Completed Genome Sequence of the Anaerobic Iron-Oxidizing Bacterium Acidovorax ebreus Strain TPSY

Kathryne G. Byrne-Bailey
University of California, Berkeley

Karrie A. Weber
University of Nebraska-Lincoln, kweber@unl.edu

Antinea H. Chair
University of California, Berkeley

Saumyaditya Bose
University of California, Berkeley

Traci Knox
University of California, Berkeley

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub
Authors
Kathryne G. Byrne-Bailey, Karrie A. Weber, Antinea H. Chair, Saumyaditya Bose, Traci Knox, Trisha L. Spanbauer, Olga Chertkov, and John D. Coates
Completed Genome Sequence of the Anaerobic Iron-Oxidizing Bacterium Acidovorax ebreus Strain TPSY

Kathryne G. Byrne-Bailey,1† Karrie A. Weber,1,3† Antinea H. Chair,1 Saumyaditya Bose,1 Traci Knox,1 Trisha L. Spanbauer,3 Olga Chertkov,2 and John D. Coates1*

Department of Plant and Microbiology, University of California, Berkeley, California 94720; Los Alamos National Laboratory, Los Alamos, New Mexico 87545; and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588

Received 4 November 2009/accepted 25 November 2009

Acidovorax ebreus strain TPSY is the first anaerobic nitrate-dependent Fe(II) oxidizer for which there is a completed genome sequence. Preliminary protein annotation revealed an organism optimized for survival in a complex environmental system. Here, we briefly report the completed and annotated genome sequence of strain TPSY.

Microorganisms from diverse anoxic environments are capable of nitrate-dependent Fe(II) oxidation at circumneutral pH (4, 11, 17, 18, 20, 21). Despite their geochemical importance (22), little is known of the underlying biochemical and genetic mechanisms. Genome sequencing of several nitrate-dependent Fe(II) oxidizers will provide insight into this process. By comparing Fe(II) oxidation mechanisms in various organisms, we hope to identify both the conserved and disparate aspects of the metabolism. The genome of Acidovorax ebreus strain TPSY is the first of these to be sequenced.

Strain TPSY is a motile, Gram-negative facultative anaerobe isolated from groundwater collected from the U.S. Department of Energy Integrated Field Research Challenge site at Oak Ridge, TN. Growth experiments performed as previously described (21) revealed TPSY’s incapacity for lithoautotrophic growth, which was supported by a lack of genes in the genome encoding any known CO₂ fixation pathways. TPSY did grow mixotrophically with Fe(II) as the electron donor and a 0.1 mM acetate carbon source. 16S RNA gene sequence analysis placed TPSY in the class Betaproteobacteria with 99.8% similarity to Acidovorax sp. strain JS42 in the family Comamonadaceae.

The completed genome consisted of a single circular chromosome of 3,796,573 bp with an average 66.8% G + C content. A total of 3,479 protein-encoding genes were predicted, and 34 (0.98%) had no similarity to public database sequences. Sequencing performed at the Department of Energy Joint Genome Institute (JGI) used Sanger sequencing and 454 pyrosequencing to a depth of 20× coverage. All JGI library construction and sequencing techniques can be found at http://www.jgi.doe.gov/. Sequence assembly, quality assessment, and annotation were performed using the software Phred/Phrap/Consed (www.phrap.com) (6–8), Dupfinisher (10), CRITICA (2), GLIMMER, and GENERATION (5) and the JGI Integrated Microbial Genomes site (12). The completed genome sequence contained 33,341 reads and had an average of ninefold coverage per base and an error rate of <1 in 100,000.

TPSY was named in part for its meandering motility, and its genome confirmed the twitching phenotype with the presence of pilT, pilU, and a complete set of flagellar and chemotaxis genes. The ability of TPSY to oxidize simple alcohols and acids with oxygen or nitrate respiration was confirmed by the genome. In addition, biosynthetic pathways for all amino acids except tyrosine and phenylalanine were present. No homologues of chorismate mutase (EC 5.4.99.5), an enzyme required for tyrosine and phenylalanine anabolism, were identified. The genome contained both intact Embeden-Meyerhof-Parnas and Entner-Doudoroff pathways, in addition to a pentose phosphate pathway and a trichloroacetic acid cycle.

In support of its facultative anaerobicity, a complete set of genes for denitrification and three different terminal oxidases (cytochrome aa₃, cbb₃, and cytochrome d oxidase) were present. The cbb₃ and cytochrome d oxidases, with their high oxygen affinity, putatively enable survival in microaerobic environments (14).

TPSY had sequences encoding 30 transposases, 11 integrases, and 11 phage/prophage-related genes. A region of particular interest putatively conferred resistance to lead, arsenate, and mercury: pbrRATARTBC, arsRDAB, and merRPCADE. Evidence suggests horizontal transfer and insertion of this region, as it was flanked on the 5’ end by λ prophage-related genes and the 3’ end encoded a putative Tn21 transposase. Phenotypic studies by the method of Wang et al. (19) revealed MICs of 16 µM phenylmercuric acetate and 250 µM MgCl₂. TPSY was also capable of growth in the presence of arsenate (10 mM) but did not use it as an electron acceptor.

Related to phage infection, one CRISPR (clustered, regularly interspaced, short palindromic repeats) region (3, 16) was predicted. The core proteins, the cas1 and cas2 genes, and a csn1 gene formed the CRISPR subtype Nmeni, which is associated with vertebrate pathogens and commensals (9). However, the lack of typical pathogenic type I or III secretion systems such as the hec cluster of Dickeya chrysanthemi (15) or the inv/spa system of Salmonella enterica serovar Typhimurium.

† The first two authors contributed equally to this work and are listed alphabetically.

Published ahead of print on 18 December 2009.
Nucleotide sequence accession number. The genome sequence of Acidovorax eibreus strain TPSY (formerly Diaphorobacter sp. strain TPSY) reported in this paper has been deposited in the GenBank database under accession number NC_011992.

We thank Lynne Goodwin for her management of the sequencing project at the JGI.

This research was supported by Office of Science (BER), U.S. Department of Energy, grant DE-FG02-07ER64390 to J.D.C. at UCB and by the Nebraska Tobacco Settlement Biomedical Research Development Fund to K.A.W. at the University of Nebraska, Lincoln.

The sequencing work on behalf of J.D.C. was performed through the Community Sequencing Project 2008 for the JGI under the auspices of the U.S. Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California Lawrence Berkeley National Laboratory under contract DE-AC02-07ER64390, Lawrence Livermore National Laboratory under contract DE-AC02-07NA27344, and Los Alamos National Laboratory under contract DE-AC02-06NA25396.

REFERENCES