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Spectral energy dissipation of random waves due to salt marsh vegetation (Spartina alterniflora) was analyzed
using field data collected during a tropical storm. Wave data (significant wave heights up to 0.4 m in 0.8 m
depth)weremeasured over a two-day period along a 28 m transect using 3 pressure transducers. The stormpro-
duced largely bimodal spectra on the wetland, consisting of low-frequency swell (7–10 s) and high-frequency
(2–4.5 s) wind-sea. The energy dissipation varied across the frequency scales with the largest magnitude
observed near the spectral peaks, above which the dissipation gradually decreased. The wind-sea energy
dissipated largely in the leading section of the instrument array in the wetland, but the low-frequency swell
propagated to the subsequent section with limited energy loss. Across a spectrum, dissipation did not linearly
follow incident energy, and the degree of non-linearity varied with the dominant wave frequency. A rigid-type
vegetation model was used to estimate the frequency-dependent bulk drag coefficient. For a given spectrum,
this drag coefficient increased gradually up to the peak frequency and remained generally at a stable value at
the higher frequencies. This spectral variation was parameterized by employing a frequency-dependent velocity
attenuation parameter inside the canopy. This parameter had much less variability among incident wave
conditions, compared to the variability of the bulk drag coefficient, allowing its standardization into a single,
frequency-dependent curve for velocity attenuation inside a canopy. It is demonstrated that the spectral drag
coefficient predicts the frequency-dependent energy dissipation with more accuracy than the integral coefficient.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wave propagation through vegetation is an important physical
process along many coastal regions of the world, and along the shores
of large inland lakes. Waves approaching vegetated shores lose
energy due to obstructing vegetation. This reduces shore erosion
and is of engineering significance for shoreline protection. The role
and importance of coastal wetlands as a natural defense system
against storm waves is generally acknowledged (e.g., Costanza et al.,
2008; Dixon et al., 1998; Gedan et al., 2011; Lopez, 2009). Utilization
of coastal wetlands to augment structural measures for mitigation of
coastal flooding due to storm surge and waves is promoted in several
regions of the world (e.g., Borsje et al., 2011; CPRA, 2012).

A body of literature exists quantifying reduction rates of integral
wave heights due to vegetation (for summary, see Anderson et al.,
2011; Jadhav and Chen, in review). Theoretical models based on
energy conservation, have been proposed for application to both

monochromatic waves (Dalrymple et al., 1984), and for narrow-
banded random waves (Mendez and Losada, 2004). Kobayashi et al.
(1993) presented an approach based on continuity and momentum
equations, which assumed an exponential decay of integral wave
height. Chen and Zhao (2012) proposed a vegetation-induced dissipa-
tion model based on the formulation of Hasselmann and Collins
(1968) for energy dissipation of random waves by bottom friction. All
these models assume rigid vegetation. A number of recent studies
have underscored the importance of accounting for the stem and
blade motion of flexible vegetation, and have proposed models that
account for it (Bradley and Houser, 2009; Mullarney and Henderson,
2010; Riffe et al., 2011). Wave attenuation has been studied in a
controlled laboratory environment (Augustin et al., 2009; Dubi and
Tørum, 1996; Løvås and Tørum, 2001; Stratigaki et al., 2011), in field
conditions involving salt marshes (Bradley and Houser, 2009; Cooper,
2005; Jadhav and Chen, in review; Möller, 2006; Möller and Spencer,
2002; Möller et al., 1999; Riffe et al., 2011), coastal mangrove forests
(Mazda et al., 2006; Quartel et al., 2007), and vegetated lakeshores
(Lövstedt and Larson, 2010). Most of these studies primarily focused
on the attenuation of integral wave heights or wave energy, and estima-
tion of integral bulk vegetation drag coefficients. As a step beyond
integral dissipation characteristics, Lowe et al. (2005) developed an
analytical model to predict the magnitude of the in-canopy velocity of
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waves propagating over a model canopy made up of rigid cylinders.
Lowe et al. (2007) extended this model to randomwaves and predicted
that high frequency components of wave energy would dissipate
more efficiently inside the canopy. The model was verified with
measurements taken from an artificial rigid cylinder canopy submerged
on a barrier reef (random wave conditions) for 2 h and assuming a
constant drag coefficient.

In the case of natural vegetation under random waves generated
by a tropical cyclone, there are no published studies that examine in
detail the frequency-based characteristics of wave energy dissipation
and drag coefficient, though some studies have illustrated such
characteristics with an example (Bradley and Houser, 2009; Paul and
Amos, 2011). The present study investigates the spectral characteristics
ofwave energy dissipation due to natural vegetation, and the relationship
between dissipation and the incident wave energy spectrum, using
comprehensive field data. The study also identifies spectral variation of
the vegetation drag coefficient. We hypothesize that the frequency-
varying spectral drag coefficient will predict spectral distribution of
energy dissipation more accurately than an integral drag coefficient. To
test the hypothesis, a new method is developed to parameterize the
spectral drag coefficient over the entire range of measured wave
spectra. The spectral and integral drag coefficients are then both
used to estimate energy dissipation losses, and these estimates
are compared to the observed dissipation to assess the validity of
the hypothesis.

The following section describes the spectral energy dissipationmodel
proposed by Chen and Zhao (2012) which is used to estimate drag coef-
ficients and introduces the velocity attenuation factor. Sections 3 and 4
describe the field program and the wave conditions. Section 5 contains
data analysis, where spectral characteristics of the observed energy
dissipation are examined. In Section 6, spectral variation of estimated
drag coefficient is demonstrated, and the spectral behavior of the mean
velocity attenuation parameter is quantified. Themean velocity attenua-
tion parameter and average drag coefficients are then applied to predict
energy dissipation and compared with the existing prediction methods
in Section 7. Finally the results are discussed, followed by a summary
and conclusions.

2. Spectral energy dissipation model

Assuming the linear wave theory holds, the evolution of normally-
incident random waves propagating through vegetation can be
expressed with the following wave energy balance equation,

Δ EjCg;j

� �
Δx

¼ −Sds;j ð1Þ

where subscript j represents the jth frequency component of a
wave spectrum, E is the spectral wave energy density, Cg = nc is
the group velocity, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=kð Þ tanh khð Þ

p
is the phase speed, k is the

wave number, h is the still water depth, g is the acceleration due to
gravity and coefficient n is given by n = (1 / 2)[1 + (2kh / sinh2kh)].
The cross-shore coordinate is given by x pointing landward and Sds
is the energy dissipation due to vegetation per unit horizontal area.
All other source terms are considered negligible compared to the
vegetation induced losses.

The spectral wave energy dissipation due to vegetation is obtained
by using a reorganized form of the model proposed by Chen and Zhao
(2012). Their model treats vegetation as rigid, cylindrical elements
that impart drag forces on the flow. Further, only the drag forces
due to pressure differences are considered, as they are much larger
than those arising from friction in the hydraulic regimes encountered
in the field conditions.

In this model, the spectral energy dissipation due to vegetation is
expressed by,

Sds;j ¼
1
2
CD;jbvNv

g
σ j

sinh kjh

 !2

∑−hþsh
−h Uz;rms zð Þ cosh2 kj hþ zð ÞΔz

h i� �
Ej

ð2Þ

where CD,j is a bulk drag coefficient, bv is the stem diameter, Nv is
the vegetation population density, σj is the wave angular frequency,
s is the ratio of vegetation height, hv, to the still water depth, h, and
Urms is the root-mean-squared (RMS) velocity given by,

Uz;rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∑j¼Nf

j¼1

σ2
j cosh

2 kj hþ zð Þ
sinh2 kjh

EjΔσ

vuut ð3Þ

where Nf is the total number of frequency components of a spectrum.
Eq. (2) is based on the quadratic representation of the shear stress

induced by the vegetation. We parameterize the shear stress due to
vegetation drag at elevation z (positive upwards with origin at the
still water level) due to jth component of the spectrum as,

τz;j ¼ −1
2
ρbvNvCdαjuz;j αjuz;j

��� ���Δz ð4Þ

where ρ is the density of water and αjuz,j is the vegetation-affected
velocity at elevation z, and Cd is the drag coefficient corresponding
to this velocity. The velocity attenuation parameter, α, is defined as
the ratio of the vegetation-affected velocity, u′z, to the velocity in
the absence of vegetation, uz, at elevation z inside the canopy:

αz;j ¼
u′

z;j

uz;j
: ð5Þ

This parameter is similar to Lowe et al. (2005) but not exactly the same.
Similar to the definition of α (Eq. (5)), the ratio of the vegetation-

affected RMS velocity at an elevation z, U′z,rms, to the RMS velocity in
the absence of vegetation, Uz,rms, at elevation z inside the canopy is
defined as,

αz;r ¼
u′

z;rms

uz;rms
: ð6Þ

Using these definitions, Chen and Zhao (2012) formulation is
reorganized and the spectral distribution of energy dissipation is
expressed as,

Sds;j ¼
1
2
CDbvNv

g
α2
z;j

α2
z;r

σ j

sinh kjh

 !2

∑−hþsh
−h Uz;rms cosh

2 kj hþ zð Þ
h i

Δ z
� �

Ej

ð7Þ

where CD is the spectrally-averaged, or integral, drag coefficient.
To facilitate solution of Eq. (7), α is assumed to be independent of
depth, and a normalized form of α is introduced as,

αn;j ¼
αj

αr
: ð8Þ

Note that while αj is always less than 1, αn,j can be greater than 1.
Using αn,j, Eq. (7) can then be re-written as,

Sds;j ¼
1
2
CDbvNv

g
α2
n;j

σ j

sinh kjh

 !2

∑−hþsh
−h Uz;rms cosh

2 kj hþ zð Þ
h i

Δ z
� �

Ej:

ð9Þ
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The spectrally variable drag coefficient is then expressed as,

CD;j ¼ CD⋅α
2
n;j: ð10Þ

Integrated over the entire spectrum, the time-averaged rate of energy
dissipation per unit area is given by,

Sv ¼ ∑j¼Nf

j¼1 Sds;jΔσ : ð11Þ

3. Study area and field program

The study site was a salt marsh wetland in Terrebonne Bay on the
Louisiana coast of the Gulf of Mexico (Fig. 1) west of the Mississippi
River bird-foot delta. The shallow (depth, 1–3 m), micro-tidal
(diurnal tidal range b0.5 m) bay is bordered by salt marsh to the
north, and a series of narrow, low-lying barrier islands to the south.
The waves in the bay consist of frequent low-energy offshore swell
and locally generated seas which intensify during the passages of
annual winter cold fronts and tropical cyclones.

During Tropical Storm Lee (September 3–4, 2011), three wave gages
(pressure transducers W1 through W3) were deployed on a vegetated
platformmarsh along a north–south transect (28 m long) approximately
perpendicular to the salt marsh edge (Fig. 1). The shore-normal has a
bearing of 20°. A maximum of 20° error in the alignment of waves to
the wave gage array would overestimate the travel distances between
the gages by about 6% (1 − cos 20°) introducing corresponding error
in estimates of energy dissipation. Waves approached from the south
and propagated from gage W1 to W3 through vegetation. Gage W1
was located more than 16 m inwards of the marsh edge to avoid the
waves breaking at the marsh edge. The self-logging pressure sensors
sampled continuously at 10 Hz over the 2-day duration of the storm.

The dominant vegetation at the site is Spartina alterniflora,
having a thick stem and thin, tapering flexible narrow blades. The av-
erage measured vegetation properties were; Nv = 422 stems/m2,
hv = 0.22 m (stem height), hvt = 0.63 m (total plant height),
bv = 8.0 mm, and Ev = 80 MPa (EvIv = 0.015 N-m2) where EvIv is
the flexural rigidity and Iv is the second moment of inertia of a
stem. Jadhav and Chen (in review) show a small variability of the veg-
etation properties between W12 and W23, which has been considered
in the data analysis. Based on our observations and the estimated
non-dimensional stiffness parameter (Mullarney and Henderson,
2010), the vegetation can be treated as rigid (see analysis in Jadhav
and Chen, in review).

The time series of continuous pressure measurement from wave
gages were analyzed using standard spectral techniques (e.g., Bendat
and Piersol, 2000). The resulting energy spectra had a bandwidth, Δf,

of 0.01 Hz, with 95% of the spectral energy between 0.03 and 0.7 Hz.
Thus each spectrum had 69 frequency components (Nf in Eqs. (3) and
(11)). The integral wave parameters are defined as: significant wave
height, Hmo ¼ 4

ffiffiffiffiffiffiffi
m0

p
; mean wave period, Tz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m2

p
; and spectral

width, v = (m0m2/m1
2 − 1) where m0, m1, and m2 are the zero-th,

first and second moment of the wave spectrum, respectively.
The wave energy loss due to vegetation was considered dominant

compared to the other source terms. To ascertain the validity of this
assumption, the relative magnitude of source terms for the local wave
generation and the losses due to bottom-friction, white-capping, and
depth-limited breaking were evaluated. The wave records with signifi-
cant potential for the magnitude of these source terms to be dominant,
were removed from further analysis (for details see Jadhav and Chen, in
review).

4. Overview of wave conditions

A total of 177 wave records (59 records at each of the 3 gages) were
analyzed in this study. Table 1 lists summary statistics of water depth,
zero-moment wave height, mean period and some derived parameters
characterizing the wave conditions. The statistics in Table 1 describe
only the analyzed data, not the entire measured dataset. As stated in
the previous section, the wave records that violated assumptions of
Eq. (1) were removed from analysis. With the diurnal tide augmented
by the storm surge, the water depth rose from about 0.1 m to 0.8 m
and then fell along with the tide. Only the measurements collected
when water depth was greater than 0.4 m were used in the analyses,
because wave energy levels were insignificant when water depth was
less than 0.4 m.

The incident significant wave heights (Hmo) on the marsh varied
from 0.05 to 0.39 m and were directly proportional to the depth of
flood water. The recorded wave spectra were largely bimodal (Fig. 2)
with distinct low-frequency swell (7–10 s) and wind-sea components
(2–4.5 s). The relative depth, h/Lz, was less than 0.2 indicating relatively
shallow water depths during the observation period (wave length Lz is
based on themeanwave period). Spectral width, v, ranged from 0.42 to
0.86, an indicator of the broad nature of the observed spectra. Table 1
also shows the Ursell number, HmoLz

2/h3, as a measure of non-linearity.
Waves were largely non-linear at W1 but the non-linearity quickly
reduced as the waves propagated further (beyond W2) into the marsh
and were dissipated by the vegetation.

5. Observed spectral wave energy dissipation characteristics

Measured spectra showed significant wave energy reduction over
vegetation, as evidenced by the reduction in wave heights (Table 1).

Fig. 1. Study area location (Terrebonne Bay, Louisiana) and the schematic of experimental setup showing wave gages (W1, W2 and W3). Gage elevations relative to gage W1. Not
to scale.
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Energy reduction with respect to frequency was calculated between
pairs of wave gages (W1–W2 and W2–W3) based on the measured
wave energy density spectra, using Eq. (1). Ensemble averages of all
analyzed energy density spectra, along with the ensemble average
of the energy dissipation are shown in Fig. 3 for reaches W1–W2
(between gages W1 and W2) and W2–W3 (between gages W2 and
W3). The energy density and dissipation are normalized by, m0,
the zero-th moment of the individual spectrum measured at the
windward gage of the pair of gages bounding the reach. Fig. 3 shows
that the magnitude of energy dissipation varies with the frequency.
Higher dissipation was observed at the frequencies adjacent to the
spectral peak in both reaches. Most of the wind-sea energy dissipated
in the leading vegetation reach, W1–W2. Significant portions of swell
energy propagated beyond the leading reach and dissipated in reach
W2–W3.

Fig. 3 also shows that the dominant loss near the spectral peak is
less pronounced in the second reach, W2–W3, where a substantial
portion of the total energy loss occurs at frequencies higher than
the peak. This is illustrated in Fig. 4 where energy reduction in
the dominant wave frequencies, i.e., swell and wind-sea band
(0.03–0.36 Hz), as a percentage of the total (0.03–0.7 Hz) energy
reduction is plotted as a function of Keulegan–Carpenter number,
KC. The KC number is defined as, KC = UrmsTz / bv, where Urms is the
root-mean-square orbital velocity at the bed, considering the entire
spectrum. In reach W1–W2, wave energy reduction in the swell and
wind-sea bands accounted for 55 to 70% of the total reduction,
while in reach W2–W3, this percentage was only 40 to 55%. Thus, in
reach W2–W3 the energy reduction was more evenly distributed
between dominant and higher frequencies. This is partly due to
modification of the spectral shape as a result of the non-linear transfer
of energy to the higher frequencies as waves propagated from gage
W1 to W2.

Across the frequencies above the peak, the spectral distribution of
energy dissipation was observed to gradually taper off. The rate of

such tapering with respect to spectral frequency is shown in Fig. 5
using normalized dissipation (Sds(f)/E(f)) for 3 ranges of KC numbers.
The choice of the range of KC for ensemble averaging is inconsequential
and is made for the purpose of creating three ranges of KC signifying
ranges of hydrodynamic conditions. Variation of the frequency expo-
nent over all spectrawith respect toKC number is shown in Fig. 6. Larger
KC numbers generally represent waves in reach W1–W2. Waves in this
reach were more energetic, with more peaked spectra and larger con-
centration of energy in the swell-sea band (0.03–0.36 Hz). The smaller
values of KC numbers represent relatively low energy waves with much
broader spectra. Fig. 5 shows that at frequencies above the peak, and at
higher KC numbers, the normalized energy dissipation has a stronger
dependence on frequency.

The current standard modeling practice assumes that the distri-
bution of energy dissipation generally follows the incident wave
energy density spectrum (e.g., Suzuki et al., 2011). To assess the
validity of this assumption, the following hypothesis was tested
using our field study measurements:

Sds fð Þ ¼ a⋅E fð Þb ð12Þ

where a and b are determined by regression analysis. For a given reach
(W1–W2 or W2–W3), each incident energy spectrum, E(f), and the
corresponding dissipation spectrum, Sds(f), were divided into three
frequency bands, representing swell (0.03–0.16 Hz), wind-sea (0.16–
0.32 Hz) and high frequencies (0.32–0.7 Hz). These divisions corre-
spond to the local spectral energy minima observed around 0.16 Hz
and 0.32 Hz in the recorded bimodal spectra (Fig. 2). For each of these
three frequency bands, a coefficient pair (a,b)was determined byfitting
Eq. (12) to the field data. Thus, for each spectrum (wave record),
three coefficient pairs were obtained. Coefficient pairs where the fit of
Eq. (12) to the field data resulted in an R2 (coefficient of determination)
less than 0.8, were excluded from the analysis.

The exponent b is a measure of linearity (linear when b = 1) of
the relationship between energy dissipation, Sds(f) and incident spec-
trum, E(f). The probability of occurrence of b is plotted in Fig. 7 for
the three frequency bands, within three ranges of KC numbers. The
KC number is based on the entire spectrum. Note that a KC value of
about 60 segregates first pair of gages, W1–W2, and the second pair,
W2–W3. Fig. 7 shows that the relationship between Sds(f) and E(f) is
not consistently linear (b≠1) across the frequency scales. The relation-
ship tends to be most linear in the wind-sea band across the entire
range of KC numbers, with slightly narrowed distribution in the middle
KC number range. The relationship between energy dissipation and
incident spectrum becomes slightly more nonlinear in the swell
frequency band. The coefficient b tends to increase at smaller KC

numbers (which are more common in the second reach, W2–W3). In

Table 1
Range and mean (in parentheses) values of analyzed wave parameters.

Parameter Gage W1 Gage W2 Gage W3

Depth, h (m) 0.40–0.82 (0.55) 0.57–1.0 (0.72) 0.57–1.01 (0.72)
Significant wave height,
Hmo (m)

0.15–0.40 (0.24) 0.07–0.28 (0.14) 0.04–0.21 (0.09)

Peak wave period, Tp (s) 2.5–4.7 (4.0) 1.2–4.5 (2.3) 1.3–4.5 (2.6)
Relative wave height,
Hmo/h

0.36–0.49 (0.41) 0.12–0.29 (0.18) 0.08–0.22 (0.12)

Relative depth, h/Lz 0.07–0.13 (0.10) 0.09–0.16 (0.13) 0.10–0.16 (0.12)
Spectral width, v 0.45–0.58 (0.51) 0.44–0.64 (0.5) 0.43–0.65 (0.53)
Ursell number, HmoLz

2/h3 29–81 (48) 9–16 (11) 6–10 (8)
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Fig. 2. Wave energy spectra recorded on September 3, 2011 at (a) 6:45 UTC and (b) 12:30 UTC.
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the high-frequency band (f > 0.32 Hz) the relationship between Sds(f)
and E(f) is linear for waves with KC b 47, and gradually becomes
nonlinear with increasing KC number. Note that the energy spectra
and hence, the energy dissipation, in this high-frequency range is also
affected by non-linear triad interactions.

Parameter a in Eq. (12) was confirmed to be equal to the ratio
of the integrated energy dissipation to the total wave energy, Sv/mb,
where mb = ∫ Ebdf and Sv = ∫ Sdsdf.

6. Estimates of integral and frequency-dependent bulk drag
coefficients

The integral energy dissipation formulations (e.g., Mendez and
Losada, 2004) assume the drag coefficient is independent of frequency
and determine its single value, CD, for the entire spectrum, which is
assumed to be narrow-banded. The variation of drag coefficient with
the hydrodynamics has been typically related to the Reynolds (Re)
and Keulegan–Carpenter (KC) numbers using empirical relationships.
Several studies have developed empirical formulations for integral
estimates of CD (Bradley and Houser, 2009; Jadhav and Chen, in
review; Kobayashi et al., 1993; Mendez and Losada, 2004; Mendez et
al., 1999; Paul and Amos, 2011; Sánchez-González et al., 2011). The em-
pirical relationships are a valuable tool for predicting integral wave

heights. For the data presented in this paper, the integral drag coeffi-
cients correlate well to the KC number (R2 = 0.95) (Fig. 8), resulting in
the following empirical formula:

CD ¼ 70K−0:86
C 25bKCb135: ð13Þ

Note that this CD represents the “bulk” value over the field study
transect (vegetation patch), rather than the drag coefficient of an
idealized, isolated, cylinder (e.g., Tanino and Nepf, 2008). The CD in
Fig. 8 was estimated using Eq. (2). Using the same equation, and
allowing the drag coefficient to vary with frequency for each spec-
trum, produces a frequency distributed drag coefficient. Fig. 9 shows
such distributions that are ensemble averaged over the three KC

ranges. It is clear from these plots that the drag coefficient varies
with the frequency, and a single integral drag coefficient value over
the entire spectral frequency scale does not adequately represent
the spectral evolution. This is most notable for the range containing
the smallest KC numbers, where the drag coefficient varies by a factor
of 6. Therefore, in studies of wave spectral evolution dominated by
energy losses due to vegetation, a spectrally varying drag coefficient
will more accurately predict wave energy dissipation.

Eqs. (13) and (10) can be used to compute the frequency varying
drag coefficient, CD, when CD and αn are known. For a given spectrum
(with its KC), CD can be determined using Eq. (13). To calculate αn,
the following procedure was followed. Using the measured energy
spectra, Eqs. (1) and (9) were numerically solved to compute αn,j
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for each frequency component of a spectrum. All αn,j profiles were
then ensemble-averaged, producing the single αn curve shown in
Fig. 10. Across the spectrum of frequencies, αn gradually increases
up to the region of the peak, and then slightly decreases. The αn

values for frequencies above about 0.4 Hz are not considered reliable,
due to the greater influence of non-linear energy transfer, and possible
amplification of noise resulting from the pressure response function at
those frequencies. The αn values for frequencies above 0.4 Hz are
therefore excluded from the following analysis. Multiplying the integral
CD obtained fromEq. (13) by values of αn (Fig. 10), provides values that
can be used in Eq. (10) to calculate frequency-dependent values of CD,
that can be used to predict the frequency-dependent energy dissipation
in wave spectra.

7. Prediction of energy dissipation using estimated drag coefficients

To estimate energy dissipation due to vegetation in practical
applications, selection of the appropriate drag coefficient is necessary.
This section compares two approaches for selecting drag coefficients to
determine which approach results in the better prediction of wave
spectra in the presence of rigid-type vegetation. In the first, simple
approach (existing standard practice), an integral drag coefficient, CD

(such as would be calculated using Eq. (13)) is specified and then
spectral dissipation is calculated using Eq. (2). In the second approach,
the frequency-dependent variable drag coefficient, CD, is specified
(Eq. (10)) and used in Eq. (2) to calculate spectral dissipation.

Fig. 11 shows comparison plots of the measured and predicted
energy dissipation using these two approaches, for one wave record.
The frequency-dependent CD predicts the frequency distribution of
energy dissipation with better accuracy than the integralCD. To quanti-
tatively assess the predictive accuracy associated with the different
approaches, over the entire dataset, the error between the measured
and the predicted energy dissipation was calculated for each record
and was ensemble averaged (Fig. 12a). In the frequency range with
the dominant energy (0.03–0.36 Hz), the energy dissipation predicted
by the frequency varying CD has much less error than that predicted
by the integral CD. The improvement is especially significant in the
vicinity of the spectral peak frequencies, where the largest dissipation
is encountered. Additionally, Fig. 12b shows that, by employing the
frequency-varying CD, the model is able to predict total dissipation, Sv
(Eq. (11)) reliably. The error in the prediction of Sv is generally
less than 5%. The mean error in the predicted Hmo for the dominant
frequency range (0.03–0.36 Hz) at gages W2 and W3 using the two
methods (CD and CD) are (6.5% and 8.2%) and (−5.0% and −2.3%),
respectively. At W2, the frequency-dependent CD method may appear
slightly worse than the CD method, however, the true advantage of
the CD method is in the improved prediction of the frequency distribu-
tion of energy dissipation, as seen in Fig. 11a,b. This is reflected in the
much better improvement in the estimate of mean period with errors
being (−9.0% and 4.1%) and (−2.6% and 1.5%) at gages W2 and W3,
respectively. Likewise the spectral width estimates are better when
using CD compared to CD with errors being (−25.1% and −5.4%) and
(−9.2% and 2.1%) at gages W2 and W3, respectively.
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8. Discussion

The Chen and Zhao (2012) formulation for energy dissipation
through rigid vegetation has been reorganized by introducing the
velocity attenuation parameter, α. In this study, α is defined as the
ratio of vegetation-attenuated orbital velocity inside the canopy at a
given elevation, to the orbital velocity in the absence of vegetation
at the same elevation. This is similar to the velocity attenuation
parameter of Lowe et al. (2005), which was defined as the ratio of
the velocity inside canopy to that above canopy. These two versions
of the velocity attenuation parameter are related by a factor which
results from the decay of orbital velocity with respect to depth. To
illustrate the equivalence of these two parameters, α was calculated
using the Tropical Storm Lee field data and compared to the velocity
attenuation parameter values reported in Lowe et al. (2007, Fig. 5a).
To this end, when calculating α, the drag coefficient corresponding
to the use of the velocity inside a canopy, Cd, was set to a fixed
value of 2.5, as in Lowe et al. (2007). Fig. 8 shows that relatively stable
value of the drag coefficient was observed for wave records with
KC > 85, so only those wave records were used for this comparison.
The values of α plotted in Fig. 13 are the result of ensemble averaging
118 (59 wave records at each of the 2 gages, W2 and W3) α profiles.
Comparison of Fig. 13 with Fig. 5a of Lowe et al. (2007) shows that, in
both cases, the velocity attenuation parameter decreases gradually
over the longer waves with the maximum values associated with
shorter period waves. The values of α associated with wave periods
shorter than 2 s are less reliable due to the greater influence of
non-linear energy transfers in that frequency band, and possible am-
plification of noise in the data analysis.

Because the formulations for energy dissipation given in Eqs. (8)
and (9) are based on the velocities at the same elevation inside a can-
opy, the results can be applied to cases involving shallow water and
emergent vegetation. Further, Eq. (9) consists of explicit integration
over discrete vertical increments and can be conveniently adopted

when vertical variations of vegetation properties and hydrodynamics
are important (e.g., Neumeier and Amos, 2006).

The velocity attenuation factor, α, is directly proportional to
the normalized energy dissipation (Sds(f)/E(f)) as is evident from
Eq. (7). In the special case of shallow water, this equation simplifies to,

α2
n∝

Sds
E

: ð14Þ

The equivalence ofαn
2 and Sds/E is seen in the similarities between Figs. 5

and 10 in the dominant energy band. As shown in this study, the
magnitude of the velocity attenuation factor is expected to decrease
with increasing excursion (i.e., KC number). The lower αn value reduces
the normalized dissipation at the higher KC numbers in Fig. 5, causing a
steeper decline of the frequency distributions as shown.

In the prediction of drag-induced energy dissipation, the drag
coefficient is an important input parameter, and attempt to generalize
it remains a challenge. Consistent estimates of drag coefficients based
on a range of wave and vegetation conditions will improve predictability
of CD as more data become available. Several complex processes are
involved in the wave energy dissipation induced by vegetation drag.
Laboratory studies of hydrodynamics around a single rigid circular
cylinder in oscillating flows, in which force is modeled as a summation
of inertial and drag forces by a Morison-type equation (Morison et al.,
1950) contribute to understanding of these processes. Even in this
simple form, under controlled conditions, the drag coefficients vary
with time, Reynolds number, relativemotion of the fluid, relative rough-
ness, variable flow separation, wake interference, ambient turbulence,
etc. (Sarpkaya, 1976). Additionally, in wavy flows (as opposed to simple
oscillatory flows), velocity decays exponentially with depth and the
orbitalmotion induces 3Dfloweffects and rotating vortices, further com-
plicating the processes. Although Stokes' solution exists for force coeffi-
cients in un-separated and laminar oscillating flows, such information
must be obtained using experimental studies for separated flows,
which are present in the field conditions (Sarpkaya, 1976). In the case
of natural vegetation, the necessity of deriving drag coefficients from
field studies is underscored by the fact that, to effectively model field
conditions, these coefficients need to represent a stem array rather
than a single cylinder (Tanino and Nepf, 2008). If the vegetation is
flexible, then the consideration of the stem motion becomes essential
(Mullarney and Henderson, 2010).

9. Summary and conclusions

Random wave spectra were measured over salt marsh vegetation
to study vegetation induced energy dissipation along a marsh tran-
sect with two reaches. The waves in the leading reach of the transect
were more energetic, highly nonlinear, occurred in shallower water,
and exhibited greater energy dissipation compared to the subsequent
reach, where waves were less energetic, significantly less nonlinear,
and exhibited less energy dissipation. Waves propagating over
salt marsh vegetation dissipate energy due to drag induced by the
stems. The magnitude of energy dissipation was observed to vary
with the wave frequency. The greatest energy dissipation was ob-
served near the incident spectral peak frequencies, with energy
dissipation gradually decreasing with frequency above the peak. The
rate of this decrease was greater for waves with larger KC numbers
and lower for waves with decreasing KC numbers. Upon entering
the vegetation, the low-frequency swell (b0.16 Hz) dissipated less
in the leading reach of the measurement transect than the wind-sea
(0.16–0.32 Hz), carrying energy further and continuing the dissipation
process in the subsequent reach of the transect. On the other hand, the
majority of the wind-sea energy dissipated in the leading reach of the
transect. Across a spectrum, energy dissipation did not linearly follow
incident energy density and the degree of non-linearity varied with the
frequency scale. The relationship of the spectral dissipation to energy
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density tended to be less nonlinear in the wind-sea than the swell band,
but the relationship became slightly more nonlinear and consistent
(across bands) for waves with larger KC numbers. In general, the
relationship was slightly more nonlinear in the swell band than the
wind-sea band.

The normalized wave energy dissipation (Sds(f)/E(f)) was observed
to be greatest near the spectral peak frequencies. The magnitude of
the normalized dissipation was directly related to the frequency in the

band below the peak, and inversely related to the frequency in the
band above the peak of the wave energy density spectrum.

The vegetation induced drag coefficient was shown to vary with
frequency. The distribution increased gradually up to the spectral
peak and then remained generally uniform. The magnitude of the
peak of this distribution was directly related to the magnitude of the
corresponding KC number of the waves. The frequency-dependent
drag coefficient was parameterized by introducing a normalized
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velocity attenuation parameter, αn. The spectral profiles of αn were
ensemble-averaged and a single αn curve was developed. This single
curve along with the integral drag coefficient allowed for a prediction
of the frequency-dependent bulk drag coefficient. It was demonstrated
that the frequency-dependent drag coefficient predicted the spectral
distribution of energy dissipationwith better accuracy than the integral
drag coefficient.

The methodology and drag coefficient parameterization presented
in this paper has been verified using the same dataset on which it is
based. This validates the parameterization of the spectral bulk drag co-
efficient using a single velocity attenuation curve. This parameterization
approach needs to be further tested using other, independent, datasets.
Furthermore, accurately quantifying the cross-spectral energy transfer
in the presence of vegetation is needed in order to understand
the role of nonlinear triad interactions of shallow water waves in
wave energy dissipation caused by vegetation. Effects of vegetation
are being incorporated into a Boussinesqwavemodel and tested against
the field data. Results will be reported on in the near future.
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