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Transmission Strategies in Multiple-Access Fading
Channels With Statistical QoS Constraints
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Abstract—Effective capacity, which provides the maximum
constant arrival rate that a given service process can support
while satisfying statistical queueing constraints, is analyzed in
a multiuser scenario. In particular, the effective capacity region
of fading multiple-access channels in the presence of quality of
service (QoS) constraints is studied. Perfect channel side infor-
mation is assumed to be available at both the transmitters and
the receiver. It is initially assumed that the transmitters send
the information at a fixed power level and, hence, do not employ
power control policies. Under this assumption, the performance
achieved by superposition coding with successive decoding tech-
niques is investigated. It is shown that varying the decoding order
with respect to the channel states can significantly increase the
achievable throughput region. In the two-user case, the optimal
decoding strategy is determined for the scenario in which the
users have the same QoS constraints. The performance of orthog-
onal transmission strategies is also analyzed. It is shown that for
certain QoS constraints, time-division multiple access can achieve
better performance than superposition coding if fixed successive
decoding order is used at the receiver side. In the subsequent
analysis, power control policies are incorporated into the trans-
mission strategies. The optimal power allocation policies for any
fixed decoding order over all channel states are identified. For a
given variable decoding-order strategy, the conditions that the
optimal power control policies must satisfy are determined, and
an algorithm that can be used to compute these optimal policies
is provided.

Index Terms—Effective capacity, multiple-access fading chan-
nels, power control, queueing constraints, successive decoding, su-
perposition coding, time-division multiple access (TDMA).

I. INTRODUCTION

I N wireless networks, the design and analysis of efficient
transmissions strategies have been of significant interest

for many years. In particular, fading multiple-access channels
(MAC) have been extensively studied from an information-the-
oretic point of view [1]–[7]. For instance, Tse and Hanly [3]
have characterized the capacity region of and determined the
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optimal resource allocation policies for multiple-access fading
channels. They have shown that the boundary surface points
are, in general, achieved by superposition coding and succes-
sive decoding techniques, and obtaining each boundary point
can be associated with an optimization problem in which a
weighted sum rate is maximized. Vishwanath et al. [6] derived
the explicit optimal power and rate allocation schemes (similar
to waterfilling) by considering that the users are successively
decoded in the same order for all channel states. For the convex
capacity region, the unique decoding order was shown to be
the reverse order of the priority weight. While superposition
coding and successive decoding strategies provide superior
performance, time-division multiple access (TDMA) may in
certain cases be preferred due to its simplicity. Note that the
performance of TDMA approaches that of the optimal strategy
as the signal-to-noise ratio (SNR) vanishes but, as shown by
Caire et al. [7], TDMA is strictly suboptimal when SNR is low
but nonzero.

While establishing the fundamental performance limits,
the aforementioned studies have not explicitly taken into ac-
count buffer constraints and random arrivals. In [8] and [9],
Yeh and Cohen considered multiaccess fading channels with
random packet arrivals to buffered transmitters and charac-
terized rate and power allocation strategies that maximize
the stable throughput of the system. The maximum stable
throughput region was shown in [10] to be the same as the
MAC capacity region. In [11], the same authors investigated
rate allocation policies that minimize the average packet delay
in multiaccess fading channels again under the assumption of
randomly arriving packets. More recently, Ehsan and Javidi
[12] have studied delay optimal rate allocation strategies as
well in two-user multiaccess channels but in the presence of
asymmetric arrival processes, processing rates, and packet
length distributions. Yang and Ulukus [13] also considered an
asymmetric setting and analyzed how to control the transmis-
sion probabilities in order to minimize the average delay in a
two-user multiaccess scenario.

In this paper, we also investigate the performance under
buffer constraints but provide a perspective different from
those of previous studies. In particular, we consider statistical
quality of service (QoS) constraints in the form of limitations
on the buffer violation probabilities and study the achievable
rate region under such constraints in multiaccess fading chan-
nels. Note that in certain delay sensitive applications, such
as interactive or streaming video, constraints on delay bound
violation probability may be required rather than limitations
on the average delay. For this analysis, we employ the concept
of effective capacity [14], which can be seen as the maximum
constant arrival rate that a given time-varying service process
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Fig. 1. System model.

can support while satisfying statistical QoS guarantees. The
effective capacity formulation uses large deviations theory and
incorporates the statistical QoS constraints by capturing the rate
of decay of the buffer occupancy probability for large queue
lengths. The analysis and application of effective capacity in
various settings has attracted much interest recently (see e.g.,
[15]–[21] and references therein). In [18], Liu et al. considered
a two-user cooperative multiple-access fading channel and
analyzed the rate region achieved with frequency-division mul-
tiplexing when the users are operating under QoS constraints in
the form of limitations on buffer overflow probabilities. In this
study, cooperation among the users is shown to significantly
improve the achievable rate region if the quality of the wireless
link between the users is better than those of the links between
the users and the destination. We note that since the transmitters
are assumed to not know the channel conditions, power and rate
adaptation policies are not studied in [18]. Additionally, since
orthogonal transmission schemes are considered, superposition
coding and successive decoding strategies are not addressed in
detail.

Our contributions and major findings in this paper can be
summarized as follows. We consider the scenario in which both
the transmitters and the receiver have perfect channel side infor-
mation (CSI). First, assuming that no power control is employed
in the transmission, we characterize the rate regions for both su-
perposition transmission strategies and TDMA. Unlike the re-
sults obtained in [1] and [6], varying the decoding order with
respect to the channel states is shown to significantly increase
the achievable rate region (i.e., throughput region) under QoS
constraints. Also, it is demonstrated that time-sharing strate-
gies among the vertex of the rate regions can no longer achieve
the boundary surface of the throughput region. Additionally, we
show that if we take the sum-rate throughput, or the sum ef-
fective capacity, as the performance metric, TDMA can, in cer-
tain cases, even achieve better performance than superposition
coding when a fixed decoding order is employed at the receiver.
Next, we incorporate power control policies into the model. For
this case, we first obtain closed-form expressions for the optimal
power control policies under the assumption that the decoding
order is fixed at the receiver side. When the decoding order is
variable, we identify the conditions the optimal power control

policies should satisfy. We also describe an algorithm to deter-
mine such policies.

The remainder of this paper is organized as follows. Section II
describes the system model. In Section III, effective capacity as
a measure of the performance under statistical QoS constraints
is briefly discussed, and the throughput region under QoS con-
straints is defined. In Section IV, under the assumption of no
power control, we analyze the throughput region for both fixed
and variable decoding order strategies. Section V describes the
optimal power control policies. Finally, Section VI concludes
this paper.

II. SYSTEM MODEL AND MAC CAPACITY REGION

As shown in Fig. 1, we consider an uplink scenario where
users with individual power and buffer constraints (i.e.,

QoS constraints) communicate with a single receiver. It is
assumed that the transmitters generate data sequences which
are divided into frames of duration . These data frames are
initially stored in the buffers before they are transmitted over
the wireless channel. The discrete-time signal at the receiver in
the symbol duration is given by

(1)

where is the number of users, and denote the
complex-valued channel input and the fading coefficient of the
th user, respectively. We assume that ’s are jointly sta-

tionary and ergodic discrete-time processes, and we denote the
magnitude-square of the fading coefficients by .
Above, is a zero-mean, circularly symmetric, complex
Gaussian random variable with variance . The
additive Gaussian noise samples are assumed to form
an independent and identically distributed (i.i.d.) sequence.
Finally, denotes the received signal.

The channel input of user is subject to an average energy
constraint for all , where is the band-
width available in the system. Assuming that the symbol rate
is complex symbols per second, we can see that this for-
mulation indicates that user is subject to an average power
constraint of . With these definitions, the average transmitted
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SNR of user is . Now, if we denote as the
instantaneous transmit power as a function of the fading states

, the instantaneous transmitted SNR level be-
comes . Then, the average power constraint is
equivalent to the average SNR constraint for
user .

A. Fixed Power and Variable Rate

First, we consider the case in which the transmitters operate
at fixed power and hence do not employ any power adaptation
policies. The capacity region of this channel is given by [1], [3]

(2)

where . As well known, there are
vertices of the polyhedron defined in (2). The vertex

corresponds to a permutation , or
the successive decoding order at the receiver, i.e., users are de-
coded in the order given by . This vertex is spec-
ified by the average rates

(3)
in bits/s for . With this characterization, we see
that for the given decoding order , the maximum instantaneous
service rate for user is

(4)
Time sharing among these permutations of decoding orders
yields any point on the boundary surface of [28]. As
also discussed in [6], it can be easily verified that varying the
decoding order according to the channel states does not provide
any improvement on the capacity region.

B. Variable Power and Variable Rate

Now, we suppose that dynamic power and rate allocation
is performed according to time variations in the channels. For
a given set of power allocation policies ,
where is the power control policy of the th user, the
achievable rate region is described by [3]

(5)

For a given decoding order at the receiver, the individual average
and instantaneous rates of the users can be obtained similar to
(3) and (4), respectively, with replaced by . The capacity
region is given by

(6)

where is the set of all feasible power control policies that
satisfy the average power constraint

(7)

C. TDMA

For simplicity, we assume that the time division strategy is
fixed prior to transmission. Let denote the fraction of time
allocated to user . Note that we have . In each
frame, each user occupies the entire bandwidth to transmit the
signal in the corresponding fraction of time. Then, the instanta-
neous service rate for user in each frame is given by

(8)

Note that user is assumed to transmit with the higher average
power of in the allocated fraction of the time.

III. PRELIMINARIES

A. Effective Capacity

In [14], Wu and Negi defined the effective capacity as the
maximum constant arrival rate that a given service process can
support in order to guarantee a statistical QoS requirement spec-
ified by the QoS exponent . The effective capacity is formu-
lated as

(9)

where the expectation is with respect to ,
which is the time-accumulated service process, and

denotes the discrete-time stationary and ergodic sto-
chastic service process.

Operational meaning of the effective capacity is the fol-
lowing. If the constant arrival rate to the buffer is equal to
the effective capacity , then the queue length process
converges in distribution to a random variable that satisfies
[31]

(10)

can be seen as the stationary queue length, and as the asymp-
totic decay rate of the tail distribution of the queue length .
Hence, effective capacity specifies the maximum constant ar-
rival rate that can be supported by the time-varying channel,
while the queue-overflow probability is guaranteed to behave
as for large overflow threshold . There-
fore, the QoS exponent can be regarded as a parameter that
specifies the asymptotic exponential decay rate of the overflow
probability and describes how strict the QoS constraints are. For
instance, larger corresponds to more strict QoS constraints
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while smaller implies looser QoS guarantees. As noted in [16],
when we have , then the delay violation
probability can be approximated as for
large , where denotes the steady-state delay experienced in
the buffer and is determined by the arrival and service pro-
cesses. In a more specific scenario in which the arrival rate is
constant, Liu and Chamberland [19] showed that

where is some constant, , and is the
constant arrival rate.

Since the average arrival rate is equal to the average depar-
ture rate when the queue is in steady state [22], effective ca-
pacity, which characterizes the maximum constant arrival rate,
can also be seen as the maximum throughput in the presence of
constraints on the buffer or delay violation probabilities. Note
that requiring the tail probabilities of buffer/delay violations
to decay exponentially is a stronger condition than stability or
having the average buffer length or delay to be finite. Therefore,
throughput in the presence of QoS limitations will, in general,
be less than the throughput under stability constraints.

In this paper, in order to simplify the analysis while consid-
ering general fading distributions, we assume that the fading
coefficients stay constant over the frame duration and vary
independently for each frame and each user. In this scenario,

, where is the instantaneous service rate in the
th frame duration . Then, (9) can be written as

(11)

where is, in general, a function of the fading state .
Equation (11) is obtained using the fact that instantaneous rates

vary independently from one frame to another. It is
interesting to note that as and hence QoS constraints
relax, effective capacity approaches the ergodic capacity, i.e.,

. On the other hand, as shown in [20],
converges to the delay limited capacity as grows without
limit (i.e., ) and QoS constraints become increasingly
more strict. Therefore, effective capacity enables us to study
the performance levels between the two extreme cases of delay
limited capacity, which can be seen as a deterministic service
guarantee or equivalently as a performance level attained under
hard QoS limitations, and ergodic capacity, which is achieved
in the absence of any QoS considerations.

Throughout the rest of the paper, we use the effective capacity
normalized by bandwidth , which is denoted by

(12)

At this point, it is also important to note that the transmis-
sion strategies (such as superposition coding schemes, TDMA
methods, and power control policies) and reception strategies
(such as the successive decoding order) will henceforth be de-
signed and analyzed as functions of the fading states and the
QoS exponent . Hence, our transmission and reception policies
take into account the statistical queueing constraints through the
QoS exponents but not the actual queue lengths and states. We
note that the authors in [25]–[27] have recently studied queue-
length-based policies in the context of wireless scheduling in

broadcast scenarios. In these works, only one user at a time is
served by the transmitter in a downlink model. Shakkottai [25]
investigated the effective capacity achieved by a greedy sched-
uling rule that picks the user with the highest channel rate and
a max-queue rule that picks the user with the largest product
of the queue length and the channel rate. Even though an i.i.d.
channel model (akin to our block-fading assumption) is consid-
ered in this paper, it is described that the main difficulty in the
analysis of queue-length-based policies arises from the fact that
these policies statistically couple the rates allocated to various
users across time. Therefore, due to correlation over time, the
effective capacity formula in (9) cannot be simplified to that in
(11). In such cases, effective capacity cannot be computed di-
rectly and certain technical difficulties are encountered. In par-
ticular, the techniques of sample path large deviations and cal-
culus of variations are needed to determine the performance.
In [25], these approaches are applied to relatively simple sce-
narios with two users, each of which experiences a two-state
(ON–OFF) channel. More recently, using the sample-path large
deviation principle, Venkataramanan and Lin [26] studied wire-
less scheduling algorithms that maximize asymptotic decay rate
of the queue-overflow probability in a more general downlink
scenario with users and possible channel states.

In this paper, we consider more complex channel models
with continuous fading and more sophisticated transmission
strategies such as superposition coding (rather than orthogonal
transmissions) and power control techniques in a multiple-ac-
cess scenario. By addressing only the statistical queueing
constraints, we formulate a tractable problem for more practi-
cally appealing system models. At the same time, we note that
queue-length-based policies have the potential to attain a higher
effective capacity than those achieved by greedy policies that
take into account only the channel states (see e.g., [25, Fig. 3]).
Hence, from this perspective, our results, which incorporate the
channel states and the QoS exponents but not the actual queue
states in the transmission and reception, can be regarded as
baselines with which the performances of queue-length-based
policies can be compared.

B. Throughput Region

Suppose that is a vector com-
posed of the QoS constraints of users. Let

denote the vector of the normalized ef-
fective capacities. We first have the following characterization.

Definition 1: The effective throughput region is described as

(13)

where represents the vector composed
of the instantaneous transmission (or equivalently service) rates
of users. Note that the union is over the distributions of the
vector such that the expected value lies in the MAC
capacity region.
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Remark 1: The throughput region given in Definition 1 repre-
sents the set of all vectors of constant arrival rates that can
be supported in the fading MAC in the presence QoS constraints
specified by . Since reliable communication
is considered, the arrival rates are supported by instantaneous
service rates whose expected values are in the MAC capacity
region. For instance, in the absence of power control, the max-
imum instantaneous service rates for a given decoding order are
given by (4).

Using the convexity of the MAC capacity region ,
we obtain the following preliminary result on the effective
throughput region defined in (13).

Theorem 1: The throughput region is
convex.

Proof: Let the vectors and belong to
. Then, there exist some rate vectors and

for and , respectively, such that and
are in the MAC capacity region. By a time-sharing strategy,
for any , we know from the convexity of the MAC
capacity region that . Now, we
can write

(14)

(15)

(16)

In (14)–(16), all operations, including the logarithm
and exponential functions and expectations, are com-
ponent-wise operations. For instance, the expression
in (14) denotes a vector whose components are

.

Similarly, the inequalities in (14) and (16) are component-wise
inequalities. The inequality in (14) follows from the definition
in (13). Moreover, (16) follows from Hölder’s inequality and
leads to the conclusion that still lies in the
throughput region, proving the convexity result.

We are interested in the boundary of the region
. Now that is convex, we can

characterize the boundary surface by considering the following
optimization problem [3]:

(17)

For all priority vectors, in with
.

IV. TRANSMISSIONS WITHOUT POWER CONTROL

In this section, we assume that the signals are transmitted at
a constant power level in each frame and hence power adapta-
tion with respect to the fading states is not performed. Under
this assumption, we initially consider the scenario in which the

receiver decodes the users in a fixed order. Subsequently, we an-
alyze the case of variable decoding order.

A. Fixed Decoding Order

We first assume that the receiver decodes the users in a fixed
order in each frame. Hence, the decoding order does not change
with respect to the realizations of the fading coefficients. If a
single decoding order is used in the frame, it is obvious that only
the vertices of the boundary region can be achieved. We consider
a slightly more general case in which time-sharing technique is
employed in each frame among different decoding orders. Note
that the time-sharing strategy is also independent of the channel
states and hence is fixed in different blocks. We denote the frac-
tion of time allocated to decoding order as . Naturally, the
fractions of time satisfy and . Varying
the values of enables us to characterize the throughput re-
gion. Under these assumptions, the effective capacity for each
user on the boundary surface is

(18)

where represents the maximal instantaneous service
rate of user at a given decoding order , which is given by

(19)

where is the inverse trace function of .

Remark 2: Note that is the maximum instantaneous
service rate achieved with superposition coding and a particular
decoding order. Hence, the corresponding effective capacities
characterize the throughput achieved with this strategy in the
presence of QoS constraints. Note also that , which rep-
resents the information-theoretic limit for instantaneous rates,
can be approached if codes with large blocklengths are em-
ployed. Therefore, in order to have operational significance in
the results, we assume throughout the paper that the number of
symbols in a frame duration of seconds is sufficiently
large. If is relatively small, rates attained with finite block-
length channel codes in the presence of possible decoding errors
should be considered as addressed in [23] and [24].

Remark 3: Throughout the rest of the paper, we generally
specify the effective capacity values on the boundary surface for
simplicity and brevity. Effective capacity regions can immedi-
ately be specified using these boundary points. For instance, the
effective capacity (or equivalently throughput) region for super-
position coding and fixed decoding order is

(20)

where the union is over different time allocation strategies.
Next, for comparison, we consider the TDMA case in which

we also have similar time allocation strategies but only one user
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transmits in its specific fraction of time. We first have the fol-
lowing definition.

Definition 2: The throughput region for TDMA can be seen
as the achievable vectors of arrival rates with each component
bounded by the effective capacity obtained when the instanta-
neous service rate is given by (8). More specifically, the max-
imum effective capacity for user is

(21)
where is the fraction of time allocated to user , and

. We again assume that is sufficiently large so that the
expression in (8) is a realistic representation of the service rate.

An immediate result can be obtained as follows.

Theorem 2: The throughput region for TDMA is convex.
Proof: Note that the points on the boundary sur-

face is given in (21). Consider the function
. It can be easily verified that is

a convex function in . Then, is a -convex function.
Since weighted nonnegative sum preserves the log-convexity
[29, Sec. 3.5], we know that is -convex. Then,

is a concave function in
. Hence, we immediately see that the throughput region for

TDMA is convex.

The optimal time allocation policy that maximizes the
weighted sum can be obtained through the optimization
problem

(22)

The objective function in the above problem is concave, and
we can use the Lagrangian maximization approach. Taking the
derivative of the Lagrangian function with respect to , we ob-
tain, for each user, the optimality condition given in (23), shown
at the bottom of the page, where is the Lagrange multiplier
whose value is chosen to satisfy the constraint .
If the optimal value of turns out to be negative, then the op-
timal value of should be 0. When ,

the obtained values of are the ones that achieve the max-
imal sum-rate throughput, i.e., the sum of the effective capac-
ities of the users. Although obtaining closed-form solutions is
unlikely, the maximization problem in (22) can be easily solved
numerically using convex optimization tools. Numerical results
are provided in Section IV-C.

B. Variable Decoding Order

We now study the case in which the receiver varies the de-
coding order with respect to the fading states .
In its most general form, we assume that the receiver, for each
fading state , employs a time sharing of the decoding orders
in which the fraction of time allocated to decoding order is

for . Hence, for each fading state , the re-
ceiver now has the freedom to use possibly a different decoding
order or a different time sharing of multiple decoding orders.
For a given time-sharing policy , the effective ca-
pacity of user is

(24)

where is given by (19). In this scheme, the instanta-
neous transmission rates for the users are selected from any
point on the dominant face of the MAC instantaneous capacity
region.

A more restrictive but simpler scheme for the receiver is to
eliminate the time sharing and employ a particular single de-
coding order for each fading state . In this case, the instan-
taneous transmission rates are chosen from the vertices of the
MAC instantaneous capacity region. More specifically, we as-
sume that the vector space of the possible values for is
partitioned into disjoint regions with respect to
decoding orders . Hence, each region corresponds to a
unique decoding order. For instance, when , the receiver
decodes the information in the order . Therefore, this scheme
corresponds to the special case of the general time-sharing ap-
proach with when and zero otherwise for
all .

Now, for a given partition , the maximum effective
capacity that can be achieved by the th user is

(25)

(26)

(23)
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where is the distribution function of and is given
in (19). Akin to the optimization in (17), the optimal partition

that maximizes the weighted sum of the effective ca-
pacities can be identified by solving the following optimization
problem:

(27)

(28)

Note that the optimal partition depends on the weight vector
. By solving a sequence of optimization prob-

lems for different values of , we can trace the boundary of the
effective throughput region.

Considering the expression for effective capacity and the opti-
mization problem in (28), we note that finding closed-form ana-
lytical expressions for the optimal partitions of the channel state
space seems intractable for a general scenario. With this in mind,
we consider a simplified case in which all users have the same
QoS constraint described by . This case arises, for instance, if
users do not have priorities over others in terms of buffer limi-
tations or delay constraints.

1) Two-User MAC: First, we consider the two-user MAC
case and suppose that the two users have the same QoS exponent

. Similar to the discussion in [21], finding an optimal decoding-
order function can be reduced to finding a function
in the state space such that users are decoded in the order (1,2)
if and users are decoded in the order (2,1) if

. Hence, the function partitions the space of the possible
values of . With this, the optimization problem in
(27) becomes

(29)

where and are expressed as

(30)

(31)

Note that the maximization in (29) is over the choice of the
function . Implicitly, should always be larger than
zero as implied in (30) and (31). In cases in which this condition
is not satisfied, we need to find a function instead,
as will be specified below.

Theorem 3: The optimal decoding order as a function of the
fading state for a specific common QoS constraint
in the two-user case is characterized by the following functions:

(32)

(33)

where and is a constant that depends on
the weight in (29) and the values of the double integrals in
(30) and (31). Note that the function used to partition the state
space is either or depending on the value of .

Proof: Suppose that the optimal decoding order is specified
by the function . We define

(34)

where . is the optimal function,
is any constant, and represents arbitrary perturbation. A

necessary condition that needs to be satisfied is [30]

(35)

We define the following:

(36)

(37)

By noting that , and from (35)–(37), we can
derive

(38)

Since the aforementioned equation holds for any , it fol-
lows that
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(39)

which after rearranging and defining as follows yields

(40)
Obviously, . Notice that after a simple computation, (40)
becomes

(41)

which leads to (32) after rearranging. Note here that if ,

for . Then, the expressions in (30) and
(31) are not well defined. In this case, we denote the optimal
function as instead. Following a similar approach
as shown in (30)–(41) yields (33).

Remark 4: We have assumed that the users are decoded in
the order (1, 2) when (or if ) and
decoded in the order (2, 1) when (or
if ). It is interesting note that if we switch the decoding
orders in the regions (i.e., if users are decoded in the order (1,
2) when ), exactly the same partition functions as in
(32) and (33) are obtained due to the symmetric nature of the
problem. Hence, the structure of the optimal functions that par-
tition the space of channel states into two nonoverlap-
ping regions does not depend on which decoding order is used
in which region.

Remark 5: Although the partition does not depend on the
choice of the decoding orders in different regions, the perfor-
mance definitely does. Our numerical computations show that
the order selected originally at the beginning of our discus-
sion (i.e., using the decoding order (1,2) when or

) provides a larger throughput region than other-
wise. This observation leads to an interesting conclusion. Note
that partition functions in (32) and in (33) are linear
functions of and , respectively. When and

(42)

user 1 is decoded first and user 2 is decoded last. Hence, for in-
stance, when is much larger than and user 1 is enjoying
much better channel conditions, user 1 is decoded first in the
presence of interference caused by user 2’s received signal. User
2, who has less favorable conditions, is decoded subsequently
without experiencing any interference. Note that such an oper-
ation is the opposite of an opportunistic behavior and leads to a
more fair treatment of users. This is rather insightful since the
users are assumed to operate under similar QoS limitations (i.e.,
they have the same QoS exponent ). Note that if the decoding
orders are switched, users having favorable channel conditions
will be decoded last and hence experience no interference. In

such a case, there is a bias toward users with better channel con-
ditions, which leads to inefficient performance when both users
operate under similar buffer constraints.

Our earlier observations have led us to propose the following
suboptimal decoding-order strategy for a scenario with more
than 2 users.

2) Suboptimal Decoding Order: In this section, we consider
an arbitrary number of users. When all users have the same QoS
constraint specified by , we propose a suboptimal decoding
order given by

(43)

due to the observation that the user with the largest weight
should be decoded last, and the fact that the higher the value
of , the less power is needed to achieve a specific effective
capacity. Considering a two-user example, we, with this choice
of the decoding order, can express the points on the boundary
surface as

(44)

(45)

C. Numerical Results

We have performed numerical analysis for independent
Rayleigh fading channels with . In Fig. 2, the
throughput region of a two-user MAC is plotted for superposi-
tion strategies with different decoding ordering methods at the
receiver, and also for TDMA. In the figure, the solid and dotted
curves provide the throughput regions achieved by employing
optimal and suboptimal variable decoding orders, respectively,
at the receiver. Note that in the optimal strategy described by the
results of Theorem 3, the receiver chooses the decoding order
according to the channel states such that the weighted sum of
effective capacities, i.e., summation of -moment generating
functions, is maximized. We see that the suboptimal strategy
described in Section IV-B2 can achieve almost the same rate
region as the optimal strategy, indicating the efficiency of this
approach. In the same figure, dot-dashed curve provides the
throughput region achieved by employing a fixed decoding
order for all channel states. Here, we observe that the strategy
of using a fixed decoding order at the receiver is strictly sub-
optimal even when the users are operating under similar buffer
constraints, and varying the decoding order with the respect



1586 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

Fig. 2. Throughput region of two-user MAC case. � � � ��. � � � � ����. The solid, dotted, dot-dashed, and dashed lines represent the regions
achieved with optimal variable decoding order, suboptimal variable decoding order, fixed decoding with time sharing, and the TDMA, respectively.

Fig. 3. Sum-rate throughput as a function of �. � �� ��; � � ��.

to the channel gains can significantly increase the achievable
region. Finally, the throughput region of TDMA is given by the
dashed curve. We immediately note that TDMA can achieve
some points outside of the throughput region attained with
fixed decoding order at the receiver side. These numerical
results show that markedly different strategies may need to be
employed when systems are operating under buffer constraints.
In the absence of such constraints, the performance is captured
by the ergodic capacity region which cannot be improved by
varying the decoding order with respect to the channel states
[6]. Hence, using a fixed decoding order at the receiver is an
optimal strategy when there are no QoS constraints. Moreover,
TDMA is always suboptimal with respect to the superposition
schemes regardless of the decoding-order strategy [7].

In Fig. 3, sum-rate throughput, i.e., the sum of the effective
capacities, is plotted as a function of the QoS exponent . Here,
we note that as increases, the curves of different strategies con-
verge. In particular, TDMA performance approaches that of the
superposition coding with variable decoding. Hence, orthogonal
transmission strategies start being efficient in terms of attaining
the sum rate under stringent buffer constraints. Note that the
sum-rate throughput generally decreases with increasing , and
we conclude from the figure that this diminished throughput can
be captured by having each user concentrate its power in a cer-
tain fraction of time in the TDMA scheme. We also see that for
approximately , TDMA starts outperforming super-
position transmission when a fixed decoding order is employed
at the receiver. Such an observation is also noted in the discus-
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Fig. 4. � versus . � ����. � � ��. � � � � ����.

sion of Fig. 2. In contrast, we observe that as approaches 0
and hence the QoS constraints relax, TDMA is the strategy with
the worst performance. Note that when the performance metric
is the ergodic capacity and hence no queueing constraints are
considered, this suboptimality of TDMA with respect to super-
position strategies is well known (see, e.g., [7]).

We are also interested in the values of parameter that ap-
pears in the functions in Theorem 3. In Fig. 4, we plot as
a function of . It is interesting to note that

seems to be linear with respect to .

V. TRANSMISSIONS WITH POWER CONTROL

In this section, we analyze the case in which the transmitter
employs power control policies in the transmission. Similarly
as previously, we initially investigate the scenario in which the
decoding order is fixed for all channel states. Subsequently, we
study variable decoding-order schemes. Note that varying the
decoding order with respect to the channel states, according to
the analysis in Section IV, has the potential to significantly af-
fect the achievable rates.

A. Power Control Policy for Fixed Decoding Order in All
Channel States

Here, we characterize the optimal power allocation policies
when the decoding order is fixed for all channel states. Due to
the convexity of , there exist Lagrange multipliers

such that on the boundary surface
can be obtained by solving the optimization problem

(46)

where represents the collection of the
power control policies of all users, is the

weight vector, and
is the vector of maximum effective capacities of the users for
given decoding order and power allocation policies. Note that

(defined in Section II as the instantaneous trans-
mitted SNR level) describes the power control policy of the th
user. For a given permutation and set of power allocations ,

is given by

(47)

Now, the optimization problem (46) can be rewritten as

(48)

The following result identifies the optimal power adaptation
policies that solve the aforementioned optimization problem.

Theorem 4: Assume that the receiver, for all channel states,
decodes the users in a fixed order specified by the permutation
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. Then, the optimal power allocation policies that solve the
optimization problem in (48) are given by

(49)

where is the normalized QoS exponent,
, and are constants that are introduced

to satisfy the average power constraints.
Proof: Note that with a fixed decoding order, the user

sees no interference from the other users, and hence, the
derivative of (48) with respect to will only be related
to the effective capacity formulation of user . Therefore,
we can solve an equivalent problem by maximizing
instead. After we derive , the derivative of (48) with
respect to will only be related to the effective capacity
formulation of user . By repeated application of this
procedure, for given , (48) can be further decomposed into the
following sequential optimization problems:

(50)

in the inverse order of . Similarly as in [15], due to the mono-
tonicity of the logarithm, solving the aforementioned opti-
mizations is the same as solving

(51)
for . Differentiating the aforementioned La-
grangian with respect to and setting the derivative to zero
yield the intended result in (49).

Remark 6: Exploiting the result in (49), we can find that in-
stead of adapting the power according to only its channel state as
in [15], where a single-user scenario is studied, the user adapts
the power with respect to its channel state normalized by the ob-
served interference and the noise.

Remark 7: To give an explicit idea of the power control
policy, we consider a two-user example in which the decoding
order is (2, 1). For this case, we can easily find that

otherwise
(52)

and

and

and

otherwise
(53)

where and are chosen to satisfy the average power con-
straints of the two users.

B. Power Control Policy for Variable Decoding Order

In this section, we study the optimal power allocation policy
when the receiver varies the decoding order with respect to the
channel fading states. We mainly concentrate on the two-user
scenario. The key idea we introduce here is to consider the
power allocation policy of each user for each region (in
which decoding is performed according to permutation )
while requiring the average power constraint to be satisfied by
the joint power over all regions .

For the two-user case, due to the convexity of the throughput
region, there exist Lagrange multipliers
such that on the boundary surface can be obtained by
solving the optimization problem

(54)

where are the power control policies, are
the weights in the weighted sum, and denotes
a particular partition of the space of the positive values of

1. Hence, power control policies that solve (54) are the
optimal ones for a given partition. In the following, since we
assume is given, the notation is replaced by
for brevity.

Recalling the discussion in Section IV-B, we can express the
effective capacities of the two users as in (30) and (31) by only
replacing with in these expressions. The Lagrangian
[which is the objective function in (54)] can now be expressed
as in (55), shown at the bottom of the next page.

In (55), the expressions in regions and are written sep-
arately due to the reason that possibly different power allocation
strategies are employed in different regions. We define

(56)

1Similarly as discussed in Section IV-B, different decoding orders are em-
ployed in � and � .
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and

(57)

Note that the values of these functions are obtained for given
power control policies and given partition

.
Now, we consider the power control policy of each user in

each decoding-order region . By differentiating the
Lagrangian, we can find the following optimality conditions:

(58)

(59)

(60)

(61)

where (58) and (59) are obtained by differentiating the La-
grangian with respect to and , respectively, over .
Similarly, (60) and (61) are obtained by differentiating with
respect to and , respectively, over . Due to the
convexity, whenever is negative valued, we set

. Although obtaining closed-form expressions
from the optimality conditions seems to be unlikely, we can
gather several insights on the power control policies by ana-
lyzing (58)–(61).

Let us first define , ,

, and , where are the La-
grange multipliers whose values are chosen to satisfy the av-
erage power constraint (7) with equality, and and are de-
fined in (56) and (57). Now, consider (58) and (59). The channel

state lies in . Through a simple computation using (59), we
can derive

(62)

which tells us that if

(63)

If , we have from (58) that

(64)

which gives us that

(65)

which implies that if

(66)

Now, if we substitute (62) into (58), we obtain the following
additional condition for having : the equation

(67)

has a solution that returns a negative or zero value for . The
previous discussion enables us to characterize the regions in
which one user transmits while the other one is silent. We also
have a closed-form formula in (65) for the optimal power adap-
tation policy when only one user transmits. Indeed, this is the
optimal power control policy derived in [15] for a single-user
system. When both users transmit, the power control policies

are given directly by the nonnegative solution of (58)
and (59).

Note that the conditions and characterizations provided in
(62)–(67) pertain to the case in which the channel state is in
region . Following a similar analysis of (60) and (61), we can
obtain similar results for the cases in which the channel state is
in .

(55)
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For a given partition , the optimal power control
policy can be determined numerically using the optimality con-
ditions in (58)–(61). Additionally, the equations and inequali-
ties in (62)–(67) can be used to guide the numerical algorithms
as they specify under which conditions at most one user trans-
mits and provide the optimal power control policy in such cases.
However, there is one difficulty. Equations (62)–(67) depend on

, and which in turn depend on , , , and
which are in general functions of the power control poli-

cies. In such a situation, the following iterative procedure can
be employed in search of the solution. We can first choose cer-
tain values for , , , and , and then determine the op-
timal power allocation policies for these selected values. Subse-
quently, we can check whether the obtained policy satisfies the
average power constraint with equality. This enables us to de-
termine if the selected and values are accurate. We can
also compute and using the obtained policy and see if
they agree with the initial values of and . If there is no
sufficient match or if the power constraint is not satisfied with
equality, then we update the values of , , , and , and
reiterate the search of the optimal policy.

With this insight, we propose the following algorithm that
can be used to determine the optimal power allocated to each
channel state.

POWER CONTROL ALGORITHM

1 Given , the partition , initialize ;

2 Initialize and ;

3 Determine , ,

, ;

4 if

5 then if

6 then ;

7 if

returns

nonpositive

8 then ;

9 else if

10 then , ;

11 else Compute from (58) and (59);

12 else , ;

13 if

14 then if

15 then ;

16 if

returns

nonpositive

17 then ;

18 else if

19 then , ;

20 else Compute from (60) and (61);

21 else , ;

22 Check if the obtained power control policies and
satisfy the power constraint with equality;

23 if not satisfied with equality

24 then update the values of and and return to Step 3;

25 else move to Step 26;

26 Evaluate and with the obtained power control policies;

27 Check if the new values of and agree (up to a certain
margin) with those used in Step 3;

28 if do not agree

29 then update the values of and and return to Step 2;

30 else declare the obtained power allocation policies and
as the optimal ones.

Note that, earlier, we have not specified how the values of
and are updated for each iteration in order to keep

the algorithm generic. In our numerical computations, we have
updated and using the bisection search algorithm. The
values of and are updated in Step 29 of the algorithm by
assigning them the values evaluated in Step 26. Hence, the most
recent values are carried over to the new iteration.

In Fig. 5, we plot the optimal power allocation policies and
as functions of channel fading states and . We assume

that , , and
. We consider the partition specified by the suboptimal

decoding order given in (43). Hence, since we have
, decoding orders (1,2) and (2,1) are used when and

, respectively. Under these assumptions, we computed
the optimal values as , , ,
and . In the figure, we observe that each user, not
surprisingly, allocates most of its power to the regions in which
it is decoded last and hence does not experience interference.
However, due to the introduction of QoS constraints, we also
note that each user also allocates certain power to the cases in
which it is decoded first. This is performed in order to continue
transmission and avoid buffer overflows.
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Fig. 5. Optimal power control policies � and � of users 1 and 2, respectively, as a function of �� � � �. � � ���, � � ���.

So far, we have assumed that the partition is given. The
optimal partition that maximizes the weighted sum-rate can
be derived through the following optimization similarly as in
[32]:

(68)

where is the optimal weighted sum value for given pair of
, and are the optimal power control poli-

cies for given .

VI. CONCLUSION

In this paper, we have studied the achievable throughput re-
gions in multiple-access fading channels when users operate

under QoS constraints. We have assumed that both the trans-
mitters and the receiver have perfect CSI. We have employed the
effective capacity as a measure of the throughput under buffer
constraints. We have defined the effective capacity region and
shown its convexity. We have considered different transmis-
sion and reception scenarios e.g., superposition coding, different
strategies for the decoding order, and TDMA. When transmis-
sion with superposition coding is performed, we have shown
that varying the decoding order at the receiver with respect to the
fading states can significantly increase the achievable rate region
compared to that achieved with fixed decoding-order schemes.
For the case of two users with the same QoS constraints, we have
derived the optimal strategy for varying the decoding order. We
have noted that when the two users operate under similar QoS
limitations and one user enjoys much more favorable channel
conditions, the efficient strategy is to first decode the user with



1592 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

the better channel and subsequently decode the other user so
that the user with worse channel conditions does not experi-
ence interference. Motivated by this observation, we have pro-
posed for general multiple-user scenarios a simpler suboptimal
decoding rule which can almost perfectly match the optimal
throughput region. We have also studied the performance of or-
thogonal transmission strategies by considering TDMA. In the
numerical results, we have demonstrated that TDMA can per-
form better than superposition coding with fixed decoding order
for certain QoS constraints. More specifically, we have noted
that TDMA can support arrival rate pairs that are strictly out-
side the region achieved when fixed decoding order is employed
at the receiver. We have also observed that the performance of
TDMA approaches that of the optimal strategy of superposition
coding with variable decoding order as increases (i.e., as the
QoS constraints become more stringent).

In the second part of this paper, we have incorporated power
adaptation strategies into the model. For a given fixed decoding
order at the receiver, we have identified the optimal power con-
trol policies. We have seen that the optimal schemes adapt the
power by treating the observed interference as additional noise.
Since the observed interference depends on the power control
policies of the other users that will be decoded later, a cou-
pling is introduced between the optimal policies. For cases in
which a variable decoding-order strategy is adopted by the trans-
mitter, we have obtained the conditions that the optimal strate-
gies should satisfy and described an algorithm to achieve these
optimal schemes.
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