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II.  RBF NEURAL NETWORKS AND SUPPORT VECTOR MACHINE 

A.   RBF Neural Networks 
The RBF neural networks are a class of feed-forward ANNs 

constructed based on the function approximation theory. Fig. 
1 shows the structure of RBF neural networks, which contains 
an input layer, a hidden layer, and an output layer.  

Generally, the input-output relationship of a RBF neural 
network can be described as: 
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where x is the input; y is the output; m is the number of RBF 
units in the hidden layer; wi and w0 are the weight and bias 
between the ith RBF unit and the output, respectively; �i(·), ci 
and βi are the activation function, center, and width of the ith 
RBF unit, respectively. The Gaussian function is the most 
commonly used RBF function. 
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where �·� represents the Euclidean distance. The Gaussian 
function makes the value equidistant from the center in all 
directions have the same values.  

Constructing a RBF neural network involves determining 
the RBF centers, width, and the output weights and bias. Two 
methods are commonly used to determine the centers of RBF 
networks. One is to select representative input samples as the 
RBF centers; the other is to determine the centers with a self-
organization method, such as the K-means clustering 
algorithm [15]. In this paper, the K-means clustering method 
is used to locate the centers.  

Once the RBF centers are located, the width can be simply 
determined by [15]: 

maxdki ⋅=β                                                                (3) 
where dmax is the maximum Euclidean distance of the centers 
and k is a nonnegative scalar.  
    After the centers and width are fixed, the weights can be 
determined by a least-square method to minimize the error of 
the output. In this paper, the Netlab toolbox [15] is used, in 
which the singular value decomposition (SVD)-based 
numerical least-square method is applied to determine the 
output weights and bias. 

B.   Support Vector Machine 
The SVM has been successfully applied to the problems of 

pattern classification, particularly the classification of two 
different categories of patterns. The fundamental principle of 
classification using the SVM is to separate the two categories 
of patterns as far as possible. The basic idea of the SVM is to 
map data x into a higher-dimensional feature space via a 
nonlinear mapping. Then the linear classification (regression) 
in the high-dimensional space is equivalent to the nonlinear 
classification (regression) in the low-dimensional space [16]. 

):()( Nn RRbxwy →Φ+Φ⋅=                            (4) 
where y ∈ RN is the output; x ∈ Rn is the input regression 
vector and x = [yt-1,yt-2,…,yt-d];  b is a bias term; w ∈ RN is the 
coefficient vector; and Ф: Rn →RN is a nonlinear feature map, 
which transforms the original input x to a high-dimensional 
vector Ф(x) ∈ RN; the vector Ф(x) can be infinite dimension. 
Fig. 2 shows the structure of the SVM, where the input x is 
mapped via function Ф(·); the output y is a linear combination 
of Ф(x). 
     A specific SVM called ε-SVM is used in this paper due to 
its scarcity representation capability. The samples locating in 
the ε tube are not taken as support vectors without losing the 
generalization ability. The objective function of the ε-SVM is 
based on a ε-insensitive loss function. The formula for the ε-
SVM is given as follows: 
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Such a quadratic programming problem is usually solved by 
solving its dual problem as follows. 
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Fig. 2. The structure of a SVM. 
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Fig. 1. The structure of RBF neural networks  
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After solving for the coefficients ( *
i iα α− ) the final 

expression for the estimation of y is given by: 
*
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where K(xi, xj) = Ф(xi)Ф(xj). Based on the Karush-Kuhn-
Tucker (KKT) conditions [16] of the quadratic programming, 
only a certain number of the coefficients ( *

i iα α− ) will 
assume nonzero values. The data points associated with the 
nonzero coefficients having approximation errors equal to or 
larger than ε are referred to as support vectors. The samples in 
the ε-insensitive area are not support vectors and have no 
contribution to the estimation. Generally, the larger ε, the 
fewer the number of support vectors and the sparser the 
representation of the solutions. For given n samples, the ε-
SVM solves a 2n×2n kernel matrix. The RBF [17] is used as 
the SVM kernel in this paper. 
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III.  DATA PREPROCESSING 

A.   Data Description 
The data used in this paper is the Western Dataset [18] 

created by 3TIER with the oversight and assistance from the 
NREL. NWP models were used to essentially recreate the 
historical weather for the western U.S. for the years of 2004, 
2005, and 2006. The modeled data was temporally sampled 
every 10 minutes and spatially sampled every 2 kilometers. 
3TIER modeled the power output of ten wind turbine 
generators (WTGs) at 100 meters above the ground level on 
each grid point using a technique called the Statistical 
Correction to Output from a Record Extension (SCORE) [19], 
which replicates the stochastic nature of the wind plant output. 
The dataset contains the information of wind speed, the 
corresponding power output and SCORE-lite power, etc. 

Sixty eight WTGs from a wind farm 10 miles west of 
Denver, Colorado are selected to validate the proposed WPF 
algorithm. The data contains the average wind speed and 
power of the 68 wind turbines at same times.  

B.   Resolution 
The resolution of the original dataset is 10 minutes. Each 

data represents the average wind speed and power within one 
hour. For very short-term forecasting, the sample time is set as 
ten minutes for the implementation of the proposed WPF 
algorithm. For the short-term (more than 6 hours) forecasting, 
the sample time is set as two hours. 

The transformation among different resolutions is based on 
the assumption that the data values between two adjacent 
samples are linearly changed, that is: 
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where dti is the time interval between xi and xi+1. Then for a 

given resolution TS, the average value of the data within TS 
can be calculated as: 
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   The average value is then used as the value of the data 
sample by the proposed WPF algorithm.  In this paper, TS = 60 
minutes is used in the very short-term forecasting (less than 6 
hours) and TS = 2 hours is used for short-term forecasting 
(from 6 hours to several days) [2]. 

C.   Normalization 
To avoid tuning the SVM parameters while the input data 

is changed, especially when the input has more than one 
variable with different ranges, the data x is normalized to the 
range of [0, 1] by using the sigmoid function. 
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where μi and si  are the mean value and standard deviation of 
the ith input data, respectively. There are two reasons of using 
the sigmoid function for data normalization. First, the sigmoid 
function can strictly map the original input, i.e., the real wind 

Fig. 3. Wind speed normalization.   

Fig. 4.  Autocorrelations of the wind speed samples.  
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speeds, to the range of [0, 1], as shown in Fig. 3, the original 
cut-in and cut-out speeds are 3.5 m/s and 25 m/s, respectively; 
the resulting normalized values are 0.1 and 0.87, respectively, 
which takes approximate 80% of the whole range of [0, 1]. 
Second, the mean value μi and the standard deviation si make 
the data translation, rotation, and scale invariant.   

D.   Feature Representation  
Feature representation, which aims to extract certain 

characteristics from the original data, plays a key role in 
determining the performance of the WPF. Improper features 
obtained from bad feature extraction will lead to poor 
regression in the SVM. In this paper, wind speed is selected as 
an intermediate variable, which is predicted by the proposed 
SVM algorithm and RBF neural networks. The predicted wind 
speed is then used to calculate the wind power according to 
the power-wind speed characteristics of the WTGs. The 
reason of using wind speed as an intermediate variable for 
WPF is that wind speed is a continuous variable while wind 
power discontinues at certain wind speeds (e.g., the cut-in, 
rated, and cut-off wind speeds). It is more difficult to predict 
wind power than wind speed. 

The embedding dimension of the SVM [16], i.e., the 
number of previous data samples used as the input of the 
SVM, is determined by the autocorrelation coefficients of the 
data samples as follows. 
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where μ and s are the mean and standard deviation of the first 
330 days’ wind speeds in the dataset, respectively. Fig. 4 
illustrates the autocorrelation coefficients of the wind speed 
samples used in this paper, which shows that adjacent samples 
are highly correlated. Given a threshold rT of the 
autocorrelation coefficients, the embedding dimension can be 
determined. For example, if rT = 0.8, then the former eight 
samples are used as the input of the SVM. 

E.   Fixed-Step Prediction Scheme 
Given a prediction horizon of h steps, the fixed-step 

forecasting means only the value of the next hth sample is 
predicted by using the historical data.   

),,,()(ˆ 1 dttt yyyfhty −−=+ K                         (13) 
where f  is the nonlinear function generated by the SVM. Fig. 
5 shows such a prediction scheme, in which yt+h is predicted 
with the data before yt (the red blocks), yt+h-1 is predicted with 
the data before yt-1 (the green blocks).  
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Fig. 5. The fixed-step prediction scheme.  
 

F.   Evaluation 
The mean absolute error (MAE), mean absolute percentage 

error (MAPE), and standard deviation (Std) of the absolute 
error are used to evaluate the WPF performance [13]. Smaller 
values of the MAE, MAPE, and Std imply a superior WPF 
performance of the model. The definitions of MAE, MAPE, 

and Std are expressed as follows. 
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where h is the prediction horizon; pt+h is the measured wind 
power; and ˆ t hp +  is the predicted wind power. 
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where pnorm  is the nominal power of the wind farm. 
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The persistence model is used as the reference model to 
compare the performance of the SVM model and the RBF 
model. A parameter called skill is defined as follows: 
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where ep and e are the MAE of the WPF using the persistence 
model and the SVM (or RBF) model, respectively. A larger 
skill value indicates a better prediction performance of the 
model.  

G.   Parameter Selection  
Three parameters, i.e., γ and σ2 of the SVM and the 

embedding dimension d, need to be determined. The value of 
the embedding dimension can be “read” directly from Fig. 4. 
In this paper, the threshold rT is chosen as 0.8. Consequently, 
the value of d is chosen as 8 from the results shown in Fig. 4. 
That means that the previous 8 wind speed samples are used 
as the input of the SVM to predict the wind speed at next 
several time steps. The values of γ and σ2 (γ = 50 and σ2 = 0.3) 
are obtained from an exhaustive search. 

IV.  SIMULATION RESULTS 
Simulations are carried out to validate the proposed SVM-

based algorithm for very short-term and short-term WPF. The 
result is compared to that of the persistence model and RBF 
neural networks-based model. The dataset is divided into two 
groups, i.e., one group of training data and the other group of 
testing data. The data of 7 days is selected as testing data, in 
which the measured average wind speed is 9.99 m/s. It should 
be noticed that the testing data is selected from those segment 
with more significant variations. The training data contains the 
data of the n days before the first testing data sample. 
Simulations are performed to numerically determine the size 
of the training data, i.e., the best value of n, for WPF using the 
proposed method.  

Fig. 6 shows the MAE and MAPE as functions of the 
length of the training data (called the training length) for a 
prediction horizon of 3 hours. As shown in Fig. 6, it is not true 
that the longer the better for the training data. The MAE and 
MAPE decrease drastically with the increase of the training 
length up to 100 days. However, after 100 days the MAE and 
MAPE increase with the training length. Therefore, 100 days 
is selected as the best training length, i.e., the value of n, in the 
following simulations. 



 5

A.  Very short-term forecasting 
In the very short-term forecasting, the resolution (the time 

interval between two samples) is fixed at one hour. The fixed 
step scheme is applied in the forecasting. All of the predicted 
values are true out-of-sample forecasts, in which only the data 
samples prior to the prediction horizon are used. That is the 
models are estimated over history values. The predicted data 
is then compared to the actual measured value. The procedure 
is repeated for the next time step until it runs over the entire 
testing dataset. Figs. 7-9 show the results of 1h-3h ahead 
predictions, respectively.  

As shown in Figs. 7-9, the predicted values follow closely 
the measured values. A large error occurs when the wind 
speed changes drastically. However, approximately 50% of 
the errors are less than 3.3%. The prediction results of the 
RBF model are shown in Figs. 14-16 of the appendix for 
comparison with the SVM model. Compared to Figs. 7-9, the 
large MAE and MAPE values in Figs. 14-16 indicate that the 
RBF model is inferior to the proposed SVM model. Fig. 10 
shows the skills of the proposed SVM model and the RBF 
model as functions of the prediction horizon, where the 
persistence model is used as the reference model. The skills of 
both models are more than 62% for one hour WPF and 19% 
for six hour WPF. This indicates that both models 
significantly outperform the persistence model. Fig. 10 also 
indicates that SVM model has a better performance than the 
RBF model. This conclusion is the same as that in [13]. 
However, the skills decrease with the increase of the 
prediction horizon. The reason is probably the accuracy is 
deteriorated in both the proposed model and the reference 
model. The increased error of the persistence model worsens 
the skill when the prediction horizon becomes longer. For 
example, the skill reaches zero when the prediction horizon is 
so long that both models become ineffective.  Moreover, from 
the perspective of statistics, the larger the prediction horizon, 
the more uncorrelated data used which leads to a larger error. 

The parameters of the SVM model are fixed during the 

testing stage. One of the concerns is the model effectiveness, 
namely, how many days can be predicted accurately with the 
trained fixed model. Fig. 11 shows the 3-D view of MAPE as 
a function of the testing days and prediction horizon. As 

 

 

Fig. 6. MAE and MAPE as functions of the length of the training data. 

 
 

 

Fig. 7. 1h-ahead wind power prediction using the SVM model. 

 

 

Fig. 8. 2h-ahead wind power prediction using the SVM model. 

 

 

Fig. 9. 3h-ahead wind power prediction using the SVM model. 
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shown in Fig. 11, the MAPE increases with the predict 
horizon and the testing length. The MAPE increases 
significantly after the testing length is more than 10 days, 
which indicates that the effectiveness of the fixed-step SVM 
model is 10 days in this case. The MAPE also depends on the 
stochastic characteristics of the wind. For example, the MAPE 
for two testing days could be lower than that of one testing 
day, because the wind of the second day is less changeable 
than the previous day, which leads to a smaller MAPE.  

B.  Short-Term Forecasting 
In short-term forecasting, the resolution is set as 2 hours. 

This means that there is one sample every 2 hours; each 
sample is the average value of the original data within the 2 
hours. Fig. 12 shows the 8h WPF results using the SVM 
model. In Fig. 12, around 30% errors are less than 6.6%. The 

prediction quickly follows the real value where the wind 
speed changes drastically. However, it does not work as good 
as the 3h prediction to catch up the trend during the very 
beginning because less correlated data is used when the 
prediction horizon is longer.  

Fig. 13 indicates that the skills of the SVM model and the 
RBF model measured by the MAE and Std reach more than 
20% even when the horizon is 16 hours. Both the SVM model 
and the RBF model have better performance than the 
persistence model for short-term WPF. The SVM model is 
always better than the RBF model. For example, when the 
prediction horizon is 16h, the MAE skill of the SVM model 
over the persistence model reaches 26% but that of the RBF 
model is only 21%. 

 

 
Fig. 10. The skill of the SVM model and the RBF model over the persistence
model for very short-term WPF.  
 
 

 

Fig.11. The MAPE as a function of the testing length and prediction horizon.  
 

 

Fig. 12. 8h-ahead wind power prediction using the SVM model. 
 
 

 
 

Fig. 13. The skill of the SVM model and the RBF model over the persistence 
model for short-term WPF. 
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V.  CONCLUSIONS 
This paper has proposed a SVM-based regression tool for 

short-term WPF. The simulations using the proposed model 
have yielded several conclusions. In the very short-term WPF, 
the values predicted by the SVM match the expected values 
with a good precision. The results of the SVM predictions 
almost followed the expected variations. Comparing to the 
reference persistence model and the RBF neural network-
based model, the SVM model improved the WPF 
significantly. The skill achieves more than 26% even when the 
predict horizon is 16 hours, which indicates the SVM model is 
more suitable for very short-term and short-term WPF than 
the persistence model and the RBF model. The SVM model 
provides a powerful tool for enhancing the WPF accuracy 
over the persistence model. Furthermore, since the testing data 
was selected from those with most significant variations, the 
result during most times of real applications would be better.  

However, with the predict horizon increasing, the history 
data becomes less correlated. Therefore, the proposed model 
gradually failed to catch up the trend of wind variations. For 
those of more than 24h WPF, either extra meteorological 
variables, such as temperature and pressure, should be 
provided or combined with the NWP to improve the 
forecasting accuracy. 

VI.  APPENDIX 
The prediction results using the RBF model are shown in 

Figs. 14-16. The number of RBF units in the hidden layer is 
chosen as 20. The RBF centers were determined by a K-means 
clustering algorithm [15]. The output weights and bias were 
determined by the SVD method of the Netlab toolbox [15]. 
The training data set used for the RBF neural network is the 
same as that for the SVM. 
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