
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Papers and Publications in Animal Science Animal Science Department

November 2000

Expression and Action of Neurotropin-3 and
Nerve Growth Factor in Embryonic and Early
Postnatal Rat Testis Development
Andrea S. Cupp
University of Nebraska-Lincoln, acupp2@unl.edu

Grace H. Kim
Washington State University, Pullman, Washington

Michael K. Skinner
Washington State University, Pullman, Washington

Follow this and additional works at: http://digitalcommons.unl.edu/animalscifacpub

Part of the Animal Sciences Commons

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has
been accepted for inclusion in Faculty Papers and Publications in Animal Science by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Cupp, Andrea S.; Kim, Grace H.; and Skinner, Michael K., "Expression and Action of Neurotropin-3 and Nerve Growth Factor in
Embryonic and Early Postnatal Rat Testis Development" (2000). Faculty Papers and Publications in Animal Science. 191.
http://digitalcommons.unl.edu/animalscifacpub/191

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/animalscifacpub?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/ag_animal?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/animalscifacpub?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/76?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/animalscifacpub/191?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages


1617

BIOLOGY OF REPRODUCTION 63, 1617–1628 (2000)

Expression and Action of Neurotropin-3 and Nerve Growth Factor in Embryonic
and Early Postnatal Rat Testis Development

Andrea S. Cupp, Grace H. Kim, and Michael K. Skinner1

Center for Reproductive Biology, School of Molecular Biosciences, Washington State University,
Pullman, Washington 99164-4231

ABSTRACT

The current study examines the expression and potential ac-
tions of neurotropin-3 (NT3), nerve growth factor (NGF), and
their receptors during morphological sex determination (semi-
niferous cord formation) and perinatal rat testis development.
The expression of neurotropins and their receptors was analyzed
with immunohistochemistry. Cellular localization of neurotropin
ligand and receptor proteins changed during embryonic testis
development. Neurotropin-3 was localized to Sertoli cells at Em-
bryonic Day 14 (E14), was present in gonocytes at Postnatal Day
0 (P0), and after birth became localized to the interstitium and
Sertoli cells (P3–P5). The expression of trk C (the high affinity
receptor for NT3) was localized to mesonephric ducts and cells
surrounding the cords (E14–E18). In addition, Sertoli cells and
preperitubular cells surrounding the cords at E14 also stained
for trk C. Neurotropin-3 was expressed in gonocytes and Sertoli
cells at P0–P5. Nerve growth factor was detected in Sertoli cells
at E14, was clearly in Sertoli and interstitial cells at E16 and
E18, and in Sertoli, germ, and interstitial cells from P0–P5. The
expression of trk A (the high affinity receptor for NGF) was lo-
cated in Sertoli and interstitial cells at E16–P5. To determine the
actions of neurotropins during embryonic and perinatal testis
development, experiments were conducted on E13 and P0 testis.
Antisense oligonucleotide experiments with NT3 were used on
E13 testis organ cultures to determine effects on seminiferous
cord formation. Cord formation was inhibited in 40% of the
organ cultures treated with the antisense NT3 oligonucleotides,
while no inhibition was observed with sense oligonucleotides.
In P0 testis cultures, both NT3 and NGF alone and in combi-
nation stimulated thymidine incorporation into DNA. Therefore,
the neurotropins are involved in embryonic morphological
events (cord formation; NT3) and in growth of the perinatal tes-
tis (P0; NT3 and NGF). To define further the growth effects of
neurotropins on testis development, expression of transforming
growth factor alpha and beta (TGFa and TGFb) were examined
in response to neurotropins. The P0 testis cultures were treated
with neurotropins, and expression of mRNA for TGFa and TGFb
was analyzed utilizing a quantitative reverse transcription-poly-
merase chain reaction assay. Nerve growth factor and NT3 alone
or in combination inhibited expression of mRNA for TGFa while
NT3 increased mRNA expression of epidermal growth factor re-
ceptor. The combination treatment of neurotropins inhibited ex-
pression of TGFb1 and increased expression of TGFb3. In sum-
mary, observations suggest that NT3, NGF, trk A, and trk C are
localized to cells critical to seminiferous cord formation and
appear to be important regulators of morphological sex deter-
mination. In addition to these morphological effects, both NT3
and NGF stimulate P0 testis growth and may elicit their action
through altering the expression of locally produced growth fac-
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tors such as TGFa and TGFb. Taken together these results sug-
gest that neurotropins are regulators of paracrine cell-cell inter-
actions that result in morphological sex determination and peri-
natal testis growth.

developmental biology, growth factors, Sertoli cells, testes

INTRODUCTION

Seminiferous cord formation is an important event in tes-
tis development and is the first morphological indicator of
sex determination. In the rat, seminiferous cord formation
occurs at Embryonic Day 13.5 (E13.5, E0 5 plug date) of
gestation and is postulated to be in part a result of SRY
expression. It is known that both aggregation of pre-Sertoli
and germ cells [1, 2] along with cellular migration of pre-
peritubular cells from the adjoining mesonephros [3, 4] are
two important events that result in seminiferous cord for-
mation. Several factors, including integrin subunit alpha 6
[5] and lectins [6], have been demonstrated to be involved
in the early steps of cell aggregation leading to cord for-
mation. Superphysiological levels of retinoic acid can also
disrupt the process of seminiferous cord formation in E13
organ cultures [7, 8] through the apparent disruption of lam-
inin production [7]. Regulation of the events associated with
cellular aggregation and migration during seminiferous cord
formation occurs in the absence of gonadotropin stimulation
[9]. Therefore, the process of seminiferous cord formation
requires paracrine cell-cell interactions and locally produced
growth factors to orchestrate this important event.

A second critical event in testis development is growth
and proliferation of somatic and germ cells that occur after
seminiferous cord formation. Testis growth, like seminif-
erous cord formation, is a sex-dependent event that also
appears to be gonadotropin independent [10]. Cellular
growth and proliferation is necessary to allow for adequate
numbers of somatic cells to support adult germ cell devel-
opment [11]. Paracrine growth factors such as transforming
growth factor (TGF)a [12] and TGFb [13, 14] have been
demonstrated to effect growth of the embryonic testis.
Therefore, these and other growth factors must contribute
to the growth of the somatic and germ cells during late
embryonic and early testis development. The present study
investigates neurotropins as potential paracrine regulators
of morphogenesis and growth during testis development.

A role for neurotropins and their receptors has been im-
plicated in many non-neuronal systems at sites of mesen-
chymal-epithelial cell interactions. In the testis, neurotropin-
3 (NT3) and its high affinity receptor trk C are expressed in
the mouse genital ridge prior to seminiferous cord formation
[15]. The low affinity receptor for neurotropins, p75/
LNGFR, has been demonstrated to be in preperitubular cells
of the rat at E14 [16]. Recently, p75/LNGFR expression was
determined to be present in a sex-specific manner in the
testis at the time of seminiferous cord formation [17]. Ex-
pression of p75/LNGFR was present surrounding cords dur-
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FIG. 1. Immunohistochemistry for trk C in E14 testis (A); E14 mesonephros (B); NT3 at E14 (C and D); trk A in mesonephros at E14 (E); and NGF in
both testis and mesonephros at E14 (F). Nonimmune controls are represented for rat testes at E14 (G) and E16 (H) stages of development. Immunohis-
tochemistry for trk C at E16 is depicted in I and J; NT3 at E16 (K) and (L); trk A at E16 (M and N); and NGF at E16 (O). Arrows point to reddish-brown
positive staining for neurotropin ligand or receptors. C, Seminiferous cord; MD, mesonephric duct; I, interstitium; S, Sertoli cell; G, gonocyte; P,
peritubular cell. K and O are slightly counterstained with hemotoxylin. Magnification 3400 for B, C, F, G, H, K, M, and O. Magnification 3600 for
A. Magnification 31000 for D, E, I, J, L, and N. These pictures are representative of five different experiments.

ing seminiferous cord formation but was not present in the
ovary until E16–17. In addition, previous studies have also
demonstrated an inhibitory effect of tyrosine kinase inhibitor
K252a and a more specific trk C-IgG chimeric fusion protein
on seminiferous cord formation [17]. Therefore, it appears
that neurotropins may in part orchestrate seminiferous cord
formation in the embryonic rat testis.

In the current study the expression pattern and actions
of NT3, nerve growth factor (NGF), and their receptors, trk
C and trk A, were examined to elucidate their potential

roles in embryonic testis morphogenesis and growth. The
hypothesis examined in the current study was that neuro-
tropins are essential for testis morphogenesis leading to go-
nadal differentiation and growth of the perinatal testis,
which is necessary for adult testis function.

MATERIALS AND METHODS
Organ Cultures

Timed pregnant Sprague-Dawley rats were obtained
from Charles River (Wilmington, MA). Plug date was con-
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FIG. 2. Immunohistochemistry in E18 testis for trk C (A–D), NT3 (E), trk A (F), NGF (G), and nonimmune control (H). Immunohistochemistry in P0
testis for trk C (I), NT3 (J and K), trk A (L), NGF (M), and nonimmune control (N). Magnification 3400 (A, C, E–J, L, and N). Magnification 31000 (B,
K). Positive staining is depicted by reddish-brown stain. Arrows point to positive staining for neurotropin ligands and receptors. C, Seminiferous cord;
P, peritubular cells; I, interstitium; and G, gonocytes. These pictures are representative of five different experiments. C–E and L are lightly counterstained
with hematoxylin.

sidered to be E0. Embryonic Day 13 gonads were dissected
out with the mesonephros. The organs were cultured in
drops of medium on Millicell CM filters (Millipore, Bed-
ford, MA) floating on the surface of 0.4 ml of CMRL 1066
media (Gibco BRL, Gaithersburg, MD) supplemented with
penicillin-streptomycin, insulin (10 mg/ml), and transferrin
(10 mg/ml). Antisense or sense oligonucleotides at 10 mg/
ml were added directly to the culture medium every 10–12
h. The oligonucleotide sequence for each ligand or receptor
is as follows: NT3 antisense: 1) CATCACCTTGTTCAC;
2) GCCACGGAGATAAGC; NT3 sense: GTGAA-
CAAGGTGATG; NGF antisense: 1) CATGTTCACTAG-

GAG, 2) CTGCCTTGAGGCACA; NGF sense: CTC
CTAGTGAACATG; trk A antisense: CCACAT-
CATTCTCTGCCC; trk A sense: GGGCAGAGAAT-
GATGTGG [18, 19]. Where two oligonucleotides are listed,
a mixture of both sequences were utilized. The medium was
changed every day. The E13 gonad 1 mesonephros were
typically kept for 3 days, by which point cords were de-
veloped in the paired controls [14]. The E14 testis organ
cultures were cultured without mesonephros and were treat-
ed with 100 nM K252a each day for a total of 4 days.
Otherwise all other procedures were similar to those stated
for the antisense oligonucleotides. Images of whole organs
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were obtained by an image analysis system. Areas of testis
treated with K253a or those that served as the paired con-
trol were measured by use of the NIH image analysis pro-
gram. Ratios of each testis pair were averaged to determine
the average percentage reduction in testis size by K252a
treatment. Similar measurements have been previously re-
ported for treatment with TGFb [14], TGFa antibodies, and
epidermal growth factor receptor (EGFR) blocking agents
[12] on E13 and E14 testis organ cultures.

Genomic DNA Isolation and Polymerase Chain Reaction
for SRY

To determine the sex of E13 embryos polymerase chain
reaction (PCR) for SRY was conducted on each embryo.
Embryonic tails were collected to isolate genomic DNA by
standard procedures. Briefly, the tissue was homogenized
through a 25-gauge needle in digestion buffer (100 mM
NaCl, 10 mM Tris, pH 8, 25 mM EDTA, 0.5% SDS), and
treated with proteinase K (0.15 mg/ml) for at least 4 h at
608C. The samples were then extracted twice with an equal
volume of phenol:chloroform:isoamyl alcohol (24:24:1),
and once with chloroform:isoamyl alcohol. The DNA was
then precipitated by adding 1/10 volume 7.5 M ammonium
acetate and three volumes cold ethanol and collected by
centrifugation at 48C for 30 min after an hour incubation
at 2208C. Pellets were dried and resuspended in 10 ml dis-
tilled H2O. The PCR was performed using 1 ml of genomic
DNA with primers to SRY. The sequences of the SRY
primers are: 59-CGGGATCCATGTCAAGCGCCCCAT-
GAATGCATTTATG-39 and 59-GCGGAATTCACTTTAG
CCCTCCGATGAGGCTGATAT-39. The PCR was per-
formed using an annealing temperature of 558C for 30 cy-
cles to yield a product of 240 base pairs (bp) [20].

Testicular Cell Culture and Growth Assay

To generate a testicular culture from postnatal Day 0
(P0) testis, the tunica was removed and the testis digested
with 0.125% trypsin, 0.1% EDTA, and 0.02 mg/ml DNase
in Hanks balanced salt solution (HBSS), for 15 min at 378C.
The trypsin was inactivated with 10% calf serum. The sam-
ples were triturated with a pipette tip and washed twice in
1 ml HBSS. The pellet was resuspended and either used in
growth assays immediately or placed in 10-mm plates in
F12 media supplemented with 10% bovine calf serum until
confluent (approximately 2 days). For growth assays cells
were plated at a 25% confluence in 24-well plates and al-
lowed to settle overnight in Dulbecco modified Eagle me-
dium without thymidine. Medium was replaced the next
day, and cells were treated for 24 h with different hormones
or growth factors. Medium was removed after the 24-h
treatment period, and media containing tritiated thymidine
(10 mCi/ml) were placed on cells for 5–6 h. After 5–6 h,
media were discarded and cells were either frozen or pro-
cessed using the tritiated thymidine assay. Briefly, a solu-
tion of 0.5 M NaH2PO4 (pH 7.3; 500 ml) was added to each
well, and cells were sonicated. Half of the sonicated cells
were placed on DE-81 filters on a manifold, and a vacuum
was applied. After three washes with the NaH2PO4 buffer
the filters were dried, placed in counting vials with 5 ml of
scintillation fluid, and counted. The remaining sonicate was
used for DNA assays to normalize number of cells per well
[14].

RNA Isolation and Quantitative Reverse
Transcription-PCR

Total RNA was obtained using Tri Reagent (Sigma, St.
Louis, MO). Briefly, tissue or cells were lysed in Tri Re-
agent (1 ml/50–100 mg tissue or 1 ml/100 mm of a culture
plate). After adding 0.2 ml chloroform/ml Tri Reagent, the
mixture was centrifuged at 12 000 3 g for 15 min at 48C,
the colorless upper aqueous phase was transferred to a fresh
tube, and 0.5 ml isopropanol/ml Tri Reagent was added to
pellet the RNA. Reverse transcription (RT) was performed
using Moloney murine leukemia virus reverse transcriptase
under standard conditions [21].

Quantitative RT-PCR (QRT-PCR) procedures were per-
formed as previously published [14, 21]. Briefly, total RNA
(1 mg) was reverse transcribed using the specific 39 primers.
Plasmid DNA containing subclones of interest were used
to generate standard curves from 1 ng/ml to 10 pg/ml, each
containing 10 ng/ml Bluescript carrier DNA. Identical 10-
ml aliquots of each sample were used for PCR amplifica-
tion. At least 0.25 mCi of 32P-labeled dCTP was included
in each sample during amplification. Specific PCR products
were quantitated on 4–5% polyacrylamide gels. The gels
were exposed to a phosphor screen for 8–24 h, followed
by quantification of specific bands on a PhosphorImager
(Molecular Dynamics, Sunnyvale, CA) and analyzed with
Image Quant. Equivalent steady-state mRNA levels for
each gene were determined by comparing each sample to
the appropriate standard curve. All gene expression data
were normalized for 1B15 (cyclophilin) mRNA. Optimal
cycle number for amplification was determined for each
assay in order to achieve maximum sensitivity while main-
taining linearity. The sensitivity of each quantitative PCR
assay is below 1 fg with intra-assay variability of 6–15%.
Primers utilized for the QRT-PCR were as follows: TGFb1,
5 prime, 59-TCG ATT TTG AC TCA CTG GAG TTG T-
39 and 3 prime, 59-GGG GTG GCC ATG AGG AGC AGG-
39; TGFb2, 5 prime, 59-CCG CCC ACT TTC TAC GAG
CCC-39 and 3 prime, 59-GCG CTG GGT GGG AGA TGT
TAA-39; TGFb3, 5 prime, 59-TGC CCA ACC CGA GCT
CTA AGC G-39 and 3 prime, 59-CCT TTG AAT TTG ATC
TCC A-39; cyclophilin, 5 prime, 59-ACA CGC CAT AAT
GGC ACT GG-39 and 3 prime 59-ATT TGC CAT GGA
CAA GAT GCC-39; TGFa, 5 prime, 59-TTGCTG TCC
TCA TTA TCA CC-39 and 3 prime, 59-CAG AGT GGC
AGC AGG CAG TC-39; EGFR, 5 prime, 59-CTG CTG
GGG AAG AGG AGA GGA GAA C-39 and 3 prime, 59-
GAG TGG TGG GCA GGT GTC TT-39 [21]. The sizes of
the PCR products generated are as follows: TGFa, 138 bp;
EGFR, 208 bp; TGFb1, 200 bp; TGFb2, 194 bp; TGFb3,
288 bp; cyclophilin, 105 bp.

Embedding, Histology, and Immunohistochemistry

Tissues were fixed in Histochoice (Amresco, Solon, OH)
and embedded in paraffin according to standard procedures
[21]. The tissue sections (3–5 mm) were deparaffinized, re-
hydrated, and microwaved in 0.01 M sodium citrate to boil
for 5 min. The sections then were blocked with 10% goat
serum for 30 min at room temperature. Immunohistochem-
istry was performed as described previously [21]. The NT3
antibody was an anti-NT3 peptide antibody (Santa Cruz
Biotechnology [SCB], Santa Cruz, CA; cat. no. sc-547)
raised against amino acids 139–158 to the carboxy terminus
of human NT3 (which is also identical to the mouse se-
quence). The NGF antibody was an anti-NGF peptide an-
tibody (SCB; cat. no. sc-549) raised against amino acids 1–
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20 of mouse NGF. Both the NGF and NT3 antibodies (200
mg/ml) were diluted 1:300 in 10% goat serum. The trk A
antibody was an anti-trk A peptide antibody (SCB; cat. no.
sc-118) raised against amino acids 763–777 of human trk
A. The trk C antibody was an anti-trk C peptide antibody
(SCB; cat. no. sc-117) raised against amino acids 798–812
of porcine trk C. Both the trk A and trk C antibodies (200
mg/ml) were diluted 1:50 in 10% goat serum. As a negative
control, serial sections were put through the same procedure
without any primary antibody. Additional negative control
sections were incubated with 50–1003 excess of synthetic
blocking peptide (SCB) for each ligand and receptor with
the respective antibody (anti-NGF, anti-NT3, or anti-trk A
or anti-trk C antibody). All sections utilized for negative
controls (without specific primary antibody or with excess
synthetic blocking peptide) had no positive staining. This
demonstrated that all antibodies for the neurotropin recep-
tors and ligands were not due to nonspecific staining or due
to artifacts of tissue fixation and processing. The biotiny-
lated goat anti-rabbit secondary antibody (Vector Labora-
tories, Burlington, CA) was diluted 1:300. The secondary
antibody was detected by using the histo stain-SP kit (Zym-
ed Laboratories, South San Francisco, CA), and immuno-
histochemical images were digitized with a slide scanner
(Sprint Scan). Five different experiments were conducted
for each neurotropin ligand and receptor. In each experi-
ment three serial sections of four to five testes for each
developmental age were analyzed. One serial section was
utilized for the nonimmune control for each time period.
Figures 1 through 3 represent the data from all five exper-
iments. There was uniform and reproducible staining at
each developmental age for the respective neurotropin li-
gands and receptors in all five experiments.

Statistical Analysis

Data were analyzed with the JMP 3.1 statistical analysis
program (SAS Institute, Cary, NC). All values are ex-
pressed as the mean 6 SEM. Statistical analysis was per-
formed using one-way ANOVA. Significant differences
were determined using the Dunnett test for comparison to
controls and using the Tukey-Kramer honestly significant
difference tests for multiple comparisons. Statistical differ-
ence was confirmed at P , 0.05.

RESULTS

Protein Expression and Cellular Localization of NT3,
NGF, trk C, and trk A During Embryonic
Testis Development

Immunohistochemistry was conducted on testis sections
from E14, E16, E18, P0, P3, and P5 rats to determine ex-
pression of NT3, NGF, trk C, and trk A (Table 1). Negative
controls for each ligand and receptor (excess blocking pep-
tide or no primary antibody) did not have positive staining
in any of the experiments in the current study. Thus, the
antibodies for the neurotropin ligands and receptors appear
to be specific and can be utilized to localize neurotropin
ligands and receptors in the rat testis.

Neurotropin-3 was localized to Sertoli cells at E14 (Fig.
1, C and D, and Table 1), was present in interstitial cells
with expression in Sertoli cells at E16 and E18 (Figs. 1, K
and L, and 2E), and by P0 was localized to the gonocytes
(Fig. 2, J and K). From P3 to P5, NT3 protein expression
was localized to surrounding germ Sertoli and interstitial
cells (Fig. 3, B and G, and Table 1). The expression of trk

C (the high affinity receptor for NT3) was faintly detected
in E14 testis (Fig. 1A and Table 1) around the seminiferous
cords and in Sertoli cells. Expression of trk C was also
expressed in mesonephric ducts of the mesonephros (Fig.
1B). At E16, NT3 was localized to specific cells of the
interstitium (i.e., preperitubular cells; Fig. 1, I and J, and
Table 1) and at E18 trk C appeared to be localized to se-
lective preperitubular cells (Fig. 2, A through D) [17] and
at P0–P5 was localized to germ cells (Figs. 2I, 3, A and F,
and Table 1).

Nerve growth factor was detected in the cords of the
testis and specific cells of the mesonephros at E14 (Fig.
1F). At E16–E18, NGF was localized to the Sertoli cells
and interstitial cells (Figs. 1O and 2G) and by P0–P3 NGF
was localized to the interstitium and germ cells with low
levels of expression in the Sertoli cells (Figs. 2M and 3D).
At P5, NGF was localized to germ and interstitial cells (Fig.
3K). The expression of trk A (the high affinity receptor for
NGF) was located in specific cells in the mesonephros at
E14 (Fig. 1E) and in interstitium at E16 (Fig. 1M) and in
interstitial cells with slight staining in Sertoli at E18, P0,
and P3 (Figs. 2, G and M and 3D, and Table 1). By P5,
trk A was localized mainly to the Sertoli cells with ex-
pression also in the interstitium (Fig. 3, I and J).

Effects of Antisense Oligonucleotides to NGF, NT3,
and trk A on Seminiferous Cord Formation

Embryonic Day 13 testis organ cultures were utilized to
determine the effect of antisense oligonucleotides to NGF,
NT3, and trk A on seminiferous cord formation. These ex-
periments expanded previous results where K252a (a ty-
rosine kinase inhibitor reported to be specific to trk recep-
tors) [22] and trk C-IgG (recombinant chimeric fusion pro-
teins) [23] both caused perturbation of seminiferous cord
formation in E13 testis organ cultures [17]. Antisense oli-
gonucleotides to NT3 (10 mM) completely inhibited cord
formation in 40% (10 of the 24 testis pairs had inhibition
of cord formation in the treated testis when compared to its
control) of the E13 testis organ cultures treated (Fig. 4B).
In contrast, antisense oligonucleotides to NGF (10 mM) in-
hibited cord formation in 20% (5 of the 24 testis pairs had
inhibition of cord formation in the treated testis when com-
pared to its paired control) of E13 testis organ cultures (data
not shown). Furthermore, trk A (10 mM) antisense oligo-
nucleotides had no effect on perturbation of cord formation
(data not shown). Only dramatic reductions in cord for-
mation were included as a response in the organ culture
data. Histological analysis may have been able to provide
a more accurate analysis of the extent of the reduction in
cord formation in the testis pairs not as severely affected
by the treatments. However, due to the size and manipu-
lation of the organs, accurate histology could not be ob-
tained for all of the experimental organs.

Control testes were treated with sense oligonucleotides
given at a 10-mM dose to determine if the concentration of
oligonucleotide had any adverse effects on the organ cul-
tures. No effect on seminiferous cord formation was de-
tected in the control organ cultures at the 10-mM dose for
any of the sense oligonucleotides (Fig. 4A and data not
shown). These data further demonstrate that the neurotro-
pins (NT3 in particular) and their respective receptors may
be important regulators of morphological sex determination
resulting in seminiferous cord formation.
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FIG. 3. Immunohistochemistry in P3 testis for trk C (A), NT3 (B), trk A (C), NGF (D), and nonimmune control (E). Immunohistochemistry in P5 testis
for trk C (F), NT3 (G), nonimmune control (H), trk A (I, J), and NGF (K). C, Seminiferous cord; I, interstitium. Reddish-brown stain indicates positive
stain for neurotropin ligands and receptors. These pictures are representative of five different experiments. Magnification 3400.

Effect of Neurotropins on Embryonic and Early
Testis Growth

To determine the effects of NGF and NT3 on embryonic
growth, E14 testis organ cultures were treated with 100 nM
K252a (a tyrosine kinase inhibitor reported to be specific
to trk receptors) [22] for 3 days. An evaluation of the area
of testes treated with K252a demonstrated a reduction in
testis size by 50% (an average reduction of testis area of
12 K252a treated testes when compared to their paired tes-
tis culture control; data not shown). Therefore NGF and
NT3 may be important regulators of somatic and germ cell
growth during the period after cord formation.

To determine the effects of NGF and NT3 on P0 testis
growth, a tritiated thymidine assay was conducted on neu-
rotropin-treated P0 whole testis cultures. In previous ex-
periments FSH, EGF, and 10% calf serum were demonstrat-
ed to be positive stimulators of P0 testis culture growth and
thymidine incorporation into DNA [8, 14]. In the present
study, both NT3 and NGF stimulated thymidine incorpo-
ration over controls (P , 0.05; 50 ng/ml dose; Fig. 5) in a
dose-responsive manner. Nerve growth factor and NT3 giv-
en in combination stimulated growth over that of either
growth factor alone (P , 0.001). Nerve growth factor and

NT3 appeared to be as effective as FSH, EGF, and 10%
calf serum in stimulating P0 testis thymidine incorporation
at the 50-ng/ml dose and more effective at the 100-ng/ml
dose. In addition, NGF and NT3 when given in combina-
tion increased tritiated thymidine incorporation in a syner-
gistic manner. As a control K252a was found to block NT3
and NGF actions (data not shown). Thus, both NT3 and
NGF may be important regulators of embryonic and peri-
natal testis growth, which is necessary to obtain adequate
numbers of somatic and germ cells for normal spermato-
genesis in the adult male.

Effect of Neurotropins on Expression of mRNA for TGFa,
EGFR, and TGFbs

A hypothesis tested was that NGF and NT3 may be act-
ing to influence P0 testis growth through altering the ex-
pression of other growth factors known to increase cell
growth, such as TGFa and its receptor EGFR. After 24 h,
P0 testis treated with both NGF and NT3 alone or in com-
bination had a reduced mRNA expression for TGFa (P ,
0.05) when compared to controls (Fig. 6A). Because TGFa
[12], trk A, and trk C are all localized to the interstitium
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TABLE 1. Expression of NT3, NGF, trk A, and trk C during testis development.

Age NT3 Trk C NGF Trk A

E14 Sertoli Mesonephric ducts in meso-
nephros and in testis; Sertoli
and specific cells around
cords in interstitium

Specific cells in meso-
nephros and Sertoli
cells of seminiferous
cords

Specific cells in meso-
nephros not detected
in testis

E16 Sertoli/interstitium Specific cells around cords in
interstitium

Sertoli/interstitium Interstitium

E18 Interstitium/Sertoli Preperitubular cells Sertoli/interstitium Sertoli (slight staining)
interstitium

P0 Surrounding germ
cells

Interstitium/surrounding germ
cells

Interstitium/Sertoli Sertoli/interstitium

P3 Interstitium/Sertoli,
surrounding germ

Germ Interstitium/Sertoli Surrounding germ

P5 Sertoli Surrounding germ Interstitium/surrounding
germ

Sertoli/interstitium

FIG. 5. Effects of NT3 and NGF on P0 testis growth. Results are pre-
sented as percentage of control and represent three to four individual
experiments in triplicate. Follicle-stimulating hormone and 10% calf se-
rum serve as positive controls. *P , 0.05. **P , 0.01.

FIG. 4. Embryonic Day 13 testis organ cultures treated with sense oli-
gonucleotide to NT3 (A) or antisense oligonucleotide to NT3 (B). Organ
cultures were treated every 10–12 h with a 10 mM concentration of oli-
gonucleotide. These are representative images from 24 testis pairs (n 5
24; 24 treated and 24 were controls). M, Mesonephros; T, testis. Magni-
fication 3100.

at P0, the neurotropins may be acting directly on interstitial
cells to suppress expression of mRNA for TGFa.

In contrast, NT3 but not NGF increased mRNA expres-
sion of EGFR (P , 0.05) in P0 testis after 24 h (Fig. 6B).
The combination of NGF and NT3 did not affect mRNA
expression for EGFR after 24 h of treatment. The receptor
for NT3, trk C, was present in germ and interstitial cells in
P0 testis while trk A was present in Sertoli and interstitial

cells. Nerve growth factor and NT3 may act through dif-
ferent mechanisms to regulate EGFR expression differen-
tially.

An alternative hypothesis to the neurotropins increasing
expression of growth stimulators would be that they might
inhibit the actions of growth inhibitors such as the TGFb
isoforms. Therefore, expression of TGFb isoforms were
also examined in P0 testis treated with NT3 and NGF.
Treatment with NGF for 24 h suppressed the expression of
mRNA for TGFb1 (P , 0.07; Fig. 7A). The combination
of NGF plus NT3 also suppressed expression of mRNA for
TGFb1 in P0 testis. Treatment with NT3 alone had no ef-
fect on TGFb1 mRNA expression (Fig. 7A). There were
no changes in expression of the TGFb2 isoform after 24 h
of neurotropin treatments in P0 testis cultures (Fig. 7B).
However, the combination treatment of neurotropins in-
creased expression of mRNA for TGFb3 after 24 h of treat-
ment (P , 0.05; Fig. 7C). Therefore, neurotropins may di-
rectly regulate the expression of TGFb isoforms.

Long-term indirect effects of neurotropins were also
evaluated by measuring the effects on mRNA for TGFb
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FIG. 6. Effects of neurotropins on relative amounts of mRNA for TGFa
(A) and EGFR (B) after 24 h of treatment. Amounts of mRNA for TGFa
were normalized to cyclophilin (1B15) and expressed relative to controls.
These data represent three individual experiments assayed in duplicate.
Different superscript letters for each mean represent statistical difference
at P , 0.05.

FIG. 7. Effects of neurotropins on relative amounts of mRNA for TGFb1
(A), TGFb2 (B), and TGFb3 (C) after 24 h of treatment. Amounts of mRNA
for TGFb isoforms were normalized to cyclophilin (1B15) and expressed
relative to controls. These data represent three individual experiments as-
sayed in duplicate. Different superscript letters for each mean represent
a statistical differences at P , 0.05.

isoforms after 72 h. Expression of TGFb1 was increased in
P0 testis treated with NGF or the combination of NGF and
NT3 (P , 0.05; Fig. 8A). This increase in TGFb1 appeared
to be a compensatory rebound effect due to NGF and NGF/
NT3 suppression of mRNA for TGFb1. A similar rebound
in expression of TGFb2 was evaluated 72 h after NGF or
NGF/NT3 treatment (P , 0.05; Fig. 8B). Expression of
TGFb3, in contrast to the other isoforms, appeared to be
affected similarly by neurotropins 24 and 72 h after treat-
ment. Expression of TGFb3 was increased after 72 h after
both NT3 and NGF/NT3 treatments. Therefore, TGFb iso-
forms appear to be regulated differentially by NT3 and
NGF. These data further support the theory that NGF and
NT3 do not appear to have overlapping functions during
testis development and may function independently to elicit
similar morphological and growth effects.
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FIG. 8. Effects of neurotropins on relative amounts of mRNA for TGFb1
(A), TGFb2 (B), and TGFb3 (C) after 72 h of treatment. Amounts of mRNA
for TGFb isoforms were normalized to cyclophilin (1B15) and expressed
relative to controls. These data represent three individual experiments as-
sayed in duplicate. Different superscript letters for each mean represent
statistical differences at P , 0.05.

DISCUSSION

Embryonic testis development is initiated when cells mi-
grate from the adjacent mesonephros to surround Sertoli-
germ cell aggregates to form seminiferous cords [1, 2]. The
importance of the mesonephros in the induction of cord
formation in the testis has been demonstrated because its
removal completely blocks cord formation [3, 4]. Indiffer-
ent testes placed in direct apposition to mesonephros from
ovarian tissue (up to E16 of age) or hind limb form semi-
niferous cords [24, 25]. In contrast, indifferent ovaries are
not capable of forming seminiferous cords when placed in
opposition to mesonephros from indifferent testes [24].
Therefore, the hypothesis proposed was that factors pro-
duced by the indifferent testis induce migration of cells
from the mesonephros to result in cord formation. The log-
ical cell to induce these migration events is the Sertoli cell.
The Sertoli cell is thought to be the first cell type to dif-
ferentiate in the testis [26–28]. Furthermore, mice lacking
germ cells produce testes with normal cord formation, sug-
gesting that germ cells do not direct the events resulting in
seminiferous cord formation [29]. The paracrine factors in-
volved in this migration process are unknown; however,
recent data have demonstrated sex-specific expression of
the low affinity receptor for neurotropins, p75LNGFR [17].

The family of neurotropins is composed of four ligands:
NGF, NT3, brain-derived growth factor (BDNF) and neu-
rotropin-4/5 (NT4/5). Each of these ligands bind with low
affinity to the p75/LNGFR (p75 low affinity nerve growth
factor receptor). In addition to this receptor, each ligand has
a high affinity specific receptor called a trk (tyrosine kinase
receptor). The trk A receptor binds with high affinity to
NGF but also will bind with a lower affinity to NT3. Neu-
rotropin-3 binds to trk C and BDNF and NT4/5 both bind
with high affinity to trk B [30, 31]. Neurotropins were ini-
tially found to be critical in mediating the differentiation,
migration, proliferation, and survival of neurons in the de-
veloping brain and peripheral nervous system. In the past
decade there has been accumulating evidence for non-neu-
ronal roles of the neurotropins. In these systems neurotro-
pins have been implicated in mediating local cell-cell in-
teractions during morphogenesis in the dermatome, tooth,
kidney, ovary, and even more recently, the testis [17, 32–
34].

One of the objectives of the current study was to localize
expression of neurotropin ligands and receptors to deter-
mine their potential regulation of seminiferous cord for-
mation. Previous investigators had demonstrated in the
mouse that trk C [15] and p75/LNGFR [16] were localized
to the urogenital ridge in cells that were involved in the
process of seminiferous cord formation. Sex-specific ex-
pression of p75/LNGFR in the rat has also been demon-
strated in the testis at the time of seminiferous cord for-
mation and is also suggestive of a potential role for neu-
rotropins at this time [17]. Recently, NT3 was localized in
the mouse to interstitial cells at E14.5 to P20 [35]. An
E14.5 mouse testis corresponds to an E16 rat testis. Even
though we are using the same antibodies in the current
study, our method of antigen retrieval (microwaving) may
make our tissue more sensitive to antibody binding. In ad-
dition, we evaluated testes from an earlier time-point, E14
(cord formation in rat is at E13.5 to E14), while Russo
evaluated protein expression of neurotropins 3 days after
cord formation [35]. The current study extends this research
by looking earlier and localizes the expression of NT3,
NGF, and their high affinity receptors trk C and trk A
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throughout embryonic and early postnatal testis develop-
ment.

The localization of NT3 and trk C in the current study
around the time of seminiferous cord formation suggests
possible functions in testis morphogenesis. Neurotropin-3
localized to the Sertoli cells at E14 and may be produced
in order to induce migration of preperitubular cells from
the mesonephros into the gonad. At E14 and E16 protein
localization of trk C was detected in selective cells of the
interstitium and at E18 appeared to be localized to preper-
itubular cells. Preperitubular and endothelial cells are the
primary cell types that migrate from the mesonephros into
the differentiating testis [4]. Therefore, the localization of
trk C is also suggestive of a potential role for NT3 in the
induction of the migration of cells from the mesonephros
into the differentiating gonad to complete seminiferous cord
formation. Immunohistochemistry on earlier time points is
necessary to determine if trk C is localized to cells within
the mesonephros that eventually migrate into the testis.

Previous studies have also implicated NT3 and trk C in
participating in the process of seminiferous cord formation
[17]. In these experiments a trk-specific tyrosine kinase in-
hibitor, K252a, inhibited seminiferous cord formation. To
extend these experiments, the present study utilized anti-
sense oligonucleotides to NT3, NGF, and trk A each at a
10 mM concentration that has been demonstrated to be ad-
equate to inhibit the actions of these ligands and receptor
[18, 19]. Antisense oligonucleotides to NT3 completely in-
hibited seminiferous cord formation in 40% of the organ
cultures treated while NGF inhibited 20% of the organ cul-
tures. The trk A antisense treatment had no effect on sem-
iniferous cord formation in these experiments. The control
sense oligonucleotides had no influence on cord formation.
These results are similar to previous experiments where a
specific trk C-IgG chimeric fusion protein inhibited cord
formation in 40% of the embryonic testis organ cultures
treated. Additionally, a specific trk A-IgG chimeric fusion
protein inhibited cord formation in 20% of the testis organ
cultures treated [17]. Therefore, these data confirm previous
experiments and further demonstrate that neurotropins are
potential regulators of seminiferous cord formation. The
variability of the specific antisense oligonucleotides and
trk-IgG antagonist may suggest a compensatory mechanism
that occurs among the neurotropin family of ligands and
receptors to allow the critical process of seminiferous cord
formation to occur in the absence of one ligand or receptor.

The expression of NGF at E14 was localized to the sem-
iniferous cords surrounding germ cells and also in the in-
terstitium. However, there was no detectable trk A staining
in the testis only in specific cells of the mesonephros. There
may be trk A protein present that was undetectable with
our assay. Further experiments are necessary to determine
whether trk A is present in the testis during cord formation
(using our current data), the localization of trk A and NGF
does not suggest a major role for NGF in migration of
mesonephric cells during testis morphogenesis. Embryonic
testis organ cultures using NGF antibodies, specific trk A-
IgG chimeric fusion proteins [17], and antisense oligonu-
cleotides (present study) have demonstrated some alteration
in cord morphology and formation. However, these exper-
iments have not resulted in the extent of perturbation of
seminiferous cord formation that has been demonstrated
with NT3 and trk C antagonists. Neurotropin-3 has been
shown in other systems to bind to trk A with low affinity,
and NGF has been demonstrated to bind to trk C. There-
fore, mesonephric cells containing both trk A or trk C may

migrate in response to NT3 or NGF establishing compen-
satory mechanisms for seminiferous cord formation.

After the process of seminiferous cord formation occurs,
the embryonic testis undergoes dramatic growth in somatic
and germ cell populations. Both NT3 and NGF receptors
are present in crucial cells that are rapidly proliferating at
this time [17, 34]. The protein trk C is present in preperi-
tubular interstitial cells and germ cells, while trk A is pre-
sent in Sertoli interstitial and germ cells from E16 through
P5. Neurotropin-3 and trk C may be important in the dif-
ferentiation of the preperitubular cells to form the single
cell layer around the seminiferous cords. Nerve growth fac-
tor and trk A may be important in the differentiation of the
Leydig or germ cells and the initiation of steroidogenic
functions or germ cell maturation.

The localization of the neurotropin ligands and receptors
was different during the late embryonic and early postnatal
period when compared to the early embryonic testis devel-
opment. Most of the receptors and ligands appeared to have
similar cellular localization after birth and retained this pat-
tern until P5 of testis development. Neurotropin-3 was the
exception with localization to germ cells at P0 and P3,
while localization prior to and after P0 was to the Sertoli
cells and/or interstitium. Therefore, the neurotropin ligands
and receptors may be important for differentiation and mi-
gration events that occur early in testis development. For
example, NT3 produced by Sertoli cells may initiate the
migration of trk C-bearing cells from the mesonephros into
the gonad. After migration occurs, NT3 and trk C may be
required further to allow for preperitubular cell differenti-
ation into the single layer of cells that surround the cords
by E18.

At P0, NT3 and trk C appear to be involved in germ cell
survival and/or maturation because both the ligand and re-
ceptor are localized to the germ cell population. It is pos-
sible that NT3 is involved in an autocrine function to sus-
tain germ cell populations at this time in development. Af-
ter birth (P3–P5) NT3 was localized to Sertoli cells, germ
cells, and interstitial cells, while trk C was present in the
germ cells. Therefore, NT3 may be an important autocrine
factor involved in germ cell maturation.

Nerve growth factor localization during testis develop-
ment was in the Sertoli cells early and then became local-
ized to Sertoli, germ, and interstitial cells after birth. The
trk A was primarily localized in Sertoli and interstitial cells
during testis development. Therefore, the major function of
NGF may be to allow for and maintain Sertoli cell differ-
entiated functions. At P0, NGF stimulated thymidine in-
corporation in a dose-responsive manner, suggesting that
NGF may be a crucial paracrine factor at this time of testis
development.

Some of these data are in contrast to immunohistochem-
istry reported by Russo et al. [35] in the mouse. Russo and
coworkers reported expression of neurotropin ligands and
receptors mainly in the interstitium and did not report ex-
pression in the seminiferous cords in their results. The ex-
periments in the present paper were conducted at earlier
time points and also were conducted in 2-day periods dur-
ing development. In addition, the more extensive time
points in the present study demonstrate the dynamic change
in expression of neurotropin ligands and receptors. The dy-
namic nature of the neurotropins may have been missed in
the Russo results, because fewer time points were evalu-
ated. A second explanation may be species difference, be-
cause Russo and coworkers evaluated the mouse, and the
current study examined neurotropin ligand and receptor lo-
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calization in the rat. Furthermore, the differences in tissue
handling between the two laboratories, and the differences
in antigen retrieval also may have added to the differences
in localization of the neurotropin ligands. In the current
study, a more sensitive method of antigen retrieval was uti-
lized that may have exposed more epitope sites and allowed
for an increase in localization of neurotropin ligands within
the seminiferous cords of the testis.

To determine how neurotropins may be promoting
growth of P0 testis, effects of neurotropins on known para-
crine growth stimulators (TGFa and its receptor EGFR) and
growth inhibitors (TGFb isoforms) previously shown to in-
fluence testis growth were evaluated. Treatment of P0 testis
with NGF and NT3 altered the expression of TGFa, EGFR,
TGFb1, TGFb2, and TGFb3. Therefore, NT3 and NGF
appear to promote a cascade of locally produced growth
regulators to influence testis growth. Further studies are
needed to elucidate how the individual cell types interact
and the role of specific growth factors. However, it is clear
the neurotropins will have an important role in the regu-
lation of early postnatal testis growth.

After birth, NGF is expressed in Sertoli cells and inter-
stitium with more expression on P5 in germ cells. Primar-
ily, expression of trk A at this time is in Sertoli cells. This
pattern of expression of NGF and trk A also suggests germ
cell-Sertoli cell paracrine interactions during adult testis de-
velopment. These results are supportive of other data where
NGF has been proposed to be an important germ cell para-
crine factor for Sertoli cells [36]. Nerve growth factor was
demonstrated to stimulate DNA synthesis in seminiferous
tubules [37], stimulate androgen-binding protein secretion
from Sertoli cells [38], maintain morphology of seminif-
erous epithelium [39], and increase survival of Sertoli cells
in culture [40]. Thus, NGF has been proposed to be an
important regulator of Sertoli cell differentiated functions.

Less research has been conducted on NT3 and its role
during postnatal testis development. By the expression data
collected in the present experiment, NT3 secreted by the
Sertoli cells acts on specific germ cell populations contain-
ing trk C. Further studies are needed to delineate the role
of NT3 during postnatal testis development, but the current
data implicate an important role for NT3 in potential para-
crine and autocrine maturation or survival of germ cells.
Thus, NGF appears to be important in Sertoli cell survival,
and NT3 may be important in germ cell maturation in the
postnatal testis.

The current study demonstrates dramatic changes in lo-
calization of NGF and NT3 during embryonic and early
postnatal testis development. The localization of both NGF
and NT3 are indicative of potential roles in seminiferous
cord formation in the early testis and critical germ and Ser-
toli cell interactions after birth. The current observations
support a previous study with embryonic testis organ cul-
tures [17] that suggest that NT3 and trk C may orchestrate
the events resulting in seminiferous cord formation. In ad-
dition to these early roles in testis morphogenesis, NT3 and
NGF also stimulate testis growth during perinatal testis de-
velopment. These proliferative events may be in part
through novel interactions to suppress or increase mRNA
for paracrine growth factors (TGFa and EGFR) or growth
inhibitors (TGFb isoforms). In summary, neurotropins ap-
pear to be important paracrine regulators that may regulate
crucial morphological and growth processes resulting in
sex-specific testis development.
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