of this refactoring
is illustrated in Figure 5.

Pbefore Smells 5.3, 5.4: Joined generators, Identical parallel opera-
tors

Params Pipe, modules mi,mj ,mk,ml, wires wi, wj , wk , wl
Transf. if gen(mk) ∧ gen(ml)

for x = 1 . . . |mk.F|
append mk.F [x] to ml.F

remove mk, wk
if gen(mk) ∧ union(ml)

set wk.dest = ml
if union(mk) ∧ gen(ml)

set wl.dest = mk
if union(mk) ∧ union(ml)

∀w ∈ W | in_wire(mk, w),
set w.dest = ml

remove mk, wk
remove mi, wi

Pafter mi,mk, wi, wk /∈ Pipe

Figure 5: Collapse Duplicate Paths

6.3 Abstraction

These refactorings focus on abstracting sections of the pipe that
have duplicate fields or modules. They are in part inspired by the
“Pull Up Method” refactoring, which aims to extract common code
from subclasses into a superclass to increase maintainability [7],
something for which it is hard to provide automated support. These
refactorings either create new modules that provide values to exist-
ing modules or replace existing modules.

REF 6. Pull Up Module: extracts duplicate strings into a newly
created module and provides the string values via wires to the pre-
vious owners of the duplicated strings.

Pbefore Smell 4: Duplicate Strings
Params Pipe, fields with duplicate strings fi and fj
Transf. add module m to Pipe.M | setter_str(m)

add field g to m.F
set g.value = fi.value
add wire wi to Pipe.W | joined_fld(m, fi, wi)
add wire wj to Pipe.W | joined_fld(m, fj , wj)

Pafter m,wi, wj , g ∈ Pipe | g.value = fi.value
∧joined_fld(m, fi, wi) ∧ joined_fld(m, fj , wj)

REF 7. Extract Local Subpipe: creates a subpipe that con-
tains the modules in the isomorphic paths in a pipe, and replaces
those paths with the subpipe. For example, in Figure 2, a subpipe
was created to replace two paths from Figure 1, from D to G, and
from F to I . The field values from D, F , G, and I were copied to
their respective subpipes. The wire providing the field value to I

was reconnected to the field from I in subpipe F + I .

Pbefore Smell 6: Isomorphic Paths
Params Pipe, isomorphic paths p and p�

Transf. % Build subpipe
(1) create pipe newPipe

add module o to newPipe.M | output(o)
copy p to newPipe
add wire v to newPipe.W | joined_by(p(last), o, v)
∀f ∈ newPipe | f.wireable = true,

add module q to newPipe.M|q.type=setter.user
(2) add wire x to newPipe.W | joined_fld(q, f, x)

% Connect subpipe to pipe
(3) for (path a = p, p�)

add moduler toPipe.M|r.name=subpipe(newPipe)
add wire t to Pipe.W | joined_by(r, a(last+ 1), t)
∀f ∈ F | owner(f) ∈ a ∧ f.wireable = true

if ∃w ∈ Pipe.W | w.fld = f , set w.dest = r.q
if (f.value �=“”), copy f.value to r.q.value

remove a
Pafter p and p� /∈ Pipe, ∃2subpipe(newPipe) ∈ Pipe

6.4 Deprecations

Outdated or broken modules and sources can lead to unexpected
pipe behavior. These refactorings either replace or remove such
pipe components to increase the pipe’s dependability.

87

REF 8. Replace Deprecated Modules: assumes that a func-
tion replace : M → M exists that takes a deprecated mod-
ule, mdep, and returns a module or sequence of modules, Mnew,
that perform a semantically equivalent operation as mdep. This
refactoring is similar in spirit to previous work that uses refactor-
ings to update references to deprecated library classes in Java pro-
grams [2]. One difference is that in our work, it is not up to the
programmer to specify the mapping between the deprecated and
replacement modules; this is done on behalf of the programmer.

Pbefore Smell 7: Deprecated Module
Params Pipe, module mdep, Mdep
Transf. add Mnew to Pipe

∃wi ∈ W | in_wire(mdep, wi)
set wi.dest = Mnew(first)

∃wj ∈ W | out_wire(mdep, wj)
set wj .src = Mnew(last)

remove mdep
Pafter mdep /∈ Pipe, Mnew ∈ Pipe

REF 9. Remove Deprecated Sources: removes all sources that
refer to invalid external data sources to reduce the bloating and
remove a common cause of pipe failures. The ability to perform
this refactoring is intrinsic to the mashup domain as the external
sources can be easily checked for validity.

Pbefore Smell 8: Invalid Sources
Params Pipe, field f referring to es ∈ ExternalSources
Transf. set m = owner(f) and remove f from m
Pafter f /∈ m.F

6.5 Population-Based Standardizations

These refactorings exploit the availability of a large public repos-
itory of pipe-like mashups to standardize the programming prac-
tices across the community in order to facilitate reuse. We are not
aware of any refactoring that uses the knowledge of a crowd of
programmers to determine programming standards.

REF 10. Normalize Order of Operations: reorders the order-
independent, read-only operator modules to match the ordering
prescribed by the population. The goal of this refactoring is to in-
crease the understandability of the pipes by enforcing a canonical
ordering on the operators that has been defined by the population.

Pbefore Smell 9: Non-conforming module orderings
Params Pipe, non-conforming path p, prescribed path ppres
Transf. add path ppres to Pipe

∃wi ∈ W | in_wire(p(first), wi)
set wi.dest = ppres(first)

∃wj ∈ W | out_wire(p(last), wj)
set wj .src = ppres(last)

∀m ∈ p
for k = 1 . . . |m.F|

copy m.F [k] to ppres(m)
remove p

Pafter ppres in place of p

REF 11. Extract Global Subpipe: a generalization of Refac-
toring 7 to operate across a population of pipes, broadening the
space on which the pattern identification occurs. This refactoring
assumes that a function getSubP ipe : Path → Pipe exists that
takes an isomorphic path and returns a global pipe that can replace
it (each subpipe is built like those in Refactoring 7, lines (1 – 2)).

Pbefore Smell 10: Global Isomorphic Paths
Params isomorphic Paths
Transf. Start at line (3) in Refactoring 7, replacing it with:

for(a = p ∈ Paths), newPipe = getSubP ipe(a)
Pafter ∀p ∈ Paths | p /∈ Pipes, ∃1subpipe(newPipe) ∈ Pipe

7. EMPIRICAL STUDY

To assess the effectiveness of the refactorings in removing smells,
we performed an empirical study on the sample of pipes described
in Section 5.1. This section presents the adaptation of the imple-
mentation of the refactorings to fit the Yahoo! Pipes language, the
infrastructure we built to perform the study, the results, and a dis-
cussion on the generalizability and validity of our findings.

7.1 Refactoring for Yahoo! Pipes

This section describes the additional refactoring constraints and
adaptations we performed to fit the Yahoo! Pipes language. We
later discuss the impact of these changes in Section 7.3.

Refactoring 3: Push Down Module. The urlbuilder module
required additional processing to insert separator symbols when as-
sembling a url string from its fields (e.g., base url, parameters).

Refactoring 4: Merge Redundant Modules and Refactoring 5:

Collapse Duplicate Paths. These refactorings require op(mi) to
accommodate multiple fields, so it was only implemented for sort,
filter, regex, and rename. For operators with non-wireable fields,
matching constraints were added requiring the non-wireable fields
to match prior to merging. Last, path-altering modules in Yahoo!
Pipes have a bounded number of potential wires. We added pre-
conditions to respect those bounds (limits of five incoming wires
for union and two outgoing wires for split).

Refactoring 8: Replace Deprecated Modules. Yahoo! Pipes
provides a list of deprecated modules and some suggestions on how
to replace them. The following deprecated modules are replaced:
foreach, foreachannotate, contentanalysis, and babelfish.

Refactoring 9: Remove Deprecated Sources. This refactoring
is applied to generator and string-setter modules, but not to user-
setter modules because the url can be changed at run-time.

Refactoring 10: Normalize Order of Operations and Refac-

toring 11: Extract Global Subpipe. We generate PPres and
PGPaths by considering the pipes cloned more than 10 times
(∼10% of the pipes in the population). For Refactoring 10 we
identified paths of size two to five, containing read-only and order-
independent modules and for Refactoring 11 we identified paths of
at least length three that appear in multiple pipes within the subset.

7.2 Study Infrastructure

To perform this study we had to be able to obtain a pipe repre-
sentation, analyze it to detect smells, and refactor it to reduce those
smells. Yahoo!, however, does not provide an API to perform any
of those actions outside their proprietary Pipes Editor. Thus, we
created an infrastructure that allows us to perform these tasks effi-
ciently (each analysis and transformation takes less than a second
except for the smells that require a query to external sources) on
thousands of pipes to assess the refactorings effectiveness in reduc-
ing the smells. This infrastructure is depicted in Figure 6.

By executing searches on the Yahoo! Pipes repository, we ob-
tained ids for those pipes that met our selection criteria. For each id,
we then sent a load pipe request to Yahoo!’s servers; the response
contained a JSON [12] representation of the Pipe in the POST data.
We stored the results in a database and built a manipulation infras-
tructure that can decode, detect smells, refactor, and re-encode the
pipes so they can be re-executed on Yahoo!’s servers. This manip-
ulation infrastructure contains analyzers for all smells, can perform
all refactorings subject to the language constraints described in Sec-
tion 7.1, supports the full grammar of Yahoo! Pipes, and it is also
available online: http://cse.unl.edu/∼kstolee/refmash.html

As part of the infrastructure we also implemented a wrapper that
repeatedly runs the smell detector and the refactorings that address
those smells until no further smell reduction can be obtained. This

88

!"#$%&'(")$*+& ,-.+&/0+#12"3&-3&4)"56+)&

!"#$%&'"()#*+#,-"./-&0/&-1*

,-.+6&

/7-(")&

8$9"":

'+);+)&<$($=$6+&

<+#"7+&

>'?@&

/3#"7+&

,-.+&

<+(+#(&'A+%%6&

B")&8:&,-.+6&

C+D$#(")&,-.+&

B")&8:&,-.+6&

!"$7&,-.+&

!"$7&,-.+&

C+6."36+&

Figure 6: Study Infrastructure

helps us explore how refactorings may interact when applied in se-
quences. The wrapper operates with an outer loop that runs until
no smells can be removed, a middle loop that iterates on all the cur-
rent smells in the pipe, and an inner loop that applies refactorings
targeting the current smells.

7.3 Refactoring Effectiveness Results

For each smell, Table 2 presents the number of smell instances
(smelliness) per pipe in the Smells Per Pipe row, and each sub-
sequent row shows the change in smelliness after applying each
individual refactoring. For example, each pipe affected by the Du-
plicate Modules smell contains an average of 5.10 smelly modules.
After applying the Duplicate Paths refactoring, each affected pipe
has 1.43 smelly modules, a reduction of 72%.

Seven of the refactorings applied individually are able to com-
pletely remove certain smells from the pipes: Non Contributing
Module eliminates Unnecessary Module, Push Down Module elim-
inates Unnecessary Abstraction, Pull Up Module eliminates Dupli-
cate Strings, Extract Local Subpipe eliminates Isomorphic Paths,
Remove Deprecated Modules eliminates Deprecated Module, Nor-
malize Module Ordering eliminates Non-conforming Module Or-
derings, and Extract Global Subpipe eliminates Global Isomorphic
Path. Remove Deprecated Sources is almost as effective, eliminat-
ing over 99% of the Invalid Sources smell.

We note that some refactorings cause changes that open the door
for other refactorings to be performed. For example, the Remove
Deprecated Sources refactoring not only eliminates 99% of the In-
valid Source smells, but it also increases the presence of the Un-
necessary Module smell by 25% (removing deprecated sources can
lead to a module with no fields, fitting Smell 2.3). This creates an
opportunity for Remove Non-Contributing Module. Other refactor-
ings may have small individual impact, but can be applied in com-
bination with others to target different aspects of a smell to have a
greater overall effect. For example, three refactorings have a valu-
able impact on the Noisy Module smell, with a maximum individual
reduction of 18%, but a collective reduction closer to 43%.

We explore the effect of applying a sequence of refactorings uti-
lizing a greedy approach to take advantage of the compounding
effect of multiple refactorings. The results, shown in the last row
of Table 2, indicate that seven smells are completely eliminated in
all the affected pipes. However, even when applying the refactor-
ings greedily, not all the smells can be eliminated. The Noisy Mod-
ule smell is not eliminated because the implementation of Refac-
toring 1: Clean Up Module only targets the generator and set-
ter modules. The Duplicate Modules smell is not eliminated be-
cause of the implementation limitations of Refactoring 4: Merge

Redundant Modules; there are many consecutive union modules
that have reached maximum capacity on their input wires. The
Invalid Source smell is not eliminated because Refactoring 9: Re-
move Deprecated Sources does not remove sources within user-
setter modules.

Overall, before applying the refactorings, 6,503 of the 8,051
pipes had at least one smell, which represents nearly 81% of the
population. After applying all the refactorings in the greedy ap-
proach, only 1,323 of the pipes have smells, representing 16% of
the pipes. On average, the number of smell instances per pipe was
reduced from eight to one through the proposed refactorings.

7.4 Generalizability and Validity

Many emerging environments are enabling end users to create
increasingly sophisticated mashups. Our study, however, focuses
on just one of those environments, Yahoo! Pipes. This environment
was selected to maximize the potential impact of the findings (given
the popularity Yahoo! Pipes), and because of the availability of a
rich public repository to support a large study on smell detection
and refactorings. Still, it remains to be explored whether the smells
and refactorings will be relevant in other environments.

We take a step in this direction by performing a manual inspec-
tion and analysis of the pipes available in the newer DERI Pipes
repository. Of the 139 published DERI pipes (Aug 2010), 77 meet
the size selection criteria used for our Yahoo! Pipes study, with an
average of 1.4 total smells per pipe. In spite of the smaller pool
size, we find that five of the eight smells (population-based smells
were not considered as their manual analysis was deemed too ex-
pensive) are present in these pipes. We note, however, that partic-
ular DERI language constructs and constraints will require further
tailoring of our infrastructure. For example, since DERI’s genera-
tor modules do not support multiple fields, they cannot be merged,
so Smell 5: Duplicate Module, which affects 30% of the pipes,
cannot be used as implemented. Still, in these pipes we observe
that three out of the five smells can be successfully detected and
refactored. Smell 6: Isomorphic Paths impacts 10% of the pipes,
Smell 8: Invalid Source impacts 9% of the pipes, and Smell 2: Un-
necessary Module impacts 6% of the pipes. Each of these smells
can be eliminated using the refactorings described in Section 6.

There are two other threats to the validity of our results related
to the proposed refactorings. First, the refactorings presented in
Section 6 are guaranteed to generate pipes that produce the same set
of unique items (reflecting Opdyke’s definition [19]; proof sketches
are available [23]). However, the proposed refactorings may cause
a pipe to return data items in a different order, if an order is not
made explicit in the pipe. For example, a refactoring may change
the order in which data is fetched and then integrated through a
union unless a sort module follows. Still, a refactoring tool could
address such issues by enforcing an order through the addition of an
extra sorting module or by simply warning the programmer about
potential side effects prior to the transformation. Second, although
the presence of smells was shown to negatively impact end-user
programmers, we did not assess the proposed refactorings in the
hands of end users to understand whether and how they are adopted
in practice.

8. CONCLUSION

End users are developing and sharing mashups in increasing num-
bers. However, a popular kind of mashup created by end users,
pipe-like mashups, have many smells such as being bloated with
unnecessary modules, accessing broken data sources, using atyp-
ical constructs, or requiring changes in multiple places even for
minor updates because of the lack of abstraction. We have identi-

89

Table 2: Refactoring Effectiveness in Reducing Smells in Pipes

Smells

Refactorings

Laziness Redundancy Environmental Population-Based

Noisy UnnecessaryUnnecessary Duplicate Duplicate Isomorphic Deprecated Invalid Module Global
Module Module Abstraction Strings Modules Paths Module Source Ordering Paths

Smells Per Pipe 5.27 2.03 1.81 12.52 5.10 5.64 1.54 2.57 1.00 1.25

R
e
d

. Clean Up Module -18.37%
Non-Contributing -100.00%
Push Down Module -11.33% -100.00% -10.21%

C
o

n
. Merge Modules -17.23% -

Duplicate Paths -72.00%

A
b

s
. Pull Up Module -12.72% -47.37% -100.00%

Local Subpipe -11.70% -100.00% -23.00%

D
e
p

. Deprecated Module -100.00% -7.14%
Deprecated Source +24.66% -99.19%

P
o

p
. Module Ordering -100.00%

Global Subpipe -100.00%
Greedy Approach -42.65% -100.00% -100.00% -100.00% -89.70% -100.00% -100.00% -99.19% -100.00% -100.00%

fied the most prevalent smells in a population of 8,051 pipes, and
have shown that end users prefer pipes that lack these smells. In-
spired by how refactoring can benefit professional developers, we
have also defined refactorings that effectively target and remove
the smells. The refactorings include some adapted from more tra-
ditional programming domains (e.g., the abstraction refactorings),
some that are unique to the mashup domain (e.g., remove depre-
cated sources), and also some that are novel to this work and can
be generalized to other domains in which there is a public repos-
itory of community code (e.g., the population-based refactorings).
The assessment of these refactorings revealed that they can reduce
the frequency of smelly pipes in the population from 81% to 16%
and reduce the average smell instances per pipe by almost 90%.
Given these promising results, the next step is to study these refac-
torings in the hands of end users to better understand how they can
be leveraged most effectively.

Acknowledgments

This work was supported in part by NSF Graduate Research Fel-
lowship CFDA#47.076, NSF Award #0915526, and AFOSR Award
#9550-10-1-0406. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.
We would like to thank the EUSES consortium members and the
ICSE reviewers for their feedback on this work.

9. REFERENCES

[1] Apatar. http://www.apatar.com/, August 2009.
[2] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for

class library migration. In OOPSLA, 2005.
[3] L. Baresi and R. Heckel. Tutorial introduction to graph

transformation: A software engineering perspective.
[4] M. M. Burnett, C. R. Cook, O. Pendse, G. Rothermel,

J. Summet, and C. S. Wallace. End-user software engineering
with assertions in the spreadsheet paradigm. In ICSE, 2003.

[5] DERI Pipes. http://pipes.deri.org/, August 2009.
[6] D. Dig, J. Marrero, and M. D. Ernst. Refactoring sequential

java code for concurrency via concurrent libraries. In ICSE,
2009.

[7] M. Fowler and K. Beck. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[8] L. Grammel, C. Treude, and M.-A. Storey. Mashup
environments in software engineering. In Web2SE ’10, 2010.

[9] W. G. Griswold and D. Notkin. Automated assistance for
program restructuring. ACM Trans. Softw. Eng. Methodol.,
2:228–269, July 1993.

[10] IBM Mashup Center.
http://www.ibm.com/software/info/mashup-center/, August
2009.

[11] M. C. Jones and E. F. Churchill. Conversations in developer
communities: a preliminary analysis of the yahoo! pipes
community. In C&T 09.

[12] JSON. http://www.json.org/, August 2009.
[13] H. Kegel and F. Steimann. Systematically refactoring

inheritance to delegation in java. In ICSE, 2008.
[14] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer.

Refactoring for parameterizing java classes. In ICSE, 2007.
[15] A. Koesnandar, S. G. Elbaum, G. Rothermel, L. Hochstein,

C. Scaffidi, and K. T. Stolee. Using assertions to help
end-user programmers create dependable web macros. In
SIGSOFT FSE, 2008.

[16] J. Liu, D. S. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In ICSE, 2006.

[17] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Trans. on Software Engineering, 30(2), 2004.

[18] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens.
Formalizing refactorings with graph transformations.
Journal of Soft. Maintenance and Evolution, 17(4).

[19] W. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[20] Yahoo! Pipes. http://pipes.yahoo.com/, July 2009.
[21] Plagger. http://plagger.org/trac, August 2009.
[22] C. Scaffidi, B. A. Myers, and M. Shaw. Topes: reusable

abstractions for validating data. In ICSE, 2008.
[23] K. T. Stolee. Analysis and Transformation of Pipe-like Web

Mashups for End User Programmers. Master’s Thesis,
University of Nebraska–Lincoln, June 2010.

[24] G. Sunyé, D. Pollet, Y. Le Traon, and J. Jézéquel.
Refactoring UML models. LNCS.

[25] G. Taentzer, D. Müller, and T. Mens. Specifying
domain-specific refactorings for andromda based on graph
transformation. In AGTIVE, 2007.

[26] J. Wong and J. Hong. What do we "mashup" when we make
mashups? In WEUSE, 2008.

90

