Physiological Aspects of Crop Yield (Frontmatter)

Jerry D. Easton
University of Nebraska-Lincoln

Francis A. Haskins
University of Nebraska-Lincoln, fhaskins@neb.rr.com

C. Y. Sullivan
University of Nebraska-Lincoln

C. H. M. Van Bavel
Texas A&M University

Follow this and additional works at: http://digitalcommons.unl.edu/agronomyfacpub

Part of the [Plant Sciences Commons](http://digitalcommons.unl.edu/agronomyfacpub)

http://digitalcommons.unl.edu/agronomyfacpub/191

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
PHYSIOLOGICAL ASPECTS
OF CROP YIELD

Proceedings of a symposium sponsored by the University of Nebraska, the American Society of Agronomy, and the Crop Science Society of America, and held at the University of Nebraska, Lincoln, Nebr., January 20-24, 1969. Financial support for the symposium came from The Rockefeller Foundation. Publication assistance was provided through the International Biological Program.

Editorial Committee

JERRY D. EASTIN, Chairman
Plant Physiologist, Cereal Crops Research Branch, Crops Research Division, Agricultural Research Service, US Department of Agriculture, and Associate Professor, Department of Agronomy, University of Nebraska, Lincoln, Nebraska.

F. A. HASKINS
Professor, Department of Agronomy, University of Nebraska, Lincoln, Nebraska

C. Y. SULLIVAN
Associate Professor, Department of Horticulture and Forestry, University of Nebraska, Lincoln, Nebraska

C. H. M. VAN BAVEL
Professor, Institute of Life Sciences, Texas A & M University, College Station, Texas

Managing Editor: RICHARD C. DINAUER

Published by
American Society of Agronomy
Crop Science Society of America
Madison, Wisconsin USA
1969
FOREWORD

This volume is the outgrowth of an international symposium held at Lincoln, Nebraska, January 20-24, 1969. It was sponsored by the University of Nebraska in cooperation with the American Society of Agronomy and the Crop Science Society of America with partial financing by the Rockefeller Foundation and the International Biological Program.

The symposium planning committee was broadly based and was able to bring specialists from many parts of the world to the conference. Thus, the technical presentations were drawn from outstanding authorities backed up by a clear perspective of social needs. This was a happy combination which contributed greatly to the success of the conference and is shown on the printed pages of this book. Happy, too, is the realization that in this symposium the most basic of inquiry into the physiology of plants is brought to bear on solving problems of the yield of economic plants vital to man's existence, both now and in the long view ahead. Empiricism, successful in past decades will, we are convinced, be augmented and in some cases be replaced by the new understanding of the physiology of yield in plants.

We sometimes hear that research is less enjoyable and rewarding now than formerly, partly because it is so fragmented. The output is so great that no one can keep up with more than a mere fraction of research reports and relating one part with another is often difficult. We believe the symposium presented here in book form has bridged some of these chasms.

There is no reason why science cannot be put to work somewhere to assist man in his eternal quest to control his environment and satisfy his basic needs and ambitions. However, there are many examples of misguided or abortive "advances" which produce short-term or local gains at the risk of much larger long-term losses. Hence, as was brought out at the symposium, a certain level of technology must be evaluated in terms of its cost, its worth, and the goals men hold. The societies which sponsored this undertaking are dedicated to the encouragement of excellent science and to the dissemination of knowledge. We believe this book represents a positive and useful effort toward both.

July 1969

L. P. Reitz, President, CSSA
W. L. Nelson, President, ASA
Mounting world population pressures and accompanying malnutrition problems pose grave concerns in the minds of thoughtful men. The nature, scope, and impending gravity of this situation has been ably characterized by Dr. J. J. Harrar, President of the Rockefeller Foundation. In a stimulating address during the symposium, Dr. Harrar identified the two principal approaches toward alleviating malnutrition as (i) increased food production per unit land area and (ii) population control. This symposium was concerned with the first approach.

Despite the considerable genetic sophistication incorporated into current plant breeding techniques, C. M. Donald describes plant breeding approaches as being largely empirical (Advances in Agronomy, Vol. 15) because our knowledge and use of yield-related physiological and morphological characters is meager. Crop physiologists and biochemists must continue to provide plant breeders with criteria for tailoring crops to different environments, and plant breeders in turn must recognize and use these criteria in their programs.

Plant production processes must be better understood if maximum economic yields are to be realized and exploited. The competitive advantage of any biologic organism in the field, be it crop plant or pest, is dictated by its relative response to the prevailing environment. Environmental physiology research has scarcely touched on interdependencies amongst and control of the major physiologic processes dictating competitive advantage. Quantitating the environment and plant morphologic characters simultaneously with major physiologic process rates may provide much essential perspective concerning the order of these yield limiting factors. The subsequent exploitation of these yield-related factors will depend on their detailed characterization at cellular and molecular levels.

Life processes, in the final analysis, are the sum total of biochemical reactions at cellular and molecular levels. The manner in which these reactions interrelate dictates the efficiency with which light energy is trapped in the plant, converted to chemical energy, and elaborated into storage products useful to man. A significant, increased rate of progress in breeding for yield will depend on expanded, interrelated advances in disciplines such as environmental physiology, systems analyses, simulation and bioinstrumentation, anatomy and morphology, cell biology, and genetics. This symposium was keyed to reviewing and highlighting selected aspects of knowledge in some of these diverse disciplines in an attempt to bridge some of the gaps between essential field and molecular level research pertaining to higher crop yields.

The Rockefeller Foundation approved a five-year grant in 1966 to the Nebraska Agricultural Experiment Station in support of a research program entitled "The Physiology of Yield and Management of Sorghum in Relation to Genetic Improvement." A sum was included in the grant budget to assist in financing a symposium concerning the application of physiological principles in the improvement of crop yields.
Arrangements were made for the American Society of Agronomy and the Crop Science Society of America to cooperate with the University of Nebraska in sponsoring the symposium. The symposium planning committee members were Drs. F. A. Haskins (chairman), J. M. Daly, Jerry D. Eastin, and C. Y. Sullivan, representing the University of Nebraska and appointed by Dr. H. W. Ottoson, Director of the Nebraska Agricultural Experiment Station; Dr. C. H. M. van Bavel, representing the ASA, appointed by Dr. R. S. Whitney, then President of the ASA; and Dr. R. W. Howell, representing the CSSA, appointed by Dr. A. A. Hanson, then President of the CSSA.

The symposium was held from January 20 to 24, 1969, at the Nebraska Center for Continuing Education, as one of the first events in the Centennial observance of the University of Nebraska. Registration at the symposium totalled approximately 445 persons. A total of 40 states and the District of Columbia in the USA, and 14 countries outside the USA were represented at the conference.

A complete listing of all those who have helped the planning and editorial committees is not feasible. However, the committees do wish to acknowledge publicly the excellent contributions of all speakers, invited discussants, and session chairmen. The names of the speakers and of those invited discussants who elected to submit copy for this volume are shown in the Table of Contents. Two of the invited discussants made excellent verbal presentations but chose not to submit copy for publication. They were Drs. C. B. Tanner, University of Wisconsin, and V. T. Walhood, ARS, USDA. One of the invited discussants, Dr. R. W. Allard, University of California, Davis, was unable to attend the symposium.

Chairmen of the eight half-day sessions were the following: Dr. H. H. Kramer, Purdue University; Dr. D. E. McCloud, University of Florida; Dr. C. H. M. van Bavel, Texas A and M University; Dr. G. E. van Riper, Deere and Company; Drs. R. W. Howell and F. G. Viets, ARS, USDA; and Dr. E. F. Frolik and H. W. Ottoson, University of Nebraska.

The contributions of the following in various phases of planning and conducting the symposium and/or publishing this volume also merit special mention:

Drs. Sterling Wortman and Lewis M. Roberts of the Rockefeller Foundation
Dr. A. B. Ward of the Nebraska Center for Continuing Education
Drs. D. C. Smith and F. L. Patterson, Past-Presidents of the ASA and CSSA, respectively
Drs. W. L. Nelson and L. P. Reitz, Presidents of the ASA and CSSA, respectively
Dr. Matthias Stelly and Mr. R. C. Dinauer of the ASA Hdqtrs. staff
The financial support of the Rockefeller Foundation has already been mentioned. Without it, this symposium would not have been possible. The financial contribution of the International Biological Program toward the publication of this volume also is acknowledged with thanks.

July 1969

The Editorial Committee: Jerry D. Eastin (chairman); F. A. Haskins; C. Y. Sullivan; C. H. M. van Bavel.
CONTRIBUTORS

Donald N. Baker Soil Scientist, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, Boll Weevil Research Laboratory, State College, Mississippi

Harry Beevers Professor of Biology, Department of Biological Sciences, Purdue University, Lafayette, Indiana

Orlin Biddulph Professor of Botany and Director of Molecular Biophysics Laboratory, Washington State University, Pullman, Washington

Robert F. Chandler, Jr. Director, International Rice Research Institute, Manila, Philippines

Marion Clawson Director, Land Use and Management Program, Resources for the Future, Inc., Washington, D.C.

Harry F. Clements Senior Plant Physiologist, Emeritus, and Consulting Plant Physiologist, Retired, Hawaii Agricultural Experiment Station and C. Brewer and Company, Ltd., Honolulu, Hawaii

Alden S. Crafts Professor of Botany, Emeritus, Botany Department, University of California, Davis, California

O. T. Denmead Senior Research Scientist, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia

William G. Duncan Professor of Plant Physiology, Department of Agronomy, University of Kentucky, Lexington, Kentucky

Pieter Gaastra Doctor, Centre for Plant Physiological Research, Wageningen, The Netherlands

Norman E. Good Professor of Plant Biochemistry and Physiology, Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan
CONTRIBUTORS

Richard H. Hageman Professor of Crop Physiology, Department of Agronomy, University of Illinois, Urbana, Illinois

John B. Hanson Professor of Plant Physiology, Department of Botany, University of Illinois, Urbana, Illinois

John Heslop-Harrison Professor, Institute of Plant Development, University of Wisconsin, Madison, Wisconsin

Yoshiaki Ishizuka Dean, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan

Peter R. Jennings Leader, Inter-American Rice Program, Centro Internacional De Agricultura Tropical, Colombia, South America

Neal F. Jensen Professor of Plant Breeding, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York

Dov Koller Professor, Department of Botany, The Hebrew University of Jerusalem, Israel (formerly Visiting Research Professor, Laboratory of Nuclear Medicine and Radiation Biology, University of California, Los Angeles, California)

Paul J. Kramer Professor, Department of Botany, Duke University, Durham, North Carolina

George G. Laties Professor, Department of Botanical Sciences, University of California, Los Angeles, California

R. S. Loomis Professor, Department of Agronomy and Range Science, University of California, Davis, California

Walter E. Loomis Formerly with Southern Illinois University, Carbondale, Illinois (now Professor of Botany, Department of Botany, Iowa State University, Ames, Iowa)
CONTRIBUTORS

K. J. McCree
Associate Professor, Institute of Life Science, Texas A & M University, College Station, Texas

Terence A. Mansfield
Doctor, Department of Biological Sciences, University of Lancaster, United Kingdom

John Lennox Monteith
Professor, School of Agriculture, University of Nottingham, Sutton Bonington, Loughborough, United Kingdom

Dale N. Moss
Professor, Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota

Yoshio Murata
Head, Division of Plant Physiology, National Institute of Agricultural Sciences, Konosu, Saitama, Japan

Werner L. Nelson
Senior Vice President, American Potash Institute, West Lafayette, Indiana

J. J. Oertli
Associate Professor of Soil Science, Department of Soils and Plant Nutrition, University of California, Riverside, California

John R. Philip
Chief Research Scientist, Commonwealth Scientific and Industrial Research Organization, Canberra, Australia

Ralph O. Slatyer
Professor of Biology, Research School of Biological Sciences, Australian National University, Canberra, Australia

George F. Sprague
Research Agronomist, Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, Plant Industry Station, Beltsville, Maryland

Volkmar Stoy
Doctor, Swedish Seed Association, Svalöf, Sweden

Carroll Arthur Swanson
Professor of Plant Physiology, Faculty of Organismic and Developmental Biology, Ohio State University, Columbus, Ohio

Akira Tanaka
Professor of Plant Nutrition, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. W. Tanner</td>
<td>Professor, Department of Crop Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada</td>
</tr>
<tr>
<td>Gillian N. Thorne</td>
<td>Doctor, Rothamsted Experimental Station, Harpenden, Herts, United Kingdom</td>
</tr>
<tr>
<td>E. Bruce Tregunna</td>
<td>Assistant Professor, Botany Department, University of British Columbia, Vancouver, British Columbia, Canada</td>
</tr>
<tr>
<td>Paul E. Waggoner</td>
<td>Chief Climatologist, The Connecticut Agricultural Experiment Station, New Haven, Connecticut</td>
</tr>
<tr>
<td>William A. Williams</td>
<td>Professor of Agronomy, Department of Agronomy and Range Science, University of California, Davis, California</td>
</tr>
<tr>
<td>Israel Zelitch</td>
<td>Head, Department of Biochemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut</td>
</tr>
</tbody>
</table>
CONTENTS

FOREWORD ... v
PREFACE ... vii
CONTRIBUTORS ix

1 Systems Analysis of Natural Resources and Crop Production 1

MARION CLAWSON

I. Requirements of Crop Production .. 1
II. Aspects of Natural Resources ... 3
 A. Qualities of Nature ... 4
 B. Technology ... 4
 C. Economics ... 5
 D. Goals ... 6
III. Natural Resources and Their Use as Systems 8
IV. Some Examples .. 10
 A. Water Quality ... 10
 B. Large Scale Desalting of Sea Water for Commercial Agriculture .. 11
 C. A New Crop Variety .. 13
 Literature Cited ... 14

2 Engineering for Higher Yields 15

YOSHIKAI ISHIZUKA

I. Introduction .. 15
II. Changes in Rice Yield from 1000 A.D. 15
III. A Blueprint to Obtain 6 Tons/Ha of Brown Rice 16
IV. Engineering for Higher Yields 18
 A. Plant Type ... 18
 B. Translocation and Respiration 21
 C. Techniques of Fertilizer Application 22
 D. Minor Elements .. 23
 E. Soils .. 23

3 Productivity and the Morphology of Crop Stands:
Patterns with Leaves 27

R. S. LOOMIS and W. A. WILLIAMS

I. Community Organization ... 28
 A. Density of the Vegetative Cover 28
 B. Horizontal Patterns Among Leaves 29
 C. Vertical Separation of Leaves 31

xiii
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Vertical Distribution of Leaves and Light Interception</td>
<td>32</td>
</tr>
<tr>
<td>E. Foliage Angle</td>
<td>33</td>
</tr>
<tr>
<td>F. Stratified Analyses of Foliage Angle</td>
<td>34</td>
</tr>
<tr>
<td>G. Light Distribution Models</td>
<td>36</td>
</tr>
<tr>
<td>H. Azimuthal Orientations</td>
<td>40</td>
</tr>
<tr>
<td>I. Nonleaf Structures</td>
<td>41</td>
</tr>
<tr>
<td>II. Relation of Canopy Morphology to Production</td>
<td>42</td>
</tr>
<tr>
<td>A. Simulations of Crop Productivity</td>
<td>42</td>
</tr>
<tr>
<td>B. Some Experimental Results</td>
<td>43</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>45</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>45</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>DONALD N. BAKER</td>
<td>48</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>J. W. TANNER</td>
<td>50</td>
</tr>
<tr>
<td>4 Physiological Significance of Internal Water Relations to Crop Yield</td>
<td>53</td>
</tr>
<tr>
<td>R. O. SLATYER</td>
<td></td>
</tr>
<tr>
<td>I. Introduction</td>
<td>53</td>
</tr>
<tr>
<td>II. Development of Internal Water Deficits</td>
<td>54</td>
</tr>
<tr>
<td>III. Effects of Water Deficits on Some Physiological Processes</td>
<td>56</td>
</tr>
<tr>
<td>A. Water Deficits and Growth Processes</td>
<td>57</td>
</tr>
<tr>
<td>B. Water Deficits and Physiological Processes</td>
<td>59</td>
</tr>
<tr>
<td>1. Water Deficits and Water Transport</td>
<td>60</td>
</tr>
<tr>
<td>2. Water Deficits and Nutrient Uptake</td>
<td>60</td>
</tr>
<tr>
<td>C. Water Deficits, Protein Synthesis, and Nitrogen Metabolism</td>
<td>61</td>
</tr>
<tr>
<td>D. Water Deficits, Photosynthesis, and Carbohydrate Metabolism</td>
<td>66</td>
</tr>
<tr>
<td>IV. Effect of Water Stress on Grain Yield in Cereals</td>
<td>71</td>
</tr>
<tr>
<td>A. Water Stress and Inflorescence Development</td>
<td>71</td>
</tr>
<tr>
<td>B. Water Stress and Fertilization</td>
<td>75</td>
</tr>
<tr>
<td>C. Water Stress and Grain Filling</td>
<td>76</td>
</tr>
<tr>
<td>V. Conclusions</td>
<td>78</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>79</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>79</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>PAUL J. KRAMER</td>
<td>84</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>J. J. OERTLI</td>
<td>85</td>
</tr>
<tr>
<td>5 Light Interception and Radiative Exchange in Crop Stands</td>
<td>89</td>
</tr>
<tr>
<td>J. L. MONTEITH</td>
<td></td>
</tr>
<tr>
<td>I. Radiation and Crops</td>
<td>89</td>
</tr>
</tbody>
</table>
CONTENTS

7 Mechanisms of Translocation of Plant Metabolites

ORLIN BIDDULPH

I. Introduction 143
II. Anatomy of the Phloem 144
III. Loading of the Phloem 145
IV. Materials Translocated 147
V. Linear Rate of Movement 147
VI. Distribution 148
VII. Radial Loss from the Phloem 149
VIII. Tangential Movement 151
IX. Removal from the Phloem 155
X. Mechanics of Translocation 156
 A. Temperature 158
 B. Inhibitors 158
 C. Log Pattern 159
 D. Water Movement 159
 E. Bidirectional Movement 159
XI. Summary 161
Literature Cited 162

Discussion ALDEN S. CRAFTS 165
Discussion C. A. SWANSON 167

8 Metabolic Sinks

HARRY BEEVERS

I. The Kinds of Metabolic Sinks 169
II. Concentration Gradients and Sinks 170
III. Metabolic Reactions in Sinks 172
 A. Absorption of Sugars 172
 B. Fate of the Entering Sugar 173
 C. Accumulation of Sugars and Starch at Sinks . 174
 1. Absorption of Sugars at an Accumulating Sink 174
 2. Starch Formation 175
IV. Interaction Between Source and Sink 177
Literature Cited 179

Discussion JOHN B. HANSON 180
Discussion GEORGE G. LATIES 182

9 Interrelationships Among Photosynthesis, Respiration, and Movement of Carbon in Developing Crops

VOLKMAR STOY

I. Interdependence of Photosynthesis and Respiration ... 185
11 Physiological Responses to Nitrogen in Plants

YOSHIO MURATA

I. Introduction ... 235
II. Nitrogen and Formation of "Yield-Container" 235
 A. The Number of Spikelets and Nitrogen 235
 B. Effect of Nitrogen Topdressing for Increasing the
 Capacity of "Yield-Container" 237
 C. The Number of Spikelets and LAI 237
 D. Fertilization (Pollination) and Nitrogen 239
III. The Amount of "Contents" in Relation to the Capacity
 for Yield ... 240
IV. Production of Reserve Substances, Ripening, and Nitrogen 241
 A. Accumulation of Organic Substances and Nitrogen 241
 B. Ripening and Nitrogen 243
 C. Photosynthetic Activity, Respiratory Activity, and
 Nitrogen .. 244
 D. Root Activity and Photosynthetic Activity 246
V. Dry Matter and Grain Production Under Abundant
 Nitrogen Supply .. 247
 A. Disruption of Photosynthesis-Respiration Balance ... 247
 B. Influence of Solar Radiation on Nitrogen Effect ... 248
 C. Disturbance of Nitrogen Metabolism 249
 D. Decrease of Root Activity 250
 E. Translocation and Distribution of Substances and
 Nitrogen ... 251
 F. Nitrogen Response of Varieties 253
VI. Conclusion .. 255
Literature Cited .. 256

Discussion

R. H. HAGEMAN 260

Discussion

AKIRA TANAKA 262

12 Plant Morphology and Stand Geometry in Relation to
 Nitrogen

ROBERT F. CHANDLER, JR.

I. Introduction ... 265
II. Morphological Characteristics Associated with
 Responsiveness to Nitrogen 266
 A. Length and Thickness of Culm 266
 B. Width, Thickness, Length, and Uprightness of Leaves ... 269
 C. Tillering Capacity 272
 D. Panicle Weight 276
 E. Grain-Straw Ratio 277
III. Stand Geometry and Nitrogen 278
 A. Spacing-Nitrogen-Variety Interactions 278
IV. General Considerations 281
V. Conclusions .. 283
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VI. Acknowledgments</td>
<td>284</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>285</td>
</tr>
<tr>
<td>Discussion</td>
<td>PETER R. JENNINGS 286</td>
</tr>
<tr>
<td>Discussion</td>
<td>WERNER L. NELSON 287</td>
</tr>
<tr>
<td>13 Development, Differentiation, and Yield</td>
<td>291</td>
</tr>
<tr>
<td>JOHN HESLOP-HARRISON</td>
<td></td>
</tr>
<tr>
<td>II. Storage Tissues: Characteristics and Development</td>
<td>296</td>
</tr>
<tr>
<td>A. Biological Role of Storage Organs</td>
<td>298</td>
</tr>
<tr>
<td>B. Development of Storage Structures</td>
<td>299</td>
</tr>
<tr>
<td>C. The Hormonal Factors</td>
<td>301</td>
</tr>
<tr>
<td>D. The Nutritional Factors</td>
<td>304</td>
</tr>
<tr>
<td>II. Growth, Differentiation, and Translocation</td>
<td>305</td>
</tr>
<tr>
<td>IV. Differentiation and the Components of Yield</td>
<td>307</td>
</tr>
<tr>
<td>V. The Outlook</td>
<td>314</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>316</td>
</tr>
<tr>
<td>Discussion</td>
<td>NORMAN E. GOOD 321</td>
</tr>
<tr>
<td>Discussion</td>
<td>WALTER E. LOOMIS 324</td>
</tr>
<tr>
<td>14 Cultural Manipulation for Higher Yields</td>
<td>327</td>
</tr>
<tr>
<td>WILLIAM G. DUNCAN</td>
<td></td>
</tr>
<tr>
<td>I. Introduction</td>
<td>327</td>
</tr>
<tr>
<td>II. Intraspecific Competition</td>
<td>327</td>
</tr>
<tr>
<td>A. Cooperative Interaction</td>
<td>329</td>
</tr>
<tr>
<td>B. Competitive Interaction</td>
<td>329</td>
</tr>
<tr>
<td>C. Plant Uniformity and Barrenness</td>
<td>330</td>
</tr>
<tr>
<td>D. Planting Patterns</td>
<td>332</td>
</tr>
<tr>
<td>E. Tilling</td>
<td>333</td>
</tr>
<tr>
<td>F. Leaf Area Index</td>
<td>333</td>
</tr>
<tr>
<td>III. No-Tillage Planting</td>
<td>334</td>
</tr>
<tr>
<td>A. Rooting Patterns</td>
<td>335</td>
</tr>
<tr>
<td>B. Future of No-Tillage</td>
<td>336</td>
</tr>
<tr>
<td>IV. Utilization of the Growing Season</td>
<td>337</td>
</tr>
<tr>
<td>A. Ideotypes</td>
<td>337</td>
</tr>
<tr>
<td>B. Double Cropping</td>
<td>338</td>
</tr>
<tr>
<td>V. Future Research</td>
<td>338</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>339</td>
</tr>
<tr>
<td>Discussion</td>
<td>HARRY F. CLEMENTS 339</td>
</tr>
<tr>
<td>Discussion</td>
<td>E. B. TREGUNNA 341</td>
</tr>
</tbody>
</table>
CONTENTS

15 Environmental Manipulation for Higher Yields 343
 PAUL E. WAGGONER
 I. Introduction 343
 II. The Photosynthesis Simulator 344
 III. The Running of the Simulators 350
 IV. The Standard Case 355
 V. Managing Stomata 356
 VI. Manipulating Light 359
 VII. Modifying the Wind 362
 VIII. Fertilizing with Carbon Dioxide 365
 IX. Summary 369
 Literature Cited 370

16 Germ Plasm Manipulation of the Future 375
 G. F. SPRAGUE
 I. The Transfer of Genetic Information 376
 II. Enzymes and Heterosis 378
 III. Mineral Nutrition and Genetics 382
 IV. Plant Design and Biological Efficiency . . 382
 V. The Physiological Genetics Approach . . . 382
 Literature Cited 386

Discussion N. F. JENSEN 387

SUBJECT INDEX 391