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Retrievals of water quality parameters from satellite measurements over optically shallow waters have been
problematic due to bottom contamination of the signals. As a result, large errors are associated with derived
water column properties. These deficiencies greatly reduce the ability to use satellites to assess the shallow
water environments around coral reefs and seagrass beds. Here, a modified version of an existing algorithm
is used to derive multispectral diffuse attenuation coefficient (Kd) from MODIS/Aqua measurements over op-
tically shallow waters in the Florida Keys. Results were validated against concurrent in situ data (Kd(488)
from 0.02 to 0.20 m−1, N = 22, R2 = 0.68, Mean Ratio = 0.93, unbiased RMS = 31%), and showed signifi-
cant improvement over current products when compared to the same in situ data (N = 13, R2 = 0.37, Mean
Ratio = 1.61, unbiased RMS = 50%). The modified algorithm was then applied to time series of MODIS/Aqua
data over the Florida Keys (in particular, the Florida Keys Reef Tract), whereby spatial and temporal patterns
of water clarity between 2002 and 2011 were elucidated. Climatologies, time series, anomaly images, and
empirical orthogonal function analysis showed primarily nearshore–offshore gradients in water clarity and
its variability, with peaks in both at the major channels draining Florida Bay. ANOVA revealed significant dif-
ferences in Kd(488) according to distance from shore and geographic region. Excluding the Dry Tortugas,
which had the lowest climatological Kd(488), water was clearest at the northern extent of the Reef Tract,
and Kd(488) significantly decreased sequentially for every region along the tract. Tests over other
shallow-water tropical waters such as the Belize Barrier Reef also suggested general applicability of the algo-
rithm. As water clarity and light availability on the ocean bottom are key environmental parameters in deter-
mining the health of shallow-water plants and animals, the validated new products provide unprecedented
information for assessing and monitoring of coral reef and seagrass health, and could further assist ongoing
regional zoning efforts.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For several decades, satellite ocean color measurements have offered
the ability to synoptically measure water quality parameters such as
water clarity, turbidity, chlorophyll-a concentrations, and many others.
Instruments such as the U.S. National Aeronautics and Space Administra-
tion's (NASA)Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the satellites Aqua and Terra, and the associated algorithms de-
veloped by the ocean color community have provided a long time series
of water quality data for many regions. Largely excluded from such
analyses, however, have been optically shallow waters, defined
here as regions where the benthos is visible from an above-water

(or satellite-borne) sensor. In such environments, some of the satellite-
derived remote sensing reflectance (RRS, see Table 1 for description of
symbols used in this paper) results from reflection of light off the
benthos (Maritorena et al., 1994; Mobley & Sundman, 2003). When
these bottom-contaminated RRS are fed into current water quality
or water clarity algorithms, large errors in derived products can occur.
Specifically, bottom contamination has been shown to result in severe
overestimation of chlorophyll concentrations (Cannizzaro & Carder,
2006; Carder et al., 2005; Hu, 2008; Schaeffer et al., 2011), particulate
backscattering coefficients (bbp; Carder et al., 2005), and diffuse attenu-
ation coefficient for downwelling irradiance (Kd; Zhao et al., 2013).

The bottom contribution to satellite-measured signals is sometimes
useful towards the derivation of Kd in optically shallow waters with
high resolution sensors (e.g., Landsat ThematicMapper (TM), 30 m spa-
tial resolution). One suchmethod involves determining the exponential
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decay slope of water leaving radiance (Lw) for regions in which pixels
have varying depths but the same bottom albedo (Maritorena, 1996;
Palandro et al., 2004). This procedure, however, is labor intensive and
requires extensive prior knowledge of the environment, including
high resolution raster bathymetry and benthic classification. Further,
the required assumption that pixels used in these analyses are homog-
enous with exactly the same bottom albedo is often unrealistic in com-
plex and spatially diverse systems such as coral reefs and seagrass beds.
Finally, the repeat overpass frequency for sensors with the resolution
required for such work (e.g., 16 days for Landsat) is much less than
that offered by ocean color satellites with lower spatial resolution
(e.g., 1–2 days for Aqua at 1 km resolution), and may thus miss much
of the temporal variability in water clarity. As such, although deriving
Kd from high resolution satellite data is sometimes feasible with inten-
sive labor, it is operationally impractical for widespread implementa-
tion and analysis of spatiotemporal patterns in water clarity.

The nature of bottom contamination is such that within a region of
optically shallowwaters and homogenous albedo, the RRS signal at geo-
metrically shallow locations will be more affected than that at deeper
locations, resulting in even larger errors in derived products. The corre-
lation between depth and bottom-contaminated RRS in such environ-
ments has been exploited in the creation of bathymetries from MODIS

(Hu, 2008) and TM data (Lyzenga, 1981; Stumpf et al., 2003). Water
clarity maps (derived from standard algorithms) of optically shallow
waters, such as those around the Florida Reef Tract (FRT), show similar
trends (Fig. 1). Fig. 1 shows MODIS-derived Kd(488) using the Lee et al.
(2005) algorithm, where changes in water clarity are clearly associated
with bathymetry. This effect is also seen in the FRT region whenMODIS
data is processed using the default band-ratio algorithm for Kd (Mueller,
2000), further highlighting the need for an improved Kd algorithm for
optically shallow waters.

Marine ecosystems locatedwithin optically shallowwaters (e.g., coral
reefs, seagrasses and sponge beds) can be greatly affected by light avail-
ability, and thus water clarity. For example, as with all organisms
performing photosynthesis, zooxanthellae (algae living in symbiosis
within the coral tissues) require light for chemical energy creation.
However, excess radiation (especially in the ultraviolet wavelengths)
can cause oxidative stress in photosynthesizing marine organisms
(Foyer et al., 1994; Jokiel, 1980) including corals (Fisk & Done, 1985;
Hoegh-Guldberg & Jones, 1999; Lesser et al., 1990). Although corals
and zooxanthellae have mechanisms to mitigate the effects of such
stress (Ayoub et al., 2012; Shick & Dunlap, 2002; Shick et al., 1996), it
can nevertheless deteriorate the symbiotic relationship between corals
and algae, especially in conjunction with elevated sea temperatures.
Under extreme stress, corals will expel the zooxanthellae from their
tissues, resulting in a ‘bleached’ condition, often leading to mortality
of the coral polyp (see reviews by Brown, 1997; Hoegh-Guldberg, 1999;
Douglas, 2003, and others). The relationship between incident radiation
and stress response in corals is also wavelength dependent (Lesser &
Lewis, 1996; Zepp et al., 2008), highlighting the necessity for multispec-
tral characterization of the light field reaching coral reefs. In a more gen-
eral sense, decreases in water clarity are often associated with increased
nutrient loading and subsequent increases in water column chlorophyll
concentrations (Riley, 1956; Rodhe, 1948). Not only can this reduce
light availability and thereby directly affect the health of both coral
(e.g., Abram et al., 2003) and seagrass (Moore &Wetzel, 2000) environ-
ments, but it can further reduce the competitive advantage of these eco-
system engineers (Hallock & Schlager, 1986; Hemminga, 1998).

In the absence of reliable satellite-derived water clarity data, in situ
investigations of the relationship between light and optically shallow
ecosystems must rely on localized water clarity monitoring and
experimentation (e.g., Fisk & Done, 1985; Gleason et al., 2006;
Hoegh-Guldberg & Jones, 1999; Lesser et al., 1990; Moore & Wetzel,

Table 1
Description of symbols.

Symbol Description Units

Kd Diffuse attenuation coefficient for downwelling
irradiance

m−1

Ed Downwelling irradiance W nm−1 m−2

Ed(0−) Subsurface downwelling irradiance W nm−1 m−2

Lw Water-leaving radiance W nm−1 m−2 sr−1

RRS Remote sensing reflectance sr−1

rrs Subsurface remote sensing reflectance sr−1

at Total absorption coefficient m−1

aw Absorption coefficient of pure water m−1

ag Absorption coefficient of gelbstoff m−1

aph Absorption coefficient of phytoplankton pigments m−1

bb Total backscattering coefficient m−1

bbw Backscattering coefficient of pure water m−1

bbp Backscattering coefficient of suspended particles m−1

λ Wavelength nm
θ Solar zenith angle Degrees
z Depth m

Fig. 1. February climatology of Kd(488; m−1) calculated from standard Kd_Lee. Bathymetry contours overlaid are white = 4 m, light gray = 5.5 m, dark gray = 9 m, and black =
18 m. Approximate extent of Florida Reef Tract shown with white dashes. Land shown in black with white coastline. No data shown as white.
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2000; Zepp et al., 2008). Even where long term monitoring programs
exist, the extreme costs typically result in repeat sampling frequency
and spatial distance betweenmeasurements large enough to potentially
miss water clarity events and variations. In contrast, synoptic multispec-
tral water clarity data from satellite measurementswithin optically shal-
low waters would allow regional assessment and monitoring of coastal
nutrient loading mediation programs in near-real time. Further, such
data would provide opportunities to continually assess light availability
for coral reefs and seagrasses.

Given the known problems in existing satellite-based water clarity
data products and the pressing need for such products to assess shal-
low marine ecosystems, the objective of this study was to develop a
validated approach to derive water clarity parameters for optically
shallow waters using MODIS data. Further, the use of these validated
products in spatiotemporal pattern analysis, potential for implemen-
tation in regional management efforts, and the extension of the ap-
proach to other optically shallow waters are discussed.

2. Study Area — Florida Keys and the Florida Reef Tract

The Florida Keys are a limestone archipelago located at the southern
tip of Florida (Fig. 2). These islands house over 73,000 residents (US
Census Bureau, 2011) and are visited by approximately 2.5 million
tourists each year who generate nearly 1.2 billion dollars for the region
annually. Surrounding the Florida Keys is the Florida Keys National
Marine Sanctuary (FKNMS), a 9600 km2 management protected area
created by the United States Congress in 1990 (Causey, 2002). Delinea-
tion of regionswithin the FKNMS ismost commonly described according
towater quality, the local circulation patterns and adjacentwatermasses
(Klein & Orlando, 1994). Althoughwaters withinmany of the FKNMS re-
gions can be described as optically shallow at times, this work focuses
solely on those waters south of the island chain. The Florida Reef Tract
(FRT) is a 270 km arc of bank and patch reefs directly south and east of
the Florida Keys. Coral cover within the FRT has precipitously declined
over the last several decades (Andréfouët et al., 2002; Hughes, 1994;
Palandro et al., 2001, 2008). These changes have been attributed to ex-
treme temperature events (Jaap, 1985; Lirman et al., 2011; Warner et
al., 1999), as well as changes in water quality (Hu et al., 2003; Lapointe
et al., 2004) resulting from local anthropogenic activities (LaPointe &
Clark, 1992) or exogenous sources such as Florida Bay (Smith, 1994)
and Mississippi River (Hu et al., 2005; Ortner et al., 1995). Seagrass
density in the region has also decreased, most often attributed to algal
blooms and epiphyte buildup (LaPointe & Clark, 1992). Although chloro-
phyll blooms (Hu et al., 2003) and river plumes (Hu et al., 2005) can be

quantified and tracked nearby coral reef and seagrass systems, errors in
current algorithms due to bottom contamination prohibit quantitative
satellitemonitoring of the extent and fate of such events (or their impact
on the benthos) as they enter optically shallow regions.

Easterly winds are typical for this region, setting up a westward
current immediately south of the Lower Keys. These prevailing winds
run perpendicular to the island chain in the Upper Keys, and thus do
not largely contribute to nearshore currents. Instead, the proximity of
the Florida Current (precursor to the Gulf Stream) to the Upper Keys
leads to primarily northeastward currents in this subregion. Eddies
resulting from the Florida Current also contribute to the westward
flow in the Lower Keys. The Middle Keys are considered a transition
zone between these two current regimes (Lee, 2012; Lee & Williams,
1999; Lee, T., et al., 2002). General circulation patterns also show large
scale inundation of the FRT with Florida Bay waters occurring through
a few channels between islands of the Florida Keys, especially Moser
Channel, Long Key Channel, Channel #2 and Channel #5 (Smith, 1994;
Porter et al., 1999; Lee & Smith, 2002; Lee, T., et al., 2002; Fig. 2). In
fact, Fig. 2 appears to show increased attenuation in waters flowing
into the FRT through the Middle Keys channels.

These general circulation patterns, coupled with the findings by
LaPointe and Clark (1992) and Szmant and Forrester (1996) that
the highest nutrient concentrations in the region were within the
Middle Keys during summer months, lead to the widely held hypoth-
esis that the Middle Keys region has the lowest water clarity. Boyer
and Jones (2002) found the Marquesas region to have the highest
chlorophyll concentrations, while several studies have found the Lower
Keys to have clearest waters (Boyer & Jones, 2002; Klein & Orlando,
1994; Szmant & Forrester, 1996). Finally, strong gradients in water qual-
ity have been identified according to distance from shore, with offshore
waters being the clearest and most oligotrophic (LaPointe & Clark,
1992; Szmant & Forrester, 1996).

The Florida Bay Water Quality Monitoring Program (see Boyer &
Briceno, 2011) and the NOAA Atlantic Oceanographic and Meteorologi-
cal Laboratory's South Florida Program (see Kelble & Boyer, 2007) are
long term intensivemonitoring efforts in the Florida Keys region designed
to investigate spatiotemporalwater quality patterns. Theseprogramspro-
vide a long term series of nutrient dynamics snapshots in the region, but
are lacking in temporal resolution (>2 months) and are not spatially syn-
optic. Regional managers are currently planning a rezoning of specific
protection areas within the FKNMS (NOAA, 2007, 2012). Synoptic water
clarity information, as well as investigations of the effects of light on ben-
thic communities, would be a timely and valuable addition to the dataset
informing this process.

3. Satellite derived attenuation in optically shallow waters

3.1. Algorithm development

Among the current algorithms to derive Kd fromMODIS data, Zhao
et al. (2013) found that the Lee et al. (2005) algorithm (hereafter
termed ‘standard Kd_Lee’) performed better than other empirical
methods when validated against concurrent in situ data from south
Florida and Caribbean waters. Nevertheless, the algorithmwas designed
for optically deep waters, thus generally limited in its applicability for
measurements contaminated by bottom reflectance. This algorithm
uses a simple function to derive multispectral Kd:

Kd ¼ 1þ 0:005θð Þat þm1 1−m2e
m3at

� �
bb; ð1Þ

where at is the total absorption coefficient, bb is the total backscattering
coefficient, θ is the sun zenith angle in air, and m1, m2, and m3 are con-
stants of 4.18, 0.52, and−10.8, respectively. The inherent optical proper-
ties (IOPs; at and bb) and Kd are wavelength (λ) dependent, but
wavelength notation has been omitted for simplicity. IOPs are derived
using the most recent version of the Quasi-Analytic Algorithm (QAAv5;

Fig. 2. Map showing sampling locations (red circles) and regions discussed in this
paper, overlaid on composite of three Landsat5 TM true color images from 29 March
2008 (Lower Keys) and 23 April 2008 (Upper Keys and Everglades).
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hereafter termed ‘QAA’) developed by Lee., Z., et al. (2002, 2009). This
process starts with the estimation of at at a reference wavelength (ref),
typically 555 nm for SeaWiFS and 547 nm for MODIS:

at refð Þ ¼ aw refð Þ þ 10−1:146−1:366χ−0:469χ2

; ð2Þ

where aw is the pure water absorption coefficient from Pope and Fry
(1997) and:

χ ¼ log
rrs 443ð Þ þ rrs 490ð Þ

rrs refð Þ þ 5 rrs 667ð Þ
rrs 490ð Þ rrs 667ð Þ

0
@

1
A; ð3Þ

where rrs is the underwater remote sensing reflectance, rrs =
[RRS / (0.52 + 1.7 ∗ RRS)]. This at is then used to retrieve bbp at the ref-
erence wavelength:

bbp refð Þ ¼ u refð Þ � at refð Þ
1−u refð Þ −bbw refð Þ; ð4Þ

where bbw is the pure water backscattering coefficient from Morel
(1974), and u = [bb / (at + bb)] as calculated from rrs:

u λð Þ ¼
−g0 þ g0ð Þ2 þ 4g1rrs λð Þ

h i1=2
2g1

; ð5Þ

with coefficients g0 and g1 equal to 0.089 and 0.125, respectively. The
value of bbp at the reference wavelength is subsequently used to derive
multispectral bb (Gordon & Morel, 1983; Smith & Baker, 1981) and at:

bb λð Þ ¼ bbp refð Þ ref
λ

� �Y

þ bbw λð Þ; ð6Þ

at λð Þ ¼ 1−u λð Þ½ � bb λð Þ½ �
u λð Þ ; ð7Þ

with

Y ¼ 2:0 1−1:2e
−0:9rrs 443ð Þ

rrs 547ð Þ

� � !
: ð8Þ

Using hyperspectral RRS data of optically shallow waters, Zhao et
al. (2013) also found that Kd calculated with this process showed a
large effect of bottom contamination. Since the QAA begins with esti-
mation of at at a reference wavelength, any errors in this single step
(Eq. 2) would be propagated throughout the QAA and into the deriva-
tion of Kd. The reference wavelength of 555 nm for SeaWiFS was orig-
inally chosen because at(555) is relatively stable in oceanic waters
where at the same time satellite measured RRS maintains high fidelity
compared to those at longer wavelengths (e.g., 670 nm), but longer
wavelengthswere proposed for nearshore or river plume environments
(Lee, Z., et al., 2002) where higher chlorophyll or sediment concentra-
tions cause large variations in at(555). Variable bottom contamina-
tion will also cause large changes in the measured RRS (and
subsequently derived at), especially at shorter wavelengths. At longer
wavelengths, since the attenuation coefficient due to water molecules
(aw) is much higher, less bottom contamination in the measured RRS

is expected. Indeed, citing the wavelength-dependent impacts of bot-
tom contamination, Carder et al. (2005) found improvements in
satellite-derived bbp and chlorophyll-a concentration measurements
using 670 nm (as opposed to 555 nm for SeaWiFS) in extant
ratio-based algorithms for optically shallow waters in this region
with depths as shallow as 2 m. For optically shallow waters deeper
than 5 m, errors in these same parameters were reduced by two to

three fold (Carder et al., 2005). As such, for this research we modified
the QAA to use 667 nm as a reference wavelength.

To apply the QAA with 667 nm as the reference wavelength, the
formula for at(ref) was modified from Eq. (18) in Lee, Z., et al.
(2002) to:

at refð Þ ¼ aw refð Þ þ 0:07
rrs refð Þ
rrs 443ð Þ
� �1:1

; ð9Þ

and used in place of Eqs. (2) and (3). Eqs. (4)–(8)were applied as above.
The multispectral at and bb were subsequently input into Eq. (1) to cal-
culate ‘modified’ Kd_Lee.

The theoretical background for this algorithm modification is nulli-
fied for waters shallow and clear enough that bottom contamination
has an effect on the RRS(667). Even though Carder et al. (2005) showed
potential improvements inwater property derivations in optically shal-
low waters down to 2 m depth by using longer wavelengths as a refer-
ence, within that work a 5 m depth threshold was selected to minimize
errors throughout the application depth range. Accordingly, the scope
of data considered in this analysis is limited to waters with bottom
depths deeper than 5 m. Schaeffer et al. (2011) found bottom reflec-
tance affects satellite chlorophyll retrievals in coastal Florida waters
shallower than 25 m. As such, for the purposes of this research, thresh-
olds of 5 m and 30 m are used to delineate the shallow and deep extent
of optically shallow waters within the Florida Keys ecosystem.

3.2. Sensitivity simulations

A mathematical simulation was performed to investigate differ-
ences in performance of the standard and modified Kd_Lee algo-
rithms. First, typical ranges of aph(440), ag(440) and bbp(440) in the
FRT region were defined from field data collected during this study.
A continuous range of 0–50% of benthic albedo (at 550 nm) was used
to simulate conditions for a range of benthic environments in the Florida
Keys, with corals (often less than 5% albedo at 550 nm) and carbonate
sand (up to and exceeding 50% albedo at 550 nm) being end members
(Hochberg et al., 2003; Werdell & Roesler, 2003). Using the semi-
analytical model described by Lee et al. (1999), various combinations
of IOPs, bottom depths, and benthic albedos were used to simulate
hyperspectral RRS spectra. The input IOPs were also used to calculate
the ‘true’ Kd, by means of Eq. (1). The RRS was then fed into the
QAA_v5 and the modified QAA (and subsequently Kd_Lee) to derive
standard andmodified Kd_Lee. Error of these algorithmswas then calcu-
lated as [(simulated_Kd − truth)/truth].

3.3. Satellite data

All MODIS Aqua (MODIS/A, 2002–2011) Level 0 data for the Florida
Keys region were downloaded from the NASA Goddard Space Flight
Center ocean color website (http://oceancolor.gsfc.nasa.gov), a total of
2281 satellite passes. The data were processed at 250 m resolution
using SeaDAS (version 6.2) software and default processing parameters
(Baith et al., 2001). The 645 nm band had a nominal ground resolution
of 250 mwhile other bands at 500- and 1000-m resolutions were in-
terpolated to 250 m. For each pass, using the standard algorithms
implemented in SeaDAS, Level 2 data were created including RRS

and standard Kd_Lee for the MODIS bands centered at 412, 443, 469,
488, 531, 547, 555, 645, 667, and 678 nm. These products were masked
using the Level 2 flags ATMFAIL, LAND, HILT, and CLDICE (see Patt et al.,
2003), then subsequently mapped to an equidistant cylindrical projec-
tion with bounds 24 to 26 N, 83 to 80 W. Hereafter, the term ‘pixel’
refers to a 250 m × 250 m data bin, which has a set latitude and lon-
gitude in this projected data frame and a spatial area of 62,500 m2.
All data were stored in Hierarchical Data Format 4 (HDF4) computer
files.
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Computer programs were implemented to apply the QAA with
667 nm as a reference wavelength (Eqs. 4–9) to the above processed
MODIS/A RRS data. Using Eq. (1), at and bb from the modified QAA
were used to derive modified Kd_Lee for each band. As with the
above standard-processed data, multispectral Kd data were stored in
HDF4 files. Unless otherwise stated, all data manipulation and process-
ing were conducted using IDL version 8.0 (Interactive Data Language;
Exelis Visual Information Solutions). For quality control during valida-
tion, extracted pixels were excluded if they were adjacent to a masked
pixel (i.e., if any of the 9 pixels within a 3 × 3 pixel box with the pixel
of interest at the center had been masked). Extracted pixels were also
removed from validation analysis if the standard deviation of the values
from this 3 × 3 boxwas greater than 10% of themean. These twoquality
control procedures are hereafter termed ‘spatial homogeneity test,’ and
were performed on each algorithmandband independently. These qual-
ity control measures were not applied during composition of clima-
tologies and multi-year time series. Instead, additional Level 2
quality control flags were used to discard low-quality data: HIGLINT,
HISATZEN, STRAYLIGHT, COCCOLITH, HISOLZEN, LOWLW, CHLFAIL,
NAVWARN, MAXAERITER, CHLWARN, ATMWARN, NAVFAIL, and
FILTER (for description of quality control flags, see Patt et al., 2003).

For synoptic visualization of algorithm performance, the entire
time series of MODIS/A data were used to calculate the average and
standard deviation of these data within specific time intervals. Monthly
means were calculated as the average value at each pixel for an individ-
ualmonth and year.Monthly climatologies are themean of all data for a
particular month, regardless of the year. Monthly anomalies (monthly
mean minus the corresponding monthly climatology), monthly stan-
dard deviation andmonthly coefficient of variationwere also calculated
for each month in the MODIS/A time series. Pixels masked in the data
processing were treated as empty values and thus did not affect
the mean and standard deviation calculations. Finally, percent dif-
ference in methods was calculated using monthly climatologies as
[(standard − modified) / modified].

3.4. In situ data collection and processing

Field data for validation of these satellite products was collected
from April 8–22, 2011 and July 31–August 22, 2012. Twenty-six sta-
tions spaced throughout the shallow waters south of Florida Keys
were each visited at least 4 times, but up to 7 times, for a total of
145 sampling events (Fig. 2). All data were collected within 2 h of
the local solar noon. At each sampling, a free-falling hyperspectral
profiler (HyperPRO, Satlantic, Halifax, NS, Canada) optical remote
sensing system provided in-water hyperspectral (400–735 nm, inter-
polated every 1 nm) measures of downwelling irradiance [Ed(z,λ)],
upwelling radiance [Lu(z,λ)], and depth. The instrument was allowed
to drift approximately 5 to 10 m away from the boat to avoid shading
interference, and three profiles were conducted at each sampling.
Pressure tare was completed on deck prior to each instrument de-
ployment. HyperPRO data were quality controlled by excluding data
with a tilt and roll >5°.

Wave focusing of incident light contaminated the measured Ed(z),
resulting in large deviations from the expected log-linear nature of Ed
with depth. As such, for each cast, Ed(z,λ) were binned (averaged) to
0.3 m depth intervals, then natural logarithm transformed and plotted
against measurement depth. These graphs were manually processed
to locate the longest sequence of data showing approximately linear
decay. Data from this portion of the profile was used to calculate
[Kd(λ)] from a linear regression of ln[Ed(z,λ)/Ed(0−,λ)] and depth. Fur-
ther, HyperPROdatawere only considered reliable if the difference inKd

from any two (of the three) replicate profiles was less than 0.01 m−1

(typically ~10% difference), in which case the average Kd of these two
replicates was determined for use in validation. In total, seventy-six
hyperspectral Kd in situ measurements fit this qualification and were
used for satellite algorithm validation.

3.5. Algorithm validation methods

Concurrent (same day and location) satellite and in situ data were
compared statistically using coefficients of determination (R2), linear
regression, root mean squared (RMS) percentage difference, mean
ratio and standard deviation ratio. Due to error in both satellite and
in situ datasets, RMS was performed on an unbiased percent differ-
ence [(satellite − in situ) / (0.5 ∗ satellite + 0.5 ∗ in situ)], hereafter
termed ‘URMS’ and reported as a percentage (Hooker et al., 2002).
The significance level (α) for all statistical tests was 0.05.

3.6. Algorithm validation results

It is important to reiterate that this algorithm and all quality con-
trol procedures were developed prior to the validation shown here,
and that no in situ data were used for algorithm tuning or calibration.
There were 13 concurrent Kd(488) matchups between the standard
Kd_Lee satellite product and in situ data (Fig. 3; range 0.02–0.20 m−1).
These data showed a weak, yet significant, positive relationship
(R2 = 0.37, linear regression slope = 0.68 and intercept = 0.10,
p-value = 0.03). Ratio statistics indicate that satellite derived Kd(488)
for these data is 1.61 times the measured Kd(488) with a standard devi-
ation ratio of 0.65 and URMS error of 50%. For comparison, the modified
Kd_Lee(488) algorithm produced 22 pixels with concurrent in situmea-
surements of the same range (Fig. 3). The different numbers ofmatchups
between the two satellite algorithms result fromhigher spatial heteroge-
neity in the standard Kd_Lee product, which caused more data to be
discarded through the 3 × 3 spatial homogeneity test. These matchups
showed a much stronger positive relationship (R2 = 0.68, slope =
0.95, intercept = −0.002, p-value b 0.0001), with Kd(satellite) =
0.93 ∗ Kd(in situ), and a standard deviation ratio of 0.27. URMS was
reduced from 50% to 31%.

Table 2 summarizes the matchup statistics for all bands of Kd. Due
to the spatial homogeneity test of the satellite data, the number of
matchups was not constant across all wavelengths, or between the
standard and modified algorithms (matchups were especially re-
duced for the standard Kd_Lee, which was much more spatially het-
erogeneous than the modified Kd_Lee). To ensure a fair comparison,
only in situ data which hadmatching satellite data from bothmethods
(‘common’) were included in the first two panels of Table 2. The third
panel includes all modified Kd_Lee matchups.

Most indices showed improved statistical relationships between
satellite and in situ data when using the modified Kd_Lee in place of the
standard Kd_Lee. For wavelengths shorter than 500 nm, Kd matchups
showed improvements via increased R2, linear regression slope closer
to one and intercept closer to zero, smaller p-value, mean ratio closer
to one, smaller standard deviation ratio, and smaller URMS (Table 2).
For wavelengths above 600 nm, improvements in R2 and the linear re-
gression are not always apparent, but are seen in the mean ratio, stan-
dard deviation ratio, and URMS. Statistical measures for the remaining
wavelengths (531, 547, and 555 nm) show mixed measures of perfor-
mance between the standard and modified Kd_Lee. Despite improve-
ments in the linear regression statistics, R2 and URMS were generally
not improved by the modified Kd_Lee at these wavelengths.

3.7. Discussion of validation results

As demonstrated in Fig. 1, co-occurring variations in bottom depth
and satellite-derived water parameters may indicate bottom contam-
ination. The main sources of nutrients into the FRT region are the
Florida Keys themselves and the channels between islands carrying
Florida Bay water (Lapointe & Clark, 1992). Higher Kd values are
expected nearest these nutrient sources or in contiguous plumes
extending from them. Monthly climatologies of Kd(488) derived using
the standard Kd_Lee algorithm, however, show a different pattern (see
Fig. 1 showing February climatology as an example). Overlaid with
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bathymetric contour lines, increases in Kd(488) tend to co-occur with
bottom depth even away from the land. Such visualizations reiterate
the problem with current algorithms, i.e. modeled parameters vary
with bottom depth, and thus represent the intensity of bottom contri-
bution to the RRS signal and subsequent contamination in the derived
water quality parameters.

In contrast, the exact same RRS data were used in the creation of
Fig. 4, instead processed using the modified Kd_Lee algorithm. With
the exception of data within the 4 m contour line, the main variation in
water clarity appears to be along anonshore–offshore gradient, regardless
of water depth. This visualization expands the argument of improvement

in water clarity derivations using the modified Kd_Lee(488) beyond that
offered by the limited number of matchups with in situ data. However,
such maps also clearly show the failure of the modified Kd_Lee(488) at
very shallow (less than ~5 m) depths (especially see Carysfort Reef
area, top right inset in Fig. 4), where the modified Kd_Lee(488) may
even show larger errors than the standard Kd_Lee(488). Further, these
maps must be viewed with caution — although they show Kd(488) de-
rived for all pixels in the scene, the algorithm has only been validated
for bottoms deeper than 5 m. Focusing only on such waters (5–30 m
depth), percent difference calculations show that the standard Kd_Lee al-
gorithm overestimates the true Kd(488) by a factor of 2 throughoutmuch
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of the FRT, and especially in spring and summer (Fig. 5 right column). This
is especially true for the Upper Keys and Rebecca Shoal regions, where
three- to four-fold errors in standard Kd_Lee retrievals are common.

Application of the modified Kd_Lee algorithm, however, does af-
fect Kd retrievals for waters outside the FRT (Fig. 5). In the percent dif-
ference images, this is especially prevalent for the West Florida Shelf
(WFS) and north of the Lower Keys islands during spring and summer
months, but also can be seen in the extremely clear and deep waters

of the Florida Straits (Fig. 5 right column). The difference in Kd(488) re-
trievals from the two algorithms for these regions is typically less than
±50% (compared to 100–>400% within the FRT). As the water is ex-
tremely clear when and where these differences outside the FRT
occur, the discrepancy in Kd(488) between the two satellite algorithms
in these instances is typically b0.02 m−1. For comparison, within the
FRT region, this difference typically ranges from 0.06 to 0.12 m−1.
Many coastal regions of mainland Florida, including Biscayne and

Table 2
Summary of statistics for concurrent satellite and in situ measurements of multispectral Kd.

Band Range N R2 Slope Intercept p-Value Mean ratio STDEV ratio URMS (%)

Standard Kd_Lee (common) Kd(412) 0.07–0.46 11 0.06 0.28 0.25 0.48 1.68 0.94 0.62
Kd(443) 0.06–0.34 15 0.06 0.26 0.19 0.37 1.54 0.77 0.55
Kd(469) 0.05–0.25 12 0.31 0.42 0.12 0.06 1.67 0.79 0.55
Kd(488) 0.05–0.20 12 0.39 0.68 0.09 0.03 1.60 0.68 0.50
Kd(531) 0.07–0.15 12 0.47 0.68 0.06 0.01 1.32 0.33 0.32
Kd(547) 0.08–0.16 11 0.41 0.64 0.06 0.03 1.25 0.28 0.28
Kd(555) 0.07–0.16 11 0.57 0.61 0.07 0.01 1.27 0.23 0.28
Kd(645) 0.34–0.42 5 0.09 2.78 −0.39 0.62 1.79 0.75 0.58
Kd(667) 0.42–0.51 7 0.18 3.85 −1.00 0.34 1.76 0.66 0.56
Kd(678) 0.45–0.53 9 0.02 −3.27 2.80 0.73 2.29 1.36 0.74

Modified Kd_Lee (common) Kd(412) 0.07–0.46 11 0.92 0.76 0.04 b0.01 1.00 0.20 0.18
Kd(443) 0.06–0.34 15 0.74 0.80 0.01 b0.01 0.89 0.25 0.31
Kd(469) 0.05–0.25 12 0.85 1.10 −0.01 b0.01 0.97 0.29 0.28
Kd(488) 0.05–0.20 12 0.70 0.98 0.00 b0.01 0.98 0.27 0.26
Kd(531) 0.07–0.15 12 0.52 1.15 −0.03 0.01 0.79 0.34 0.49
Kd(547) 0.08–0.16 11 0.34 0.97 −0.02 0.06 0.79 0.36 0.53
Kd(555) 0.07–0.16 11 0.29 0.89 −0.01 0.09 0.83 0.41 0.55
Kd(645) 0.34–0.42 5 0.09 −0.38 0.61 0.63 1.16 0.17 0.19
Kd(667) 0.42–0.51 7 0.23 0.34 0.39 0.28 1.14 0.08 0.15
Kd(678) 0.45–0.53 9 0.07 0.28 0.43 0.51 1.13 0.07 0.14

Modified Kd_Lee (all) Kd(412) 0.05–0.46 24 0.78 0.79 0.01 b0.01 0.84 0.24 0.36
Kd(443) 0.05–0.34 28 0.70 0.79 0.01 b0.01 0.86 0.24 0.34
Kd(469) 0.04–0.25 22 0.75 0.96 0.00 b0.01 0.93 0.26 0.28
Kd(488) 0.02–0.20 22 0.68 0.95 0.00 b0.01 0.93 0.27 0.31
Kd(531) 0.03–0.16 20 0.40 0.90 −0.01 b0.01 0.83 0.31 0.44
Kd(547) 0.03–0.16 20 0.18 0.64 0.02 0.06 0.78 0.33 0.52
Kd(555) 0.03–0.17 18 0.28 0.83 0.01 0.02 0.88 0.34 0.45
Kd(645) 0.34–0.45 6 0.19 −0.53 0.66 0.39 1.13 0.18 0.18
Kd(667) 0.42–0.55 13 0.02 −0.10 0.59 0.66 1.14 0.11 0.16
Kd(678) 0.38–0.57 13 0.30 0.74 0.19 0.05 1.12 0.07 0.13

Range shows spread of in situmeasurements, N = number ofmatchups, R2 = coefficient of determination, URMS = unbiased rootmean squared percent difference (see Section 3.4 for
details), ‘common’ indicates in situmeasurements with quality controlled satellite Kd from both algorithms.

Fig. 4. February climatology of Kd(488;m−1) calculated frommodified Kd_Lee. Bathymetry contours overlaid arewhite = 4 m, light gray = 5.5 m, dark gray = 9 m, and black = 18 m.
Land shown in black with a white coastline. No data shown as white. Note that compared with Fig. 1, the correlation between Kd and bathymetry has been significantly reduced.
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Florida Bays, also show large (up to 0.1 m−1) differences between the
two algorithms, which are not seen in the percent difference images
due to the overall high Kd(488) values in these regions.

The modified algorithm did not improve Kd retrievals equally for
all wavelengths. The most prominent improvements were seen in the
shorter (b500 nm) wavelengths, but results were mixed for other
wavebands. For longer wavelengths (>600 nm), there was little differ-
ence between the R2 and linear regression statistics for the standard
andmodified algorithms. However, coupling the other statistical indices
(mean ratio, standard deviation ratio and URMS) with the graphical
representation of matchups shows that the modified algorithm calcu-
lates Kd closer to the in situ values than does the standard Kd_Lee. Nev-
ertheless, themodified Kd_Lee cannot resolve the variation in these data
points becausewithin such clearwaters, Kd in these longerwavelengths
is dominated by the constant water absorption coefficient. Lastly, nei-
ther the standard nor modified Kd_Lee showed marked improvement
over the other in the green wavelengths (531, 547, and 555 nm). This
is partially due to the exclusion of MODIS/A data for spatial heterogene-
ity, which occurredmore frequently for the standard than themodified
Kd_Lee. Indeed, restricting the statistical analyses to the matchups used
in the standard algorithm validation yields greatly improved perfor-
mance from the modified method.

The sensitivity simulation was used to investigate the relative per-
formance of the two algorithms without in situmeasurement error or
differences in numbers of validation points. The results from this simu-
lation (Fig. 6) indicate that themodified Kd_Lee tends to slightly under-
estimate the true Kd in most normal FRT waters, while the opposite is
seen for the standard Kd_Lee. In the blue and green wavelengths and
deeper waters (>10 m), the magnitude of the error is approximately
equal for these two algorithms. Shallower depths (b10 m), however,
show much larger errors in the standard Kd_Lee at all wavelengths,

clearly a result from bottom reflectance (perceived as higher bbp and
at throughout the standard QAA algorithm). The underestimation by
the modified Kd_Lee, on the other hand, was an expected result of bot-
tom contribution in the shorter wavelengths. This is due to the fact that
even if water properties at the reference wavelength are stable, mea-
sured RRS in the shorterwavelengths has been impacted bybenthic con-
tributions. As a result, although at(ref) and bbp(ref) are reasonably
estimated, lower at(λ) (Eq. 7) would be resulted from an elevated
u(λ) (Eq. 5) where the RRS have extra contributions from the benthos.
Lower at(λ) will subsequently result in an underestimation of Kd for
shorter wavelengths (Eq. 1). Despite this underestimation, the bias of
the modified Kd_Lee is relatively stable with increasing benthic albedo
compared to the standard Kd_Lee, especially at shallower depths. It is
important to note that although a range of benthic albedo values from
0 to 50% is shown in Fig. 6, the spatial heterogeneity of benthic environ-
ments in the FRT (and other coral reef systems)means that it is unlikely
that either of these extremes in benthic albedo would be reached for a
250 m × 250 m pixel. Finally, simulated standard Kd_Lee in the red
wavelengths showed extremely large errors with increasing benthic al-
bedo, while the modified Kd_Lee showed almost no errors. Overall, this
simulation highlighted the failures of the standard Kd_Lee in response
to bottom contamination, while demonstrating improved performance
of the modified Kd_Lee, especially in very shallowwaters and in the red
wavelengths.

3.8. Application considerations

Themodified algorithmdescribed here can be used to derive the dif-
fuse attenuation coefficient in clear shallow waters (>5 m depth), and
shows substantial improvement over the standard Kd_Lee in several
wavelengths. Implementation of this algorithm requires RRS data at

Fig. 5. Monthly climatologies of Kd(488; m−1) derived using standard (left column) and modified Kd_Lee (middle column). Land shown in black with a white coastline. No data
shown as white. Percent difference between these images shown in the right column with no data shown as gray.
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only three bands (centered at 443, 547, and 667 nm for MODIS), which
can then be applied to any other visible band (e.g., 488). These, or
similar, bands are within the ongoing data streams from the MODIS in-
struments on both Aqua and Terra, as well as in the historical Coastal
Zone Color Scanner (CZCS), Sea-Viewing Wide Field of View Sensor
(SeaWiFS, 1997–2010), and Medium Resolution Imaging Spectrometer
(MERIS, 2002–2012) datasets. Further, this algorithm lends itself to ap-
plication using data from the Visible Infrared Imaging Radiometer Suite
(VIIRS, 2011–present) instrument for ongoing and future assessment of
water clarity in optically shallow environments. Finally, as in situ mea-
surements of Kd in optically shallow waters may have large errors due
to wave-focusing throughout the water column, this technique may
also be applied to shipborne Rrs measurements. Concurrent with Ed
profiles, such application would provide independent verification
of the Ed-derived Kd.

The validation datasetwas collected in optically shallowwaters south
and east of the Florida Keys (5–30 m depth), and showed large differ-
ences in Kd(488) retrievals between the standard and modified algo-
rithms. Outside this FRT region, with some exceptions (notably, WFS in
spring and nearshore mainland Florida), there is widespread agreement
between the standard and modified Kd_Lee. Since the standard Kd_Lee
algorithm has been validated in this region (Zhao et al., 2013), such
agreement indicates increased applicability of the modified algorithm,
both outside the FRT (spatially) and beyond the range of its validation
dataset. Similarly, due to the local validation of the standard Kd_Lee, ex-
ceptions to this agreement indicate bounds for the potential applicability
of the modified algorithm. Specifically, Kd retrievals from the modi-
fied algorithm for extremely shallow and highly attenuating waters
(Biscayne and Florida Bays, as well as nearshore mainland Florida)

are likely erroneously overestimated. For other regions of disagree-
ment, such as the WFS in spring, we find that the scale of the differ-
ence is not sufficient to justify a switch to the standard Kd_Lee.

Although not directly tested against in situ data from other regions,
we feel that the modified Kd_Lee would yield similar improvements in
water clarity retrievals for other optically shallow environments. To il-
lustrate this potential applicability, a MODIS/A pass including the Belize
Barrier Reef region was processed using the standard and modified
Kd_Lee (Fig. 7). Although no bathymetric data were available for this re-
gion, pixels which showed high Kd(488) derived using the standard
Kd_Lee appear to co-occurwith areaswhere the bottom is clearly visible
in the true color image. Using the modified algorithm, many of these
apparently artificially elevated Kd measurements do not appear to be
influenced by bottom contamination. However, as seen in the FRT
(Carysfort reef area, Figs. 4 & 5), even larger errors in Kd products are
seen for extremely shallow regions using themodified algorithm. Never-
theless, given the extremely large bottom reflectance signal compared to
water column reflectance for shallow (>5 m) clear waters, accurate
water property retrievals at these locations fromocean color data still re-
quires further research, for example by explicitly taking into account
both bottom depth and albedo in the algorithm development.

4. Spatiotemporal water clarity patterns in the Florida Keys

4.1. Analysis methods

A number of techniques were utilized to investigate the spatial and
temporal variability of Kd (derived using the modified Kd_Lee) in the
Florida Keys region. Variation in Kd at 488 nm is used in this analysis

Fig. 6. Simulated percent error of standard (dashed) and modified (solid) Kd_Lee at 490 (blue), 555 (green), and 670 nm (red) for typical FRT waters.
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because historically Kd(490) or Kd(488) has been used as a measure of
water clarity. Light at 488 nm is within the transparency window for
most waters, allowing light to reach the benthos in the FRT region.

To visualize temporal water clarity variations in this region, the
monthly summaries of Kd statistics were investigated along an approx-
imate 10 m bathymetric isobath, derived from a raster bathymetry cre-
ated by Palandro (2006). For each pixel along this transect, monthly
mean Kd from each month of MODIS/A data (July 2002 to Dec
2011) were extracted. This same data extraction was implemented
for Kd monthly anomaly, standard deviation, and coefficient of var-
iation data.

An empirical orthogonal function (EOF) analysis was used to explore
spatiotemporal groupings in water clarity. The singular value decompo-
sitionmethodwas used for computational efficiency (Kelly, 1988). Using
ENVI (version 4.8; Exelis Visual Information Solutions) and the raster ba-
thymetry, a region of interest (ROI)was createdwhich included onlywa-
ters south and east of the Florida Keys/Dry Tortugas andwith depths of 5
to 30 m, roughly corresponding to the FRT extent. Monthly climatology
data within this ROI were sorted into ASCII text files along with their lat-
itude and longitude. As the EOF analysis requires no gaps in data cover-
age, any pixel without monthly climatology data for every month was
excluded. The EOF was then performed on this gridded time series,
resulting in twelve principal component axes (modes). Using the
retained latitude and longitude, the pixel distances along each
mode was color coded, re-mapped to the original position and
saved as PNG files. Also recorded was the percentage of total variation
described by each mode (eigenvalue), as well as the time series of
monthly relative amplitudes of the data within the mode.

Finally, a two-way ANOVA was performed using Matlab® (version
2011a; MathWorks®) to evaluate regional variation in water clarity
across the FRT regions (see Fig. 10). The independent variables for
this test were groupings by region (Biscayne Bay, Upper, Middle and
Lower Keys, Marquesas, and Dry Tortugas) and by linear distance to
the closest land pixel. Linear distance from landwas binned into groups
0–4 km, 4–8 km, and 8–12 km, and only waters with bottom depths of
5–30 mwere considered. The dependent variable was the average of all
(2002–2011) Kd(488) data at each pixel. Lilliefors and Kruskal–Wallis
tests were performed to assess data conformation to ANOVA assump-
tions of normality and homoscedasticity, respectively. Although many
groups showed failure to meet one or both of these assumptions, the
large number of data points and robustness of the ANOVA in such situ-
ations (Sokal & Rohlf, 1981) allowed for its appropriate implementa-
tion. The null hypothesis of this test was equal water clarity across
regions and with distance from shore. Tukey's pairwise comparisons
were performed to elucidate significant differences between individual
groups.

4.2. Spatiotemporal patterns

The time series of climatology images (Fig. 5) show that clear water
persists throughout the year formost of the region,with Kd(488) gener-
ally less than 0.5 m−1. The main gradient in water clarity is from high
inshore to low offshore. Spring and summer months have the clearest
waters, while winter months have the highest Kd(488) regionally.

Along the 10 m transect, mean monthly data (Fig. 8b) again show
extremely clear waters in the Upper and Middle Keys, as well as some
of the same seasonal variation described above. The Upper Keys region
has the clearest waters, with water clarity decreasing and becoming
more variable (Fig. 8d) westward along the transect. Coefficient of var-
iation (Fig. 8e) shows consistent scale and variability throughout time
along this transect, indicating that Kd(488) variability is strongly corre-
lated to the mean Kd(488).

The EOF analysiswas performed so that variationwithin this complex
systemcould be summarized.Mode one of the EOF explained over 85% of
the variation, and its eigenvector amplitudes by month indicated that
this represents a smooth seasonal cycle. EOF mode two explained 9% of
the total variance, and all other modes explain less than 1.1%. With this
quantity of data (over 56,000 pixels during each of 12 months), 1000
EOF analyses performed on randomly generated noise indicated that
with 95% confidence, modes with eigenvalues explaining 9% or less of
the variation are non-significant. Thus all modes except mode one (the
seasonal cycle) were considered non-significant. As a result, a simple
harmonic equation was fit to the data to describe the seasonal cycle elu-
cidated by EOF mode one. At each pixel, the sum of squares was mini-
mized to best fit a simple harmonic oscillation:

x ¼ x þ Acos 2π � t=12ð Þ þ B sin 2π � t=12ð Þ; ð10Þ

where x is the satellite-derived climatology mean Kd(488) from a partic-
ular month and pixel, x is the average of monthly climatologies at that
pixel, t is time in months, and A and B are the pixel-specific coefficients
being fit. From this harmonic equation, the amplitude [(A2 + B2)0.5]
and phase [tan−1(B,A)] of the oscillation were calculated and mapped
(Fig. 9). In this visualization, amplitude represents one-half of the range
of best-fit Kd(488) values, and phase shows the timing (in months) of
the maximum of this harmonic.

Finally, the two-way ANOVA showed significant effects of both
region (F = 3651; p b 0.0001) and distance from shore (F = 10290;
p b 0.0001) but also indicated a significant interaction (F = 458;
p b 0.0001) between these two factors. As such, individual one-way
ANOVAs were performed on data from each of the factor group levels.
Within each region, there was a strongly significant effect of distance
from land (ANOVAs for each region showed F > 700 with 2 d.f. and

Fig. 7. MODIS/A data from 24 January 2010 covering of a portion of the Belize Barrier Reef, displayed as a) true-color image and processed to Kd(488; m−1) using b) the standard
Kd_Lee algorithm and c) the modified Kd_Lee.
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p b 0.0001), and a common trend of decreasing Kd(488) with distance
from land. Pairwise comparisons on each regional analysis showed that
each grouping by distance from land was significantly different
(i.e., the 0–4 km pixels within a region always had significantly
higher Kd(488) than the 4–8 km pixels, both which also were signif-
icantly higher than the 8–12 km pixels). Holding the distance from
land group constant, ANOVAs performed on individual regions also all
showed strongly significant effects (d.f. = 5; F > 800; p b 0.0001 for
each ANOVA; Fig. 10). For the nearshore (0–4 km) pixels, pairwise com-
parison indicated that each region was significantly different from all
others,with theDry Tortugas showing the lowest Kd(488) andMarquesas
having the highest. Excluding the Dry Tortugas region, Kd(488) signifi-
cantly decreased for every region in a sequential manner northwest
along the FRT (Fig. 10). This general pattern was seen for both the
4–8 km and 8–12 km groups, with some exceptions (most notably,
no statistically significant difference betweenMiddle Keys and Biscayne
Bay waters 4–8 km from land).

4.3. Discussion

Together, these analyses and visualizations present a picture of
clear water region-wide with generally low spatiotemporal variability.

Nevertheless, validated synoptic Kd(488) data can be used to detect
significant differences between regions. Because data were grouped
according to their traditionally defined regions (Klein & Orlando, 1994)
for the ANOVA analyses, direct comparison to previous works was possi-
ble. As such, we find that the widely held hypotheses of poorest water
clarity in the Middle Keys region (see Lapointe & Clark, 1992) and
clearest water in the Lower Keys (see Boyer & Jones, 2002; Klein &
Orlando, 1994; Szmant & Forrester, 1996) need revision. This analysis,
however, does find increasingwater clarity (decreasing Kd)with distance
from shore, in agreement with previous studies (Lapointe & Clark, 1992;
Szmant & Forrester, 1996). Also, this analysis of Kd(488) concurs with
the conclusion of Boyer and Jones (2002) that the Marquesas region has
the highest chlorophyll concentrations.

Even though some of the relative regional differences in water
clarity identified in the current work differ from the results of previ-
ous analyses of water clarity (Boyer & Jones, 2002; Klein & Orlando,
1994; Lapointe & Clark, 1992; Szmant & Forrester, 1996), the noted
spatiotemporal trends are in accordance with regional circulation pat-
terns (see Lee, 2012; Lee & Smith, 2002; Lee & Williams, 1999; Lee, T.,
et al., 2002; Porter et al., 1999; Smith, 1994). Specifically, although
there is a net flow of water southward through the channels separating
the Florida Keys islands, the strongest of such transports are in the
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Fig. 8. Time series of monthly modified Kd_Lee(488) products for the 10-m transect along the FRT (red line) in a). The products include b) monthly mean, c) anomaly, d) standard
deviation, and e) coefficient of deviation. Time (months and years) oriented on x-axis, with longitudinal position along transect displayed on y-axis.
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winter and spring (Lee., T., et al., 2002). Also, the shifting of average
winds from southeasterly in the summer to easterly or northeasterly
in the winter brings a reversal in flow in the Middle Keys from north-
ward to southward (Lee, 2012). As such, in winter when the largest in-
fluxes of water are flowing into the FRT region through theMiddle Keys
channels, strong alongshore currents aremoving thiswater towards the
Lower Keys and Marquesas Keys regions, which can potentially explain
the maxima in Kd(488) noted in the Lower Keys during winter.

More importantly, however, the large quantity of data provided by
MODIS/A and this modified Kd_Lee algorithm allows for more robust
zonation than the traditional region designations. Within any region,
sub-regions can be pinpointed which show large differences in clima-
tology and seasonal cycle amplitude. For example, harmonic analyses
showed distinct groups according to their seasonal variation, with
offshore areas having the most stable water clarity (low amplitude)

and inshorewaters beingmore variable. Aswas seen in themean clima-
tologies, this is especially true in theMiddle and LowerKeys, nearest the
main thoroughfares for water leaving Florida Bay. The Upper Keys
region appears to lack these high amplitudes in nearshore regions,
whichmay result from a lack of large channels for water influx. Alterna-
tively, the masking of pixels less than 5 m depth in these analyses may
partially be obscuring nearshore amplitude highs in the Upper Keys.
Nevertheless, the data volume provided by this method allows for test-
ing of statistical differences between individual reef or seagrass envi-
ronments, and retrospective analysis of their light exposure history.

Temporally, the EOF analysis indicated that a smooth seasonal
cycle is the prevailing mechanism explaining water clarity variations.
The phase of this variation shows nearly ubiquitous Kd(488) maxima in
the winter. November, December and January were the peak Kd(488)
months for 8, 69, and 18% of pixels, respectively (all other months
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Fig. 10. ANOVA groupings and results. Underlying map (a) shows traditional regional designations, as well as groups by distance from land (red = 0–4 km, green = 4–8 km,
blue = 8–12 km). Inset graph (b) shows mean ± 1 standard error for each factor level. Within each distance from land grouping, letters (capital, lower-case, or Greek) indicate
regions of significant difference in pairwise comparisons. DT = Dry Tortugas, MQ = Marquesas, LK = Lower Keys, MK = Middle Keys, UK = Upper Keys, BB = Biscayne Bay.
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Fig. 9. EOF analysis showed singular importance of a regular seasonal cycle. Maps depict the a) amplitude and (inset map, b) phase of a simple harmonic oscillation fit to describe
this cycle in Kd(488) for waters with depth between 5 and 30 m. Phase is shown as month of maximum Kd(488). Land shown in black with a white coastline. No data shown as gray.
Inset zooms highlight representative regions from the Lower, Middle, and Upper Keys.
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were less than 1.5%). The Middle and Lower Keys region seems to peak
earlier (November or December) than the waters to the north and to
thewest. Further, the time-space visualizations (Fig. 8) allow for assess-
ment of anomalous water clarity events. The most prominent features
in water clarity along the 10 m isobath are a sharp increase in mean
and standard deviation of Kd(488) west of approximately 81.75°W lat-
itude (near Key West), as well as a series of low water clarity events
(Fig. 8c). The former is potentially due to influxes of water from Key
West and Boca Grande Channels, and agrees with other analyses show-
ing lowwater clarity in the Lower Keys andMarquesas regions (Boyer &
Jones, 2002). This effect could potentially be amplified by proximity to
land. The 10 m transect is closer to land in the Lower Keys than in the
Upper Keys, which could have the effect of capturing waters affected
by land-based nutrient sources, especially the population center of
KeyWest. Again, the ANOVA analysis showed that, regardless of region,
proximity to land has a significant effect on water clarity.

The large anomalies in water clarity seen in late 2003, late 2005, and
early 2010 along the 10 m isobath can be traced to particular events.
First, in late 2003 a dark plume of water was observed to flow from
the SW Florida coast into the Dry Tortugas region by late October (Hu
et al., 2004) explaining the anomaly in derived water clarity during
that time frame. The largest anomaly in water quality was seen in late
2005, due to Hurricane Wilma that passed just north of the Florida
Keys in mid-October, 2005. This hurricane caused a rise in water level
within Florida Bay, which overwashed most of the Middle and Lower
Keys, likely leading to an extremely turbid and nutrient-rich environ-
ment. Finally, February and March of 2010 show high anomalies due
to an extremely large, and previously unreported, influx of low clarity
water through the channels in the Middle Keys. This plume is clearly
visible in true color satellite imagery. It is possible that the extreme
cold event in January 2010 (see Barnes & Hu, in press; Barnes et al.,
2011; Lirman et al., 2011) causedmortality of Everglades flora and sub-
sequent nutrient release (Duever et al., 1994). If advected into the FRT
region, colored dissolved organic matter (CDOM) from the plant
decay or phytoplankton blooms stimulated by the influx of nutrients
could cause the anomalously high Kd(488) observed.

4.4. Implications

Despite the wealth of scientific research describing the interactions
between light and coral reef health, many such investigations are based
on an individual coral colony (e.g., Lesser et al., 1990), samplings of
adult tissue (e.g., Hoegh-Guldberg & Jones, 1999) or larvae microcosms
(e.g., Gleason et al., 2006). Unfortunately, more robust analyses are
impossible because current water clarity datasets are insufficient to
quantitatively assess long-term and region-wide light availability. Fur-
ther, current datasets aremostly derived from long-termmonitoring pro-
grams or from submerged sensor arrays, both ofwhich are expensive and
labor intensive. The algorithm described in this work adds an unprece-
dented amount of historical and ongoing information about the water
clarity in coral reef environments, with minimal additional cost.
Combinedwith bottomdepth and satellite-derived Ed, themultispectral
light environment surrounding corals can be estimated from CZCS,
SeaWiFS, MODIS, MERIS, and VIIRS data using this modified algorithm,
although performance may be limited by the signal-to-noise ratio of
the particular instrument. As a result, the relative paucity of in situ
light attenuation data may no longer be a factor hindering our under-
standing of region-wide effects of light on corals at >5 m water
depth, at least for the Florida Keys.

To date, large scale investigations of declines in coral reef health
have focused almost singularly on sea surface temperature (SST;
e.g., Liu et al., 2005). This is driven partially by the large impact of
temperature on coral health, but also by the widespread availability
of validated satellite SST data (as opposed to Kd data). The modified
water clarity algorithm allows more robust understanding of the indi-
vidual and combined effects of specific light and temperature events

on corals, as well as the impacts of long-term exposures. Such infor-
mation could be used to create a metric for coral health which could
be assessed using satellite data in near real time.

Beyond scientific applications for the algorithm itself, the spatio-
temporal patterns of water clarity in the FRT region are significant
in that they depart from current conceptions about the region. The
new paradigm offered in this paper describes a mainly onshore-offshore
gradient in water clarity throughout the region, but also transitions in
bothwater clarity and variability along the reef tract. As generally under-
stood, the large discharge channels from Florida Bay greatly affect FRT
waters, and indeed are driving the separation between these regions or
sub-regions. Their impact is spread throughout much of the Middle
and Lower Keys regions, as well as the Marquesas region.

Applied to current monitoring efforts and to the ongoing rezoning
process for the FKNMS, these new satellite-based water clarity results
can have significant impacts. The overall goal of these programs is to
preserve native resources. Even in the absence of detailed informa-
tion about the region wide impacts of current and long-term expo-
sure to specific light regimes, the regional differences in FRT water
clarity can inform these preservation efforts. Specific zones for pres-
ervation or restoration should include reefs within extremely clear
waters, where corals have traditionally thrived, but also reefs accli-
mated to water clarity regimes which are more variable and highly
attenuating (particularly nearshore). In the FKNMS, reefs in such
environments currently exhibit significantly higher coral cover and
coral growth rates than those in traditional offshore environments
(Lirman& Fong, 2007), and as suchmay show resilience to potential fu-
ture water clarity variability.

5. Conclusion

We have tested a modified algorithmwhich shows improvement in
satellite derived Kd in optically shallow waters for several wavelengths,
allowing widespread current and historical assessment of the light en-
vironment experienced by benthic ecosystems. This new product can
further be used to investigate spatiotemporal patterns in water clarity.
Within the FRT region in the Florida Keys, such analysis challenges
some published accounts describing the relative clarity of the tradition-
al geographic regions, which can have large and immediate impacts on
the management of shallow marine systems. Research and monitoring
efforts will benefit from combining satellite-based temperature data
with this new water clarity data to allow widespread assessment of
coral reef and seagrass environments in near-real time.
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