Evidence for $B^0 \to \rho^0 \rho^0$ Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle α

B. Aubert
Laboratoire de Physique des Particules, IN2P3/CNRS et Universite de Savoie, F-74941 Annecy-Le-Vieux, France

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

BaBar Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

Aubert, B.; Bloom, Kenneth A.; and Collaboration, BaBar, ”Evidence for $B^0 \to \rho^0 \rho^0$ Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle α” (2007). Kenneth Bloom Publications. 191.
http://digitalcommons.unl.edu/physicsbloom/191

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Evidence for $B^0 \to \rho^0 \rho^0$ Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle α

0.0026

Evidence for $B^0 \to \rho^0 \rho^0$ Decays and Implications for the Cabibbo-Kobayashi-Maskawa Angle α

© 2007 The American Physical Society

(BABAR Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4Institute of High Energy Physics, Beijing 100039, China
5University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7University of Birmingham, Birmingham, B15 2TT, United Kingdom
8Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
9University of Bristol, Bristol BS8 1TL, United Kingdom
10University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13University of California at Irvine, Irvine, California 92697, USA
14University of California at Los Angeles, Los Angeles, California 90024, USA
15University of California at Riverside, Riverside, California 92521, USA
16University of California at San Diego, La Jolla, California 92093, USA
17University of California at Santa Barbara, Santa Barbara, California 93106, USA
18University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
19California Institute of Technology, Pasadena, California 91125, USA
20University of Cincinnati, Cincinnati, Ohio 45221, USA
21University of Colorado, Boulder, Colorado 80309, USA
22Colorado State University, Fort Collins, Colorado 80523, USA
23Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
24Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
25Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
26University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
We search for the decays $B^0 \to \rho^0 \rho^0$, $B^0 \to \rho^0 f_0(980)$, and $B^0 \to f_0(980)f_0(980)$ in a sample of about 3.84×10^6 $Y(4S) \to BB$ decays collected with the BABAR detector at the PEP-II asymmetric-energy
Measurements of CP-violating asymmetries in the $B^0\bar{B}^0$ system test the flavor structure of the standard model by over-constraining the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1]. The time-dependent CP asymmetry in the decays of B^0 or \bar{B}^0 to a CP eigenstate dominated by the tree-level amplitude $b \to u\bar{u}d$ measures $\sin 2\alpha_{\text{eff}}$, where α_{eff} differs from the CKM unitarity triangle angle $\alpha = \arg[-V_{ud}^* V_{us}/V_{us} V_{ub}]$ by a quantity $\Delta \alpha$ accounting for the contributions from loop (penguin) amplitudes. The value of $\Delta \alpha$ can be extracted from an analysis of the branching fractions of the B decays into the full set of isospin-related channels [2].

Branching fractions and time-dependent CP asymmetries in $B \to \pi\pi$, $\rho\pi$, and $\rho\rho$ have already provided information on α. Since the tree contribution to the $B^0 \to \rho^0\rho^0$ decay is color suppressed, the decay rate is sensitive to the penguin amplitude. The $B^0 \to \rho^0\rho^0$ decay has a much smaller branching fraction than $B^0 \to \rho^+\rho^-$ and $B^+ \to \rho^+\rho^0$ channels [4–9], and therefore a stringent limit on $\Delta \alpha$ can be set [2,7,10]. This makes the $\rho\rho$ system particularly effective for measuring α.

In $B \to \rho\rho$ decays the final state is a superposition of CP-odd and CP-even states. An isospin-triangle relation [2] holds for each of the three helicity amplitudes, which can be separated through an angular analysis. The helicity angles θ_1 and θ_2 are defined as the angles between the direction of π^+ and the direction of the B in the rest system of each of the ρ^0 candidates. The resulting angular distribution $d^2\Gamma/(d\theta_1 d\cos \theta_2)$ is

$$d^2\Gamma/(d\theta_1 d\cos \theta_2) = \frac{9}{4} \left[(1 - f_L) \sin^2 \theta_1 \sin^2 \theta_2 + f_L \cos^2 \theta_1 \cos^2 \theta_2 \right],$$

where $f_L = |A_0|^2/(|A_1|^2)$ is the longitudinal polarization fraction and $A_{\lambda} = 1,0,-1,0,1$ are the helicity amplitudes.

In this Letter we present the first evidence for the $B^0 \to \rho^0\rho^0$ decay, the measurement of the longitudinal polarization fraction in this decay, and updated constraints on the penguin contribution to the measurement of the unitarity angle α.

These results are based on data collected with the BABAR detector [11] at the PEP-II asymmetric-energy e^+e^- collider [12]. A sample of 383.6 \pm 4.2 million $B\bar{B}$ pairs was recorded at the $Y(4S)$ resonance with the center-of-mass (c.m.) energy $\sqrt{s} = 10.58$ GeV. Charged-particle momenta and trajectories are measured in a tracking system consisting of a five-layer double-sided silicon vertex tracker and a 40-layer drift chamber, both within a 1.5 T solenoidal magnetic field. Charged-particle identification is provided by measurements of the energy loss in the tracking devices and by a ring-imaging Cherenkov detector.

We select $B \to M_1 M_2 \to (\pi^+ \pi^-)(\pi^+ \pi^-)$ candidates, with $M_{1,2}$ standing for ρ^0 or f_0 candidate, from neutral combinations of four charged tracks that are consistent with originating from a single vertex near the e^+e^- interaction point. We veto tracks that are positively identified as kaons or electrons. The identification of signal B candidates is based on several kinematic variables. The beam-energy-substituted mass, $m_{\text{ES}} = (|s/2 + p_1 \cdot p_B|^2/E_B^2 - p_B^2)/2$, where the initial e^+e^- four-momentum (E_1, p_1) and the B momentum p_B are defined in the laboratory frame, is centered near the B mass with a resolution of 2.6 MeV for signal candidates. The difference $\Delta E = E_{\text{ES}} - \sqrt{s}/2$ between the reconstructed B energy in the c.m. frame and its known value $\sqrt{s}/2$ has a maximum near zero with a resolution of 20 MeV for signal events. Four other kinematic variables describe two possible $\pi^+\pi^-$ pairs: invariant masses m_1, m_2 and helicity angles θ_1, θ_2.

The selection requirements for signal candidates are the following: $5.245 < m_{\text{ES}} < 5.290$ GeV, $|\Delta E| < 85$ MeV, $550 < m_{1,2} < 1050$ MeV, and $|\cos \theta_{1,2}| < 0.98$. The last requirement removes a region corresponding to low-momentum pions with low and more uncertain reconstruction efficiency. In addition, we veto the copious decays $B^0 \to D^{(*)-} \pi^+ \to (h^+ \pi^- \pi^-) \pi^+$, where h^+ refers to a pion or kaon, by requiring the invariant mass of the three-particle combination to differ from the D-meson mass by more than 13.2 MeV, or 40 MeV if one of the particles is consistent with a kaon hypothesis.

We reject the dominant $e^+e^- \to q\bar{q}(q = u, d, s, c)$ (continuum) background by requiring $|\cos \theta_f| < 0.8$, where θ_f is the angle between the B-candidate thrust axis and that of the remaining tracks and neutral clusters in the event, calculated in the c.m. frame. We further suppress continuum background using a neural network discriminant \tilde{E}, which combines a number of topological variables calculated in the c.m. frame. Among those are the polar angles of the B momentum vector and the B-candidate thrust axis with respect to the beam axis. Other discriminating variables include the two Legendre moments L_0 and L_2 of the energy flow around the B-candidate thrust axis [13] and the sum of the transverse momenta of all particles in the rest of the event, calculated with respect to the B direction.

After application of all selection criteria, $N_{\text{cand}} = 64843$ events are retained. On average, each selected event has
1.05 signal candidates, while in Monte Carlo [14] samples of longitudinally and transversely polarized \(B^0 \rightarrow \rho^0 \rho^0 \) decays we find 1.15 and 1.03 candidates, respectively. When more than one candidate is present in the same event, the candidate having the best \(\chi^2 \) consistency with a single four-pion vertex is selected. Simulation shows that 18% of longitudinally and 4% of transversely polarized \(B^0 \rightarrow \rho^0 \rho^0 \) events are misreconstructed with one or more tracks not originating from the \(B^0 \rightarrow \rho^0 \rho^0 \) decay. These are mostly due to combinatorial background from low-momentum tracks from the other \(B \) meson in the event.

Further background separation is achieved by the use of multivariate \(B \)-flavor-tagging algorithms trained to identify primary leptons, kaons, soft pions, and high-momentum charged particles from the other \(B \) [15]. The discrimination power arises from the difference between the tagging efficiencies for signal and background in seven tagging categories (\(c_{\text{tag}} = 1 \ldots 7 \)).

We use an unbinned extended maximum likelihood fit to extract the \(B^0 \rightarrow \rho^0 \rho^0 \) event yield and fraction of longitudinal polarization \(f_L \). We also fit for the event yields of \(B^0 \rightarrow \rho^0 f_0 \) and \(B^0 \rightarrow f_0 f_0 \) decays, as well as of several background categories. The likelihood function is

\[
L = \exp\left(-\sum_k n_k \prod_{i=1}^{N_{\text{tag}}} \left(\sum_{j} n_j P_j(\tilde{x}_i) \right) \right),
\]

where \(n_j \) is the unconstrained number of events for each event type \(j \) (\(B^0 \rightarrow \rho^0 \rho^0 \), \(B^0 \rightarrow \rho^0 f_0(980) \), \(B^0 \rightarrow f_0(980)f_0(980) \), three background components from \(B \) decays, and continuum), and \(P_j(\tilde{x}_i) \) is the probability density function (PDF) of the variables \(\tilde{x}_i = \{m_{\text{ES}}, \Delta E, \xi, m_1, m_2, \cos \theta_1, \cos \theta_2, c_{\text{tag}} \} \) for the \(i \)th event.

We use simulated events to parameterize the background contributions from \(B \) decays. The charmless modes are grouped into two classes with similar kinematic and topological properties: \(B^0 \rightarrow a_1^+ \pi^+ \) and a combination of other charmless modes, including \(B^0 \rightarrow \rho^0 K^0, B^+ \rightarrow \rho^+ \bar{p}^0, B \rightarrow p \pi^0 \), and \(B^0 \rightarrow \rho^0 \rho^- \). One additional class accounts for the remaining neutral and charged \(B \) decays to charm modes. We ignore any other four-pion final states whose contributions are expected to be small in our invariant mass window.

Since the statistical correlations among the variables are found to be small, we take each \(P_j \) as the product of the PDFs for the separate variables. Exceptions are the kinematic correlation between the two helicity angles in signal, and mass-helicity correlations in other \(B \)-decay classes and misreconstructed signal.

We use double-Gaussian functions to parameterize the \(m_{\text{ES}} \) and \(\Delta E \) PDFs for signal, and a relativistic Breit-Wigner functions for the resonance masses of \(\rho^0 \) and \(f_0(980) \) [16]. The angular distribution at production for \(B^0 \rightarrow \rho^0 \rho^0 \), \(B^0 \rightarrow \rho^0 f_0 \), and \(B^0 \rightarrow f_0 f_0 \) modes [expressed as a function of the longitudinal polarization in Eq. (1)] for \(B^0 \rightarrow \rho^0 \rho^0 \) is multiplied by a detector acceptance function \(\mathcal{G}(\cos \theta_1, \cos \theta_2) \), determined from Monte Carlo simulations. The distributions of misreconstructed signal events are parameterized with empirical shapes in a way similar to that used for \(B \) background discussed below. The neural network discriminant \(\xi \) is described by three asymmetric Gaussian functions with different parameters for signal and background distributions.

The PDFs for nonsignal \(B \) decay modes are generally modeled with empirical analytical distributions. Several variables have distributions identical to those for signal, such as \(m_{\text{ES}} \) when all four tracks come from the same \(B \), or \(\pi^+ \pi^- \) invariant mass \(m_{1,2} \) when both tracks come from a \(\rho^0 \) meson. Also for some of the modes the two \(\pi^+ \pi^- \) pairs can have different mass and helicity distributions, e.g., when only one of the two combinations comes from a genuine \(\rho^0 \) or \(f_0 \) meson, or when one of the two pairs contains a high-momentum pion (as in \(B \rightarrow a_1 \pi \)). In such cases, we use a four-variable correlated mass-helicity PDF.

The signal and \(B \)-background PDF parameters are extracted from the simulation. The Monte Carlo parameters for \(m_{\text{ES}}, \Delta E, \) and \(\xi \) PDFs are adjusted by comparing data and simulation in control channels with similar kinematics and topology, such as \(B^0 \rightarrow D^+ \pi^+ \) with \(D^- \rightarrow K^+ \pi^- \pi^- \). The continuum background PDF parameters are left free

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n(B^0 \rightarrow \rho^0 \rho^0))</td>
<td>100 ± 32 ± 17</td>
</tr>
<tr>
<td>(f_L)</td>
<td>0.87 ± 0.13 ± 0.04</td>
</tr>
<tr>
<td>Eff (%)</td>
<td>24.2 ± 1.0</td>
</tr>
<tr>
<td>(B_{\text{sig}}) ((\times 10^{-6}))</td>
<td>1.07 ± 0.33 ± 0.19</td>
</tr>
<tr>
<td>Significance, stat only ((\sigma))</td>
<td>3.7</td>
</tr>
<tr>
<td>Significance, syst included ((\sigma))</td>
<td>3.5</td>
</tr>
<tr>
<td>(n(B^0 \rightarrow \rho^0 f_0))</td>
<td>20 ± 21^{+7}_{-10}</td>
</tr>
<tr>
<td>Eff (%)</td>
<td>26.1 ± 1.0</td>
</tr>
<tr>
<td>(B_{\text{sig}} \times B(f_0 \rightarrow \pi^+ \pi^-) (\times 10^{-6}))</td>
<td>0.19 ± 0.21^{+0.07}_{-0.10}</td>
</tr>
<tr>
<td>UL \times B(f_0 \rightarrow \pi^+ \pi^-) (\times 10^{-6})</td>
<td>0.53</td>
</tr>
<tr>
<td>(n(B^0 \rightarrow f_0 f_0))</td>
<td>-3 ± 9 ± 5</td>
</tr>
<tr>
<td>Eff (%)</td>
<td>28.6 ± 1.1</td>
</tr>
<tr>
<td>(B_{\text{sig}} \times B^2(f_0 \rightarrow \pi^+ \pi^-) (\times 10^{-6}))</td>
<td>-0.03 ± 0.08 ± 0.04</td>
</tr>
<tr>
<td>UL \times B^2(f_0 \rightarrow \pi^+ \pi^-) (\times 10^{-6})</td>
<td>0.16</td>
</tr>
<tr>
<td>(n(B^0 \rightarrow a_1^+ \pi^+))</td>
<td>81 ± 25</td>
</tr>
<tr>
<td>(n(\text{charmless}))</td>
<td>-17^{+107}_{-96}</td>
</tr>
<tr>
<td>(n(B\bar{B}))</td>
<td>3198 ± 224</td>
</tr>
<tr>
<td>(n(q\bar{q}))</td>
<td>61469 ± 311</td>
</tr>
</tbody>
</table>
in the fit. Finally, the discrete B-flavor tagging PDFs for signal modes are obtained in dedicated fits to events with identified exclusive B decays. The tagging PDFs for inclusive B backgrounds are determined by Monte Carlo simulations and their systematic uncertainties are studied in data.

Table I shows the results of the fit. The $B^0 \rightarrow \rho^0 \rho^0$ decay is observed with a significance of 3.5σ, as determined by the quantity $\sqrt{-2 \log (L_0 / L_{\text{max}})}$, where L_{max} is the maximum likelihood value, and L_0 is the likelihood for a fit with the signal contribution set to zero. It corresponds to a probability of background fluctuation to the observed signal yield of 2×10^{-4}, including systematic uncertainties, which are assumed to be Gaussian distributed. We do not observe significant event yields for $B^0 \rightarrow \rho^0 f_0(980)$ and $B^0 \rightarrow f_0(980)f_0(980)$ decays. Background yields are found to be consistent with expectations. In Fig. 1 we show the projections of the fit results onto m_{ES}, ΔE, m_1, and $\cos \theta_1$ variables.

Dominant systematic uncertainties in the fit originate from statistical errors in the PDF parameterizations, due to the limited number of events in the control samples. The PDF parameters are varied by their respective uncertainties to derive the corresponding systematic errors ($\pm 10 \%, \pm 4$ events for $\rho^0 \rho^0$, $\rho^0 f_0$, and $f_0 f_0$ respectively, and 0.03 for f_L). We also assign a systematic error of 2 events for $\rho^0 \rho^0$, 3 events for $\rho^0 f_0$, and 1 event for $f_0 f_0$ (0.01 for f_L) to account for a possible fit bias, evaluated with Monte Carlo experiments. The above systematic uncertainties do not scale with event yield and are included in the calculation of the significance of the result.

We estimate the systematic uncertainty due to the interference between the $B^0 \rightarrow \rho^0 \rho^0$ and $a_1^+ \pi^+$ decays using simulated samples in which the decay amplitudes for $B^0 \rightarrow \rho^0 \rho^0$ are generated according to this measurement and those for $B^0 \rightarrow a_1^+ \pi^+$ correspond to a branching fraction of $(3.2 \pm 4.8) \times 10^{-6}$ [17]. Their amplitudes are modeled with a Breit-Wigner function for all $\rho \rightarrow \pi \pi$ and $a_1 \rightarrow \rho \pi$ combinations and their relative phase is assumed to be constant across the phase space. The strong phases and CP content of the interfering state $a_1^+ \pi^+$ are varied between zero and a maximum value using uniform prior distributions. We take the rms variation of the average signal yield (14 events for the $\rho^0 \rho^0$ yield, or 0.03 for f_L) as a systematic uncertainty.

Uncertainties in the reconstruction efficiency arise from track finding (2%), particle identification (2%), and other selection requirements, such as vertex probability (2%), track multiplicity (1%), and thrust angle (1%).

To constrain the penguin contributions to $B \rightarrow \rho \rho$ decays, we perform an isospin analysis, by minimizing a χ^2 term that includes the measured quantities expressed as the lengths of the sides of the isospin triangles. We use the measured branching fractions and fractions of longitudinal polarization of the $B^+ \rightarrow \rho^+ \rho^0$ [6] and $B^0 \rightarrow \rho^+ \rho^-$ [7] decays, the CP-violating parameters $S_L^{\rho \rho}$ and $C_L^{\rho \rho}$ determined from the time evolution of the longitudinally polarized $B^0 \rightarrow \rho^+ \rho^-$ decay [8], and the branching fraction and polarization of $B^0 \rightarrow \rho^0 \rho^0$ from this analysis. We assume uncertainties to be Gaussian and neglect $I = 1$ isospin.

FIG. 1 (color online). Projections of the multidimensional fit onto (a) m_{ES}, (b) ΔE, (c) dipion invariant mass (m_1 is shown, distribution of m_2 is similar), and (d) cosine of the helicity angle ($\cos \theta_1$ is shown), after a requirement on the signal-to-background probability ratio with the plotted variable excluded. This requirement enhances the fraction of signal events in the sample. The data points are overlaid by the solid black line, which corresponds to the full PDF projection. The individual $B^0 \rightarrow \rho^0 \rho^0$ PDF component is also shown with a solid red line. The sum of all other PDFs (including $B^0 \rightarrow \rho^0 f_0$ and $B^0 \rightarrow f_0 f_0$ components) is shown as the dashed blue line. The D-meson veto causes the acceptance dip seen in (d).

FIG. 2 (color online). $\Delta \chi^2$ as a function of $\Delta \alpha$ obtained from the isospin analysis discussed in the text. The dashed lines at $\Delta \chi^2 = 1$ and $\Delta \chi^2 = 2.7$ are taken for the 1σ (68%) and 1.64σ (90%) interval estimates.
contributions, electroweak loop amplitudes, nonresonant and isospin-breaking effects.

With the $B^0 \rightarrow \rho^0 \rho^0$ measurement we obtain a 68% (90%) CL limit on $|\Delta \alpha| \equiv |\alpha - \alpha_{\text{eff}}| < 18^\circ (< 20^\circ)$. Figure 2 shows $\Delta \chi^2$ as a function of $\Delta \alpha$. The central value of α obtained from the isospin analysis is the same as α_{eff}, which is constrained by the relation $\sin(2\alpha_{\text{eff}}) = S_L^+/(1 + C_L^{+,-})^{1/2}$ and is measured with the $B^0 \rightarrow \rho^+ \rho^-$ decay [8].

The error due to the penguin contribution becomes the dominant uncertainty in the measurement of α using $B \rightarrow \rho \rho$ decays. However, once the sample of $B^0 \rightarrow \rho^0 \rho^0$ decays becomes more significant, time-dependent angular analysis will allow us to measure the CP parameters S_L^{00} and C_L^{00}, analogous to $S_L^{+,-}$ and $C_L^{+,-}$, resolving ambiguities inherent to isospin-triangle orientations.

In summary, we find evidence for $B^0 \rightarrow \rho^0 \rho^0$ decay with 3.5σ significance. We measure the $B^0 \rightarrow \rho^0 \rho^0$ branching fraction of $(1.07 \pm 0.33 \pm 0.19) \times 10^{-6}$ and determine the longitudinal polarization fraction for these decays of $f_L = 0.87 \pm 0.13 \pm 0.04$. The measurement of this branching fraction combined with that for $B^+ \rightarrow \rho^0 \rho^+$ and $B^0 \rightarrow \rho^0 \rho^-$ decays provides a constraint on the penguin uncertainty in the determination of the CKM unitarity angle α. These results supersede our previous measurements [4]. We find no significant evidence for the decays $B^0 \rightarrow \rho^0 f_0$ and $B^0 \rightarrow f_0 f_0$.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Deceased.
†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Also with Università della Basilicata, Potenza, Italy.
§Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
[3] Charge conjugate B decay modes are implied in this Letter.