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Abstract We develop spatial statistical models for stream networks that can estimate
relationships between a response variable and other covariates, make predictions at
unsampled locations, and predict an average or total for a stream or a stream seg-
ment. There have been very few attempts to develop valid spatial covariance models
that incorporate flow, stream distance, or both. The application of typical spatial
autocovariance functions based on Euclidean distance, such as the spherical covari-
ance model, are not valid when using stream distance. In this paper we develop a large
class of valid models that incorporate flow and stream distance by using spatial mov-
ing averages. These methods integrate a moving average function, or kernel, against
a white noise process. By running the moving average function upstream from a loca-
tion, we develop models that use flow, and by construction they are valid models based
on stream distance. We show that with proper weighting, many of the usual spatial
models based on Euclidean distance have a counterpart for stream networks. Using
sulfate concentrations from an example data set, the Maryland Biological Stream
Survey (MBSS), we show that models using flow may be more appropriate than mod-
els that only use stream distance. For the MBSS data set, we use restricted maximum
likelihood to fit a valid covariance matrix that uses flow and stream distance, and then
we use this covariance matrix to estimate fixed effects and make kriging and block
kriging predictions.
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1 Introduction

Streams and rivers form one of the most important environmental resources in a
nation. Clean water is vital for drinking, and it provides habitat for plants and ani-
mals. A lot of time and money has been spent to characterize and monitor streams and
rivers (see, e.g., Torgersen et al. 2004; Yuan 2004). As with most environmental and
ecological data, a sample must be taken from a possibly infinite population of values
on a stream network. For example, sample units could be counts of fish from a small
stream segment, or water quality samples. Often, the area of interest is larger than
a single stream segment, encompassing a whole stream network. The goals of data
collection from streams may be varied, but often include (1) predicting at unsampled
locations, (2) predicting an average or total for a stream segment or a whole stream
network, and (3) estimating relationships between the response variable and other
covariates. Our overall goal is to develop spatial statistical models for stream networks
that can accomplish these goals.

A general formulation to handle all of the goals listed above is a spatial linear
model. Consider the general linear model Y = Xβ + ε, where the dimension of Y
is an n by 1 vector. The relationship between the response variable and covariates is
modeled through the design matrix X and parameters β. The classical assumption is
that the random errors ε are independent, so var(ε) is σ 2I, where I is the n×n identity
matrix. In spatial statistics, the independence assumption is relaxed and values are
allowed to be correlated, so, in general, var(ε) = �. When used for spatial prediction,
this model is referred to as “universal” kriging (Cressie 1993, p. 151), with “ordinary”
kriging being the special case where the design matrix X is a single column of ones. The
general formulation of the covariance matrix � has too many parameters to estimate.
Using assumptions like ergodicity and stationarity (Cressie 1993, p. 57), distance can
be used to reduce the number of parameters. For example, a spherical autocovariance
model is,

C(h; θ0, θ1, θ2) =

⎧
⎪⎪⎨

⎪⎪⎩

θ0 + θ1 if h = 0,

θ1

[

1 + 1
2

(
h
θ2

)3 − 3
2

h
θ2

]

if 0 < h < θ2,

0 if θ2 ≤ h,

(1)

where h is Euclidean distance. Thus, we have used distance to reduce the number of
covariance parameters from n(n+1)

2 to 3. The key word here is “Euclidean.”
When working with stream networks, we may not want to use Euclidean distance.

An attractive alternative is to use stream distance. Transport of materials and move-
ments of fish only occur within the stream network, so this may be a more appropriate
distance metric when modeling autocovariance. Stream distance is defined as the
shortest distance between two locations, where distance is computed only along the
stream network. However, spatial autocovariance models developed for Euclidean
distance may not be valid for stream distances.

As a simple example of what can go wrong, consider Fig. 1. Imagine an idealized
stream network starting with a single node splitting into two, and then each node
splitting into two more, etc., for 26 − 1 = 63 nodes. Suppose that the stream segments
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Fig. 1 An example of getting
invalid covariance matrices
when using stream distance for
autocorrelation models that
were developed for Euclidean
distance
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between nodes are all one unit long. Now consider the use of a standard autoco-
variance model when using stream distance, rather than Euclidean distance. Three
different autocovariance models were used based on stream distance, one being the
spherical model described in (1). Another is the exponential autocovariance model,

C(h; θ0, θ1, θ2) =
{

θ0 + θ1 if h = 0,
θ1 exp(−h/θ2) if 0 < h.

(2)

Another model that is valid for distance in one dimension, but not Euclidean distance
in two or more dimensions, is the linear-with-sill model,

C(h; θ0, θ1, θ2) =
⎧
⎨

⎩

θ0 + θ1 if h = 0,
θ1(1 − h

θ2
) if 0 < h < θ2,

0 if θ2 ≤ h.
(3)

All three models (1 − 3) were used in Fig. 1. The parameter θ0 has been termed the
“nugget” effect, and was set to zero, and the parameter θ1, often called the partial
sill, was set to 1 for all models in Fig. 1. The parameter that controls the amount of
autocorrelation is θ2, and it was allowed to vary. For each value of θ2 for each model,
a covariance matrix was determined based on stream distance among the 63 nodes in
the example described earlier. The minimum eigenvalue as a function of θ2 is shown
in Fig. 1. Notice that negative eigenvalues mean that the covariance matrix is not
positive definite, and hence not valid. Figure 1 demonstrates that the spherical and
linear-with-sill models are not valid when using stream distance. Even so, Gardner
et al. (2003) make kriging predictions using stream distance with a spherical autoco-
variance model, which is not generally valid. In Fig. 1, the exponential model seems
valid, and this is clarified in Sect. 2.4. In general, we have been unable to find any
literature on making kriging predictions using valid models based on stream distance.

One problem with developing spatial models for stream networks is that little
is known about valid autocovariance models when using stream distances. A sec-
ond problem is that stream distance alone may not be appropriate for modeling
autocorrelation. Streams have flow, which is characterized by direction and vol-
ume. In general, we will use flow to mean direction, unless specifically stating flow
volume. For some types of variables, such as stream chemistry values, we might
want to consider models that do not allow autocorrelation between locations if
the water at one location does not flow into another. For example, Fig. 2 shows
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Fig. 2 An example of how flow affects stream chemistry values. Note that there are two locations in
close proximity with overlapping circles near A

concentration measurements of SO4 (in µeq/L) from a stream network in Maryland
(http://www.dnr.state.md.us/streams/mbss/). In Fig. 2, there are locations at stream
junctions, such as in the area labeled A, that are very close spatially, even when using
stream distance, but the values are quite different because they are on two stream
segments that do not share flow. The values downstream of junctions are intermediate
in value from their upstream segments, as one would expect when the waters mix. In
comparison, the values within a stream segment, such as the two values labeled with
B in Fig. 2 are very similar.

To meet the earlier stated goal of developing spatial linear models on streams, the
primary objective of this paper is to develop valid spatial autocovariance models that
incorporate flow and use stream distance. Several papers have investigated the use of
non-Euclidean distance for aquatic resources, including for streams and estuaries, but
none has developed valid autocovariance models that incorporate stream distance
and flow. Yuan (2004) discusses the problem, but uses Euclidean distance anyway
because of the lack of valid models. Dent and Grimm (1999) and Torgersen et al.
(2004) estimate a spherical covariance model based on stream distance in an explor-
atory fashion, but they do not attempt kriging predictions (which could have yielded
negative variance estimates). Other approaches develop complicated mean structures
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among locations, hoping to achieve independence among random errors. An example
is the SPARROW approach (Smith et al. 1997). Non-Euclidean metrics have been
tried in estuaries as well (Rathbun 1998; Little et al. 1997). A space-time model is
developed in Cressie and Majure (1997). Curriero (1996) discusses an approach to the
problem that uses metric dimensional scaling. The general idea is to use a matrix based
on stream distance and map it into a low dimensional Euclidean space while trying
to minimize distortion. Once we are in Euclidean space, we can use the usual spatial
autocovariance models (if they are valid for that dimension). One problem with this
method is that the addition of new prediction locations can change the model and
all other predictions, even when the data have not changed. In addition, it does not
include flow.

In this manuscript we use moving average constructions (also called kernel convo-
lutions) to develop valid models for stream networks. In Sect. 2, we introduce these
models, first developing a mathematical framework and notation, and then construct-
ing random variables on streams and deriving their autocovariance. We concentrate
on models that incorporate flow, but also show one based purely on stream distance. In
Sect. 3, we use real data to fit a spatial linear model, where we use restricted maximum
likelihood (REML) (see Cressie 1993, pp. 92–93 for REML applied to spatial mod-
els) to estimate the covariance parameters, and then estimate fixed effects and make
kriging and block kriging predictions. We conclude with some discussion and future
directions.

2 Moving average constructions

Barry and Ver Hoef (1996) show that a large class of autocovariances can be devel-
oped by creating random variables as the integration of a moving-average function
over a white-noise random process,

Z(s) =
∫ ∞

−∞
g(x − s|θ)W(x)dx, (4)

where W(x) is a white noise process and g(x|θ) is called the moving-average function
and it is defined on R1. We are free to choose the moving average function, but it
must have finite volume in order to create a stationary process. Typically, we choose
functions centered on 0, where most of their mass occurs as well. Several examples
are given in Table 1. The moving-average construction allows a valid autocovariance
to be expressed as,

C(h|θ) =
{∫ ∞

−∞(g(x|θ))2dx + ν2
j if h = 0,

∫ ∞
−∞ g(x|θ)g(x − h|θ)dx if h > 0,

(5)

where we assume that the integrals exist. We allow a discontinuity ν2
j at h = 0, which

is the “nugget” effect in geostatistical terminology (see Cressie 1993, p. 59), and was
labeled θ0 in (1–3). There is increasing use of these moving average models to con-
struct valid autocovariances when confronted with new problems, such as multivariate
models (Ver Hoef and Barry 1998; Ver Hoef et al. 2004), and nonstationary models
(Higdon 1998; Higdon et al. 1999; Fuentes 2002). We will use the moving average
construction to build valid models for streams, and these models will also account for
water flow.
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Table 1 Moving average functions and their corresponding autocorrelation functions

Name Moving average function Autocorrelation function

Linear with sill
g(x) = 1
I(0 ≤ x ≤ 1)

ρ(h) =
{

1 − h if 0 ≤ h < 1
0 if 1 ≤ h

Spherical
g(x) = 1 − x
I(0 ≤ x ≤ 1)

ρ(h) =
{

1 − 3
2 h + 1

2 h3 if 0 ≤ h < 1
0 if 1 ≤ h

Mariah g(x) = 1
x+1

I(0 ≤ x)
ρ(h) =

{
1 if h = 0
ln(h+1)

h if 0 < h

Exponential g(x) = e−x

I(0 ≤ x)
ρ(h) = e−h if 0 ≤ h

2.1 Mathematical framework and notation

To construct random variables similar to (4), but based on stream networks and flow,
we first develop a mathematical framework and notation. We assume that the scale
of the problem is such that we can depict a stream segment as a line, and the lines of a
stream form a network, as in Fig. 3. We take these to be segments of the real line, and
we consider a location downstream to be a lower real number than a location farther
upstream. The whole network will have a single most-downstream location, which we
set to 0. Any location on a stream network can be connected by a continuous line to
the lowest point in that network, and hence distance from the lowest point is simply
the length of that line. We define this as “distance upstream.” In a stream network,
there will be a finite number of stream segments, and we index them arbitrarily with
i = 1, 2, . . .. In a branching stream network many locations will have the same dis-
tance upstream, so in order to uniquely define each location and keep track of distance
upstream, we denote each location as xi, which is the distance upstream on the ith

stream segment. We will denote the most downstream location on the ith segment
as li, and we will denote the most upstream location as ui, where ui could be ∞. In
order to consider the widest range of models, if there are no more stream segments
upstream of a stream segment (e.g., segment i = 2 in Fig. 3), then we will consider a
segment such as this to be defined on (li, ∞); in Fig. 3, this is denoted as an arrow.

Let the whole set of stream segment indices be denoted as I. The index set of
stream segments upstream of xi, excluding i, will be Uxi ⊆ I. In Fig. 3 for example,
Us3 = {4, 5, . . . , 13}, Ut8 = {9, 10}, and Ur11 = {12, 13}. Besides working with point
locations, we also work with whole segments, so we define the index set of stream
segments upstream of segment i, excluding i, as U[i] ⊆ I. It will also be useful to
define Dxi ⊆ I as the index set of all stream segments downstream of xi into which
xi flows, including the segment containing xi. In Fig. 3 for example, Ds3 = {1, 3},
Dt8 = {1, 3, 5, 6, 8} and Dr11 = {1, 3, 5, 11}. Similarly, the index set of stream segments
downstream of segment i, including i, is denoted D[i] ⊆ I.

Using these definitions, we can say that two locations, si and tj, on a stream net-
work are “flow-connected” if Dsi ∩ Dtj = Dsi or Dtj . In a similar way, we can obvi-
ously define flow-connected between a location and a stream segment, or between
two stream segments. For example, in Fig. 3, s3 and t8 are flow-connected because
Ds3 ∩ Dt8 = Ds3 , whereas t8 and r11 are not flow-connected because Dr11 ∩ Dt8 �= Dr11

nor Dt8 . Finally, consider
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Fig. 3 Example stream
network, with 13 stream
segments labeled with i. The
arrows at the upper end of
stream segments indicate that
they are assumed to have
infinite length. Three locations
on the network, s3, t8, and r11
are shown with solid circles

i = 1

l1 = 0

i = 2

u2 = ∞

u1 = l2 = l3

i = 3

u3 = l4 = l5

i = 4

u4 = ∞

i = 5

u5 = l6 = l11

i = 6

i = 7

i = 9

i = 8

i = 10

s3

t8

i = 11

i = 12

i = 13

u6 = l7 = l8

u7 = ∞

u9 = ∞ u10 = ∞ u12 = ∞
u13 = ∞

u8 = l9 = l10

u11 = l12 = l13

Flow

r11

Bsi,tj ≡
{

(Dsi ∩ Dtj) ∩ (Dsi ∪ Dtj) if si and tj are flow-connected,
Ø otherwise,

which can be thought of as the set of stream segments between two locations, including
the segment for the upstream location but excluding the segment for the downstream
location. In an obvious way we can also define Bsi,[j] and B[i],[j]. In Fig. 3 for example,
Bs3,[8] = {5, 6, 8}. Note that Bsi,ti = Ø because si and ti are on the same segment, even
though they are flow-connected.

We are now in position to define stream distance, whose common-sense meaning
is the shortest distance between two locations on a stream network. We define this as

d(si, tj) ≡
{ |si − tj| if si and tj are flow-connected,

(si − u) + (tj − u) otherwise,

where u = max{uk : k ∈ Dsi ∩ Dtj}. For example, in Fig. 3, d(s3, t8) = |s3 − t8| while
d(t8, r11) = (t8 − u5) + (r11 − u5).
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Fig. 4 Constructing random
variables by using moving
averages. Three stream
segments, labeled i = 1, 2, 3 are
shown. The wavy lines
represent the white noise
processes, and the shaded
areas represent the moving
average functions. Three
locations, s1, t2, and r3 are
shown with solid circles

Flow

r3t2

s1

i = 1

i = 2 i = 3

2.2 Constructing random variables

Next, we will build random variables like that given in (4), but for our stream net-
work. To help develop the ideas, consider Fig. 4. The white noise process W(x) in (4)
is depicted as the wavy line around each line segment. For a location, such as that
given by s1, the moving average function is shown as the shaded function along the
line segment. This moving average function could go in both directions, up and down
the stream in relation to flow. In this paper, we primarily consider functions that only
go upstream, as shown in Fig. 4.

The moving average would be a standard construction for a single line segment
that was continuous from −∞ to ∞ on the real line, such as for time series models.
However, for stream networks, the line segments split into two. Hence, we split the
moving average into two parts, as shown in Fig. 4, with one part going up segment
i = 2 and the other going up segment i = 3. We will do the integral in (4) piecewise,
summing up all segments that contain the moving average function g(x|θ). Because of
the “upstream” construction, we only need to take the integrals for the segments that
are in i and Usi . If we want the random variable Z(si) to be stationary, we need to take
some care in the way that g(x|θ) gets split as we go upstream. That is, suppose that
upstream of the variable defined at t2 there are no further splits, whereas upstream of
r3 there are many splits. If we use no weighting at all, then the total area under g(x|θ)

will be much greater for r3 than for t2. From (5), the variance of a random variable is∫ ∞
−∞(g(x|θ))2dx + ν2

j , so the variance of r3 would be greater than for t2.
The solution is to use weighting, and the weighting can also incorporate flow vol-

ume. In the absence of any flow volume characteristics, we can simply weight each
split in the moving average function by

√
1/2. On the other hand, suppose that the

flow volume from one upstream segment is larger than the flow volume for the other
upstream segment, then we might want to weight according to flow volume. It is often
difficult to measure flow volume for each stream segment, but a proxy variable such
as the stream order can be used; or the area of each basin could be used, which can be
obtained from digital elevation maps (DEMs) in a Geographical Information System
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(GIS). In Fig. 4, if we weight the segment i = 2 with ω2 and the segment i = 3 with
ω3, where ω2 + ω3 = 1, then we maintain stationarity of the variances by weighting
with

√
ω2 and

√
ω3.

For a stream network then, the construction that is equivalent to (4) is

Z(si) =
∫ ui

si

g(xi − si|θ)W(xi)dxi

+
∑

j∈Usi

⎛

⎝
∏

k∈Bsi ,[j]

√
ωk

⎞

⎠

∫ uj

lj
g(xj − si|θ)W(xj)dxj. (6)

For example, suppose we use the exponential moving average function from Table 1
for s3 in Fig. 3. Then

Z(s3) =
∫ u3

s3

e−(x3−s3)W(x3)dx3 + √
ω4

∫ ∞

u3

e−(x4−s3)W(x4)dx4

+√
ω5

∫ u5

u3

e−(x5−s3)W(x5)dx5 + √
ω5ω6

∫ u6

u5

e−(x6−s3)W(x6)dx6

+√
ω5ω6ω7

∫ ∞

u6

e−(x7−s3)W(x7)dx7+ · · · +√
ω5ω11ω13

∫ ∞

u11

e−(x13−s3)W(x13)dx13,

where recall that ω4 + ω5 = 1, ω6 + ω11 = 1, etc.

2.3 Valid covariances based on stream distance and flow

From the definition in (6), we can use (5) to obtain valid autocovariance models for a
stream network.

C(si, tj|θ) =

⎧
⎪⎨

⎪⎩

0 if s and t are not flow-connected,
C1(0) + ν2

j if s = t,
∏

k∈Bsi ,tj

√
ωkC1(d(si, tj)) otherwise.

(7)

where C1(h) = ∫ ∞
−∞ g(x|θ)g(x − h|θ)dx and recall that d(si, tj) is the stream distance

between si and tj on the stream network. The result in (7) might seem surprising at
first. It basically says that we can use moving average models developed in one dimen-
sion, without any branching, as long as we use the proper weighting. Consequently,
the final covariance matrix is quite easy to construct.

Consider any autocovariance function of distance in one dimension that can be
developed using moving averages. Many commonly used models have moving aver-
age representations; some autocorrelation models are given in Table 1. Many of the
models in Table 1 can be found in textbooks on geostatistics, such as Cressie (1993, p.
61) and Chiles and Delfiner (1999, p. 80). A general approach for working backwards
from known, valid autocovariance models to the moving average function is given
by Cressie and Pavlicova (2002). However, it is easy to create our own models. For
example, consider g(x) = 1/(x+1) so that

∫ ∞
−∞ g(x)g(x−h)dx = ln(h+1)/h for h > 0,

and it is equal to 1 for h = 0. This model appears to be new, so we call it the MARI-
AH model (Moving Average Reciprocal 1 Add H), which is given in Table 1. From
Table 1, a general method to develop a valid autocovariance from the autocorrelation
function is by scaling the lag h, multiplying by a partial sill, and adding a nugget effect
for h = 0; i.e.,
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C1(h|θ) =
{

θ0 + θ1 if h = 0,
θ1ρ(h/θ2) if h > 0.

(8)

Now we can develop a matrix V using stream distance for the functions given
in Table 1 and (8). As noted earlier, this will not necessarily be a valid covariance
matrix. However, if we use a weight matrix A, we obtain valid autocovariance matri-
ces by using the Hadamard (element-wise) product � = A � V; the matrix A contains
zeros whenever locations are not flow-connected, and when sites are flow-connected,
A contains the square root of the percentage of flow volume (or other weightings)
∏

k∈Bsi ,tj

√
ωk that the downstream location receives from the upstream location, as

given in (7). To maintain stationary variances, the two weightings should sum to one
whenever there is a fork in the stream network. Assuming an exponential model in
Table 1, for the example in Fig. 4, � = A � V is,

⎛

⎝
1

√
ω2

√
ω3√

ω2 1 0√
ω3 0 1

⎞

⎠ 

⎛

⎝
θ0 + θ1 θ1e−d(s1,t2)/θ2 θ1e−d(s1,r3)/θ2

θ1e−d(s1,t2)/θ2 θ0 + θ1 θ1e−d(t2,r3)/θ2

θ1e−d(s1,r3)/θ2 θ1e−d(t2,r3)/θ2 θ0 + θ1

⎞

⎠ .

2.4 Valid covariances based on stream distance only

So far, we have developed models by taking moving average functions that are asym-
metric, defining them only on the positive real numbers, and then letting the “tails”
of the functions run upstream only. Now, consider the case where the tails run down-
stream only. As long as the stream network has a single lowest point, all locations
will have the possibility of non-zero covariance because part of the moving average
functions could overlap, unlike the case when the tails run upstream. Because these
models have the possibility of autocorrelation among all locations, they may be more
appropriate for variables like fish abundance, because fish can swim upstream and
could be less sensitive to flow.

We do not develop these models in detail here; they will be the subject of a future
paper. We do mention one model that is easy to obtain, however, because it will make
for an interesting comparison to the flow models. If we use the exponential moving
average, as given in Table 1, but run the tails downstream, we obtain a model that only
depends on stream distance. It is not difficult to show, for example, in Fig. 4, that if the
stream distance between s1 and t2 is the same as the stream distance between t2 and
r3, then C(s1, t2) = C(t2, r3) if we use the exponential moving average with the tails
running downstream. So far, we have only been able to show that this is true for the
exponential moving average, and it is not true for the other models in Table 1. Thus,
the exponential covariance model (2) is the only one that we know that is guaranteed
to work using stream distance in the same way that we would use Euclidean distance.
This also explains why the exponential model is valid in Fig. 1. Note that Curriero
(1996) also found this to be the only valid model for networks such as roads.

3 Example

As an example, we use the data shown in Fig. 2. These data are concentration mea-
surements of SO4 (in µeq/L) from a stream network in Maryland, as described earlier.
There were 23 sites. Ideally, we would have more locations, but this data set provides
a useful illustration.
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Fig. 5 Empirical
semivariogram for data shown
in Fig. 2. The solid circles show
the semivariogram among
locations that are
flow-connected, and the open
circles show the semivariogram
among locations that are not
flow-connected. Only lags with
> 15 pairs are shown, and the
sizes of the circles are
proportional to the number of
data pairs that are averaged for
each value
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We begin with an exploratory analysis of the data. In Fig. 5, we plot the empirical
semivariogram for the data from Fig. 2, using the classical estimator as given, for
example, in Cressie (1993, p. 75). We use two modifications: (1) we use stream dis-
tance rather than Euclidean distance, and (2) we separate those pairs of locations that
are flow-connected from those that are not. Figure 5 shows that there is a strong differ-
ence in the empirical semivariogram between flow-connected locations and those that
are not flow-connected. Both sets of points increase with increasing distance, indicat-
ing a possible trend, but locations that are flow-connected are lower overall than those
that are not flow-connected. This is consistent with the idea that those locations that
are flow-connected are more autocorrelated. Note that there is no weighting for flow
volume in the variogram, so it would not be appropriate to use this for estimating
covariance parameters, as is often done in classical geostatistics.

For weights on each stream segment, we used a digital elevation map (DEM) and
National Hydrography Dataset (NHD) to compute the hydrologic basin for each
stream segment, and then used a GIS to calculate the area of that basin. For each
fork in the network, each segment was weighted in proportion to the area of its
stream basin, where the weights summed to one. A GIS was also used to compute
the stream distances. In addition to the 23 data locations, we created 433 prediction
locations evenly spaced throughout the stream network. We included one covariate
in the analysis; the distance upstream from the lowest point.

First, we use the exponential model that incorporates flow. We used REML to
estimate the three covariance parameters contained in � = A � V, which were θ̂0 =
0.387, θ̂1 = 3.55, and θ̂2 = 2217, where the range is in kilometers. We then used
the fitted covariance matrix to estimate the fixed effects. This is termed “empirical”
best linear unbiased estimation (EBLUE), and is often used in software such as SAS
(Littell et al. 1996). A table of fixed effects estimates and other relevant information,
similar to what is produced in linear model software, is given in Table 2. There is
evidence of a decreasing trend in SO4 with distance upstream.

Next, we fit both constant mean models and models with the distance upstream
covariate with all of the covariance models in Table 1, and include the unweighted
exponential model based purely on stream distance. In Table 3, we compare models
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Table 2 Fixed effects table for example data

Effect Estimate Standard error Degrees of freedom t value Prob t

Intercept 9.07 0.984 21 9.22 < 0.0001
Distance upstream −0.1337 0.0537 21 −2.488 0.0213

Table 3 Criteria for comparing models for example data

Model AICa BICb RMSPEc

Constant mean
Linear-with-sill 90.270 94.812 1.599
Spherical 90.276 94.818 1.600
Mariah 90.386 94.928 1.612
Exponential 90.324 94.866 1.606
Exponentiald 95.409 99.951 1.652
With distance-upstream covariate
Linear-with-sill 87.354 93.031 1.446
Spherical 87.354 93.031 1.446
Mariah 87.354 93.031 1.446
Exponential 87.354 93.031 1.446
Exponentiald 95.684 101.362 1.642

a Akaike Information Criteria
b Bayesian Information Criteria
c Root-Mean-Squared-Prediction-Errors
d Model based on pure distance, without flow weightings

based on AIC (An Information Criteria, Akaike 1973), BIC (Bayesian Information
Criteria, Schwarz 1978) and root-mean-squared-prediction errors (RMSPE) from
cross-validation (for a description of cross-validation, see Cressie 1993, p. 101).
Because we are comparing models with different fixed effects, we used maximum
likelihood when computing AIC and BIC, but used restricted maximum likelihood
for RMSPE. Table 3 indicates that there is little difference among the models that
use flow. Also notice that for AIC, BIC, and RMSPE, all of the models using flow
volume weights are much better than the exponential model based purely on stream
distance. As in Table 2, AIC, BIC, and RMSPE indicate that distance upstream
is a useful covariate. Also notice from Table 3 that the models with the distance
upstream covariate have exactly the same AIC, BIC, and RMSPE values for all
flow-based covariances. This occurs when � = A 
 V = A 
 (θ0I + θ111′); i.e., all
autocorrelation models have the ability to have nearly pure autocorrelation of one
among all locations. In this case, most of the spatial structure in the covariance matrix
is captured by the flow weightings in A.

Now consider models with the distance upstream covariate; it is interesting to com-
pare parameters for the exponential covariance model, both with and without the flow
volume weightings. The partial sill and nugget effect for the flow model are 3.546 and
0.387, respectively, while for the pure distance case they are 1.996 and 1.217. Clearly,
from Fig. 2, there is heterogeneity near the confluence of streams, and in general, this
is apparent from Fig. 5. The pure distance model accounts for this with a larger nugget
effect, whereas the flow model handles the heterogeneity through the weights.
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In order to make predictions, we will include the distance upstream covariate and
use the fitted covariance matrix using REML for the exponential model using flow;
although, recall from Table 3, it really does not matter which autocorrelation model
is used. Once we have a valid covariance matrix, the usual universal kriging equa-
tions can be used (see, e.g., Cressie 1993, p. 123). The predictions are shown in Fig. 6.
Notice in Fig. 6 that we see some of the usual properties from kriging. The prediction
standard errors are smallest near the data values, and predictions change gradually
within stream segments. We can see a general trend upstream with decreasing values.
However, there are several interesting and unusual features in Fig. 6. First, look at the
predictions on the stream segment labeled A (a close-up is provided with an inset).
Notice that the predictions are lower than the two nearest values on the main stream,
and lower than all of the predictions on the main stream segment, even though no
data occurred on the segment labeled A. The model recognizes the fact that, relative
to the mouth of stream segment A, the downstream value is lower than the upstream
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Fig. 6 Predictions for the example data in Fig. 2. The Observed locations are shown with large circles
and predicted locations are shown with smaller circles; both are shaded according to their observed
or predicted values. The width of the gray shading behind the circles is proportional to the prediction
standard errors. Thus, areas with wider shading have less precision
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value. We suppose that it is likely that stream segment A has added water with low
values. In fact, the stream flow from segment A is rather small, so the predictions
are quite low. The prediction standard errors are large on stream segment A, but it is
interesting to see that the predictions are able to use the changing values in the stream
segment into which A flows to adjust the predicted values. The same thing happens to
the stream segment labeled with B, except here the predicted values are greater than
the main stream because the observed values increase when going from the upstream
location to the downstream location on the main stream.

For another interesting property, notice that the prediction standard errors get
very large at the fork labeled C, whereas they are smaller at the fork labeled D. The
observed location at C is just below the fork, whereas for D it is just above the fork.
When the observed location is just below a fork, as in C, there is no way of knowing
whether that value is the mixture of streams with high and low values, or any combi-
nation of mixing. This lack of knowledge is reflected in the prediction standard errors.
Also, there is more flow volume coming from the northern fork at C, so the prediction
standard errors are a bit lower here, reflecting the fact that it would probably have
more influence over the observed value. These properties have obvious and important
implications for sampling designs on stream networks.

Finally, in Fig. 7 we simulate data near a stream fork. In general, kriging predictions
are “smooth,” changing gradually between observed locations. However, notice that
because of the construction using asymmetric moving averages with tails that only run
upstream, there are prediction discontinuities at stream junctions in Fig. 7. This is an
important property for predicting stream chemistry values and fits our understanding
of how flow affects observations and predictions.

Fig. 7 A close-up of simulated
predictions. Observed
locations are shown with large
circles and predicted locations
are shown with smaller circles;
both are shaded according to
their observed or predicted
values. Notice the discontinuity
of predictions at the stream
fork
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In the prediction of a resource, or the monitoring of pollution, we often want to
predict the total or average amount along a stream segment, in addition to making a
map of point predictions. When using covariates, this is also known as universal block
kriging (see, e.g., Cressie 1993, p. 151). Because we have a valid, fitted covariance
matrix, we can easily perform universal block kriging on stream segments. From Fig.
6, we block krige the stream segment E and the segment labeled with F. The pre-
dicted average for segment E is 5.51 with a prediction standard error of 1.07, while
the predicted average for segment F is 9.88, with a prediction standard error of 0.62.

4 Discussion and conclusions

We were able to meet the objectives stated in the introduction. We developed valid
spatial covariance models that use flow and stream distance. For the example data
set, the models using flow were much more appropriate than the pure stream distance
model. The valid covariance matrix based on flow and stream distance allowed us to
fit a spatial linear model to fixed effects and evaluate their importance. We also used
the spatial linear model for kriging and block kriging predictions.

Many areas need further research in developing spatial models for stream net-
works. Exploratory graphics and diagnostic methods are important tools in selecting
and evaluating models. Because of the weighting for flow models, the usual methods
may not be appropriate. For example, the usual empirical variogram on residuals needs
modification to account for weighting. As mentioned earlier, whole classes of models
are yet to be developed for moving averages that have their tails running downstream
rather than upstream, or in both directions. More functions can be developed for flow
models as well. We used REML for covariance estimation, but Bayesian and other
estimation methods need to be developed. The use of moving averages could allow
for the use of nonstationary models, where we would allow the variance to change
with flow. Space precludes additional development here, but these research areas are
currently being investigated.
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